
 

© 2021 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 13, No. 3 (2021) pp. 297-304 

DOI: 10.22034/jsm.2021.1879427.1502 

Investigation of Stress State of the Layered Composite 
with a Longitudinal Cylindrical Cavity 

V. Yu. Miroshnikov 
*
 
 

Department of Aircraft Strength of the National Aerospace University, Kharkov, Ukraine 

Received 29 May 2021; accepted  5 July 2021 

 ABSTRACT 

 The article presents the study of the stress state of a two-layer 

composite with a cylindrical cavity located parallel to the surfaces 

of the layers. Displacements are set on the cavity and the upper and 

lower boundaries of the upper and lower layers, respectively. The 

three-dimensional elasticity solution has been obtained by the 

analytical-numerical generalized Fourier method with respect to the 

system of Lame equations in local cylindrical coordinates 

associated with cavity and Cartesian coordinates associated with 

boundaries of the layers. The infinite systems of linear algebraic 

equations resulting from satisfying the boundary conditions are 

solved by the reduction method. As a result, displacements and 

stresses have been obtained at various points of the elastic body. 

We have compared the stress-strain state of a two-layer structure 

with a cylindrical cavity located in either of the layers. The analysis 

included various geometrical parameters and boundary functions; 

the results obtained were compared with a single-layer holed 

structure. 

                                 © 2021 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 S the sintering technology of materials with different elastic characteristics develops [1], the need arises to 

study the stress state of such composites. Thus, laboratory tests are described in [2-4] choosing the most 

optimal arrangement options for layers and determining the mechanical properties of a particular composite. 

Another approach is analytical methods for simulating mechanical properties [5-7], which consider a composite 

made of isotropic layers as an integral transversely isotropic or orthotropic material, and its mechanical properties as 

functions of the layer thickness. Once the mechanical properties are determined, the problem for the layer is 

considered. In [8], two-layer metal sheets are investigated, where forming limit diagrams (FLDs) and forming limit 

stress diagrams (FLSDs) determined by analytical and numerical approaches are compared with experimental results 

of Al3105-St14 two-layer sheet to verify the validity of theoretical models. Many works are devoted to a composite 

layer or plate with a stress concentrator in the form of a cylindrical cavity perpendicular to the boundaries of the 
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layer [9–12]. If we speak about the composite as an integral material, then its nonlinear mechanical behavior should 

be considered.  The authors of [13] review rate-dependence, tension-compression asymmetry, viscous behavior, 

unloading characteristics, interaction between stress components and effects of environmental factors on mechanical 

properties. In this manuscript [14], the progressive failure analysis was employed to predict the final failure of 

notched woven glass/epoxy composite laminates under tensile loading. A user-defined material model (UMAT) in 

the Abaqus finite-element package was developed to utilize the 3D progressive failure analysis feasible. In the 

present manuscript [15], an extensive numerical study has been conducted to investigate the effects of material 

nonlinearity on the stress distribution and stress concentration factors in unidirectional and laminated composite 

materials. To achieve this objective, various models with different configurations were studied. In this manuscript 

[16], a comprehensive numerical analysis is conducted to assess the accuracy of the Tan’s model of obtaining the 

stress concentration factor, for a plate with finite dimensions containing an open hole. The influence of plate length 

on the stress distribution around the hole is studied. The authors of [17] obtained the closed analytical expressions 

for the displacement field due to a cylindrical inclusion in a thermoelastic half-space. These expressions are derived 

in the context of steady-state uncoupled thermoelasticity using thermoelastic displacement potential functions. 

The generalized Fourier method [18] is used to solve multiple boundary surface problems. Based on this method, 

problems have been solved for a half-space with longitudinal cylindrical cavities [19, 20], for a layer with a 

longitudinal cavity, insertions, or pipe [21-24]. Based on the generalized Fourier method, problems have also been 

solved for a cylinder with cylindrical cavities or insertions [25-28]. 

This paper suggests a solution to a spatial problem with a numerical-analytical approach based on the 

generalized Fourier method. The solution is recorded for each isotropic layer. The cylindrical cavity is located in one 

of the layers, provided that the boundary surfaces do not intersect. Consideration of the influence of boundary 

conditions on surfaces is based on addition theorems that connect the basic vector solutions of the Lame equation in 

Cartesian and cylindrical coordinates.  

