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 ABSTRACT 

 In this paper, the extended isogeometric analysis based on Bézier 

extraction of NURBS is applied for Investigating stress intensity 

factor and fatigue life in the two-dimensional crack problems with 

thermal and mechanical cyclic loading. By transforming NURBS 

function to linear combination of Bernstein functions defined over 

C0-continuous Bézier elements, the extended isogeometric analysis 

can be implemented in the extended finite element method 

framework. Grid points around the crack line and crack tip are 

identified by the level set representation. Then, discontinuous 

enrichment functions are added to the isogeometric analysis 

approximation. Thus, this method does not require remeshing. The 

interaction integral method and Paris law has been used to extract 

stress intensity factor and evaluate fatigue life, respectively. 

Numerical examples are examined to validate the efficiency of the 

proposed method. The effect of adaptive refinement strategies on 

computational cost and convergence is studied. Numerical 

examples showed that the presented method produces highly 

accurate results, yet it is beneficial to implement.   

                                 © 2022 IAU, Arak Branch.All rights reserved. 

 Keywords : XIGA analysis; Bézier extraction operator; Cyclic 
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1    INTRODUCTION 

RACK propagation analysis by numerical modeling has been a challenge for researchers during the past and 

recent years. More numerical methods were based on a discrete crack analysis that used remeshing approach 

due to boundary requirements in the new generated elements introduced by the crack increments. Many different 

approaches have been presented to overcome the difficulties of crack geometric topological changes and remeshing 

during crack propagation, such as combinative methods for crack modeling and analyzing [1,2], extended finite 

element method [3,5] and meshfree methods [6-8]. These methods were developed to reduce the computational cost 
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and remeshing steps and enable these methods to handle crack propagation and discontinuous problems. The 

isogeometric analysis uses a geometric basis function, as used in computer-aided design, within the modeling and 

analysis process. The fundamental basis function in CAD is B-spline or NURBS. The advantage of isogeometric 

analysis method is to use the same basis function for modeling and analysis. The IGA method allows us to create the 

exact geometry by few elements and solution results with higher accuracy [9]. Bhardwaj et al. [10,11] used the 

XIGA to evaluate fracture behavior of cracked plates under static loading for different boundary conditions. Tran et 