2    PROBLEM STATEMENT   

There are two ideally sintered homogeneous elastic layers. The lower layer has a cylindrical cavity with radius R, 

parallel to its surfaces (Fig. 1). 

 

 

 
 
 
 
 
 
 

 

Fig.1 

Two layers with a cylindrical cavity. 

 

We shall consider the upper and lower layers in the Cartesian coordinate systems (x1, y1, z1) and (x2, y2, z2), 
respectively; the cavity will be considered in the cylindrical coordinate system (ρ, ϕ, z) aligned with the coordinate 

system of the lower layer. The boundaries of the upper and lower layers are located at the distance y1=h1 and y1=0 

and y2=h2 и y2= 2h , respectively. 

We need to find a solution to the Lamé equation, where j is the layer number, provided that displacements are set 

at the upper boundary y1=h1  of the upper layer, at the lower boundary  
1
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where 1U


 are displacements in the upper layer; 2U


 are displacements in the lower layer; 
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Known functions; 
 k

je , j = 1, 2, 3 are the unit vectors of the Cartesian (k=1) and cylindrical (k=2) coordinate 

systems. The specified functions will be considered as rapidly decreasing from the origin along the z axis for the 

cylinder and along the z and x axes for the layer boundaries. The flat interface of the layers meets the boundary 

coupling conditions 
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; σ j , jE  are Poisson's ratio and 

modulus of elasticity of the j-th layer, respectively. 

3    METHOD OF SOLUTION   

Let us choose basic solutions for the Lamé equation for Cartesian and cylindrical coordinate systems in the form 

[18]: 
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where  mI x ,  mK x  are modified Bessel functions; , ,,k m k mR S  are internal and external solutions to the 

Lamé equation for the cylinder, respectively; 
   

,k ku u
 

 are solutions to the Lamé equation for a layer. 

The solution to the problem may be represented as: 
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where  , , , ; ;k m jS z    , 
   , , ; , ; jku x y z   


 and 
   , , ; , ; jku x y z   


 are the basic solutions, which are 

given by formulas (4), and the unknown functions 
   
1

,kH   , 
   
1

,kH   , 
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2

,kH    and 

 ,k mB   and must be found from the boundary conditions (1). 

To make the transition of basic solutions between coordinate systems (Fig. 1), we use the formulas [24]. To 

satisfy the boundary conditions at the upper boundary of the upper layer, we equate vector (5) (y1=h1) to the 

specified  0
1 1 1,U x z , represented through the double Fourier integral. Thus, we get the first three equations (one 

for each projection) with six unknowns 
   
1

,kH   , 
   
1

,kH   . 

To satisfy the boundary conditions at the lower boundary of the lower layer, we rewrite the vectors ,k mS  in (6), 

using the transition formulas [24, formula 7], in the Cartesian coordinate system through the basic solutions  
ku


. 

Then we equate the resulting vector (y2= 2h ) to the specified  0
2 2 2,U x z , represented through the double Fourier 

integral.  

Considering that the vector of displacements for the lower boundary of the upper layer is equal to the vector of 

displacements of the upper boundary of the lower layer, we can write three additional equations in the form (2). In 

this case, writing down the expression  
2 2

2 2 2,
y h

U x z


, we shall use the formulas for the transition from solutions 

,k mS  of the cylinder to solutions 
 
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

 [24, formula 7]. Similarly, we can write three additional equations for 

stresses (3). As a result, we obtain a system of 12 equations and use them to express the functions 
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The determinant  of this system has the form 
 167

4
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h

e
 




  

  , where    is a function, which is 

omitted due to its cumbersomeness. The study    showed that, if  > 0, it has only positive values and does not 

vanish. Given that  > 0, this system of equations has a unique solution. 
To satisfy the boundary conditions at the cylinder ρ = R, we rewrite the right side [6] using the transition 

formulas from solutions 
 
ku


 to solutions 
 
ku


 [24, formula 8], in the Cartesian coordinate system through the basic 

solutions , ,,k m k mR S . Then we equate the resulting vector to the specified  0 ,RU z , represented through the 

integral and the Fourier series. As a result, we obtain a set of three infinite systems of linear algebraic equations to 

find unknowns. These infinite systems have the properties of equations of the second kind, which makes them 

possible to apply the reduction method. Once  ,k mB   is determined, we can find the unknowns 
   
1

,kH   , 

   
1

,kH   , 
   
2

,kH   , 
   
2

,kH   , which had been expressed through  ,k mB  . Similarly, we will find all 

unknown expressions (5) and (6). 

4    NUMERICAL STUDIES OF THE STRESS STSTE    

The cylindrical cavity is located in the lower layer of a two-layer isotropic material (Fig. 1). Physical characteristics 

of the upper layer: Poisson's ratio 1 = 0.21, elastic modulus E1 = 294000 N/mm
2
; lower layer: 2 = 0.38, E2 = 1700 
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N/mm
2
. The radius of the cylindrical cavity is R = 10mm. Thickness of the upper layer h1 = 4mm, thickness of the 

lower layer 2 2h h = 60mm. Distance to the cylindrical cavity was calculated in triplicate: for h2 = 30mm, 

h2 = 40mm, and h2 = 20mm. For comparison, the option without the upper layer was taken. On the surface of the 

cylinder, we set displacements 
     

2
4 2 2, 10 10

R
U z z 



   ,    
0

R R
zU U   , on the upper boundary of the 

upper layer and the lower boundary of the lower layer, respectively. 

The infinite system was truncated by the parameter m. h2 = 30mm, m = 6; h2 = 40mm and h2 = 20mm with m = 9. 

The integrals were calculated using the Philon quadrature formulas (for oscillating functions) and Simpson (for zero 

oscillation functions). The accuracy of meeting the boundary conditions, with the specified m and geometric 

parameters, is 10
-3

. 

Fig. 2 presents the stresses   and z  at the boundary of the layers along the z axis, / 2  . The stress 

curves   and z  have the same form as they differ only in maximum values  =   = –18.59 MPa, h2 = 30mm, 

z =   = –73.13 MPa, h2 = 20mm, and z =   = –7.74 MPa at h2 = 40mm. 

 

 
(a) 

 
 (b) 

Fig.2 

Stresses at the boundary of layers, MPa: а –  ; b– z ; 1 – h2 = 30mm, 2 – h2 = 20mm, 3 – h2 = 40mm. 

 

Fig. 2 shows the growing stresses at the boundary of the layers as the hole approaches the upper layer (line 2) 

and their decrease as the hole moves away (line 3). The absence of the upper layer has little effect on the stress state 

of the upper boundary of the lower layer (changes less than 1%) and are omitted on the curve due to the coincidence 

of the lines. 

Fig.3 shows the stresses   and   on the surface of the cylindrical cavity, z=0. The stress curves   and z  

have the same form as they differ only in  , ranging from 3.58 to 54.83 MPa, and  , ranging from –67.84 to –

119.65 MPa. 

 

 
(a) 

 
 (b) 

Fig.3 

Stresses on the surface of the cylindrical cavity, MPa: а –  ; b –  ; 1 – h2 = 30mm; 2 – h2 = 30mm, without upper layer; 3 

– h2 = 20mm; 4 – h2 = 20mm, without upper layer; 5 – h2 = 40mm; 6 – h2 = 40mm, without upper layer. 
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Curves in Fig. 3 show the greater stresses on the surface of the cylindrical hole on the closer side to one of the 

layer boundaries. If h2 = 20mm, the stress is higher at π/2 (lines 3, 4), if h2 = 40mm, the stress is higher at 6π/4 (lines 

5, 6), if h2 = 30mm, symmetry is observed (lines 1, 2). The absence of the upper layer causes an increase in stresses 

 ,  , z  on the surface of the cavity (Fig. 3(a), lines 2, 4, 6), while the shear stresses   (Fig. 3(b)) remain 

practically unaffected. 

If we change the functions of the boundary conditions and set zero displacements      
0

R R R
zU U U     on 

the surface of the cylinder,        
2 21 8 2 2 2 2, 10 10 10yU z z x
 

       and 
   1 1

 0x zU U   at the upper 

boundary of the upper layer, and 
     2 2 2

0x y zU U U    at the lower boundary of the lower layer, then the nature of 

the stress state will change. 

For such boundary conditions, Fig. 4 shows the stresses  ,  , z  and z  at the boundary between the 

layers (in the lower layer body) along the z axis. 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

Fig.4 

Stresses between the layers, MPa: а –  ; b –  , c – z , d – z ; 1 – h2 = 30mm; 2 – h2 = 30mm, without upper layer; 3 – 

h2 = 20mm; 4 – h2 = 20mm, without upper layer; 5 – h2 = 40mm; 6 – h2 = 40mm, without upper layer. 

 

Stresses   at the boundary between the layers (Fig. 4(a)) increase as the hole approaches this boundary (line 

2). A significant increase is also caused by the absence of the upper layer (nonzero displacements in this case are 

applied to the upper boundary of the lower layer), thus, line 1 (Fig. 4(a)) passes into line 4, line 2 passes into line 5, 

and line 3 passes into line 6. Stresses   at the boundary between the layers (Fig. 4(b)) at h2 = 30mm and 

h2 = 40mm (lines 1 and 3, respectively) have positive values; as the hole approaches this boundary (h2 = 20mm, line 

2), the values become negative. In the absence of the upper layer, all stresses   become negative and grow 

significant: line 1 (Fig. 4(b)) passes into line 4, line 2 passes into line 5, and line 3 passes into line 6. The forms of 

stress curves z  at the boundary between the layers (Fig. 4(c)) with (lines 1, 2, 3) and without an upper layer (lines 
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4, 5, 6) differ significantly. In the presence of the upper layer, the stress z  is significantly lower; moreover, if 

h2 = 30mm and h2 = 40mm (lines 1 and 3, respectively) the stresses in the region z = 0 have positive values. Shear 

stresses z  (Fig. 4(d)), in the presence of the upper layer, have greater values (lines 1, 2, 3) than without it (lines 4, 

5, 6). The height of the hole location has little effect on the values of shear stresses z ; moreover, if h2 = 30mm and 

h2 = 40mm (lines 1 and 3, respectively), they practically coincide. 

On the surface of the cylinder, at z = 0, stresses   and   are shown in Fig. 5. The stress values on the lower 

part of the cylindrical cavity (angle  = π… 2π) are close to zero and are omitted in Fig. 5. The stress curves   

and z  have the same form as  ; the only different values are the maximum values in the presence of the upper 

layer  = –18.37 MPa, z = –18.45 MPa at h2 = 30mm,  = –66.45 MPa, z = –66 , 5 MPa at h2 = 20mm, and 

 = z  = –7.88 MPa at h2 = 40mm. 

 

 
(a) 

 
 (b) 

Fig.5 

Stresses on the surface of the cylindrical cavity, MPa: а –  ; b –  ; 1 – h2 = 30mm; 2 – h2 = 30mm, without upper layer; 3 

– h2 = 20mm; 4 – h2 = 20mm, without upper layer; 5 – h2 = 40mm; 6 – h2 = 40mm, without upper layer. 

 

In the absence of the upper layer (Fig. 5, lines 4, 5, 6), the stress is higher than with it (Fig. 5, lines 1, 2, 3); thus, 

line 1 passes into line 4, line 2 passes into line 5, and line 3 passes into line 6. As the cavity approaches the upper 

boundary of the layer, the stresses increase (lines 2 and 5). 

5    CONCLUSION 

We have proposed a method for solving the second main three-dimensional elasticity problem on the basis of the 

generalized Fourier method for two heavily bonded layers with a cylindrical cavity in either of them. The problem is 

reduced to an infinite system of linear algebraic equations, which allows applying the truncation method. Numerical 

studies give grounds to say that the proposed method can help find its solution with any accuracy, which is 

confirmed by the high accuracy of fulfilling the boundary conditions. The solution method can be applied in the 

design of composites, with two bonded layers with a cylindrical cavity and boundary conditions in the form of 

displacements used as a design model. The presented comparative analysis shows the influence of the upper 

(protective) layer and the cylindrical cavity on the stress state of the lower (main) layer having a stress concentrator. 

This analysis can be used to select the geometric parameters of the structure. 
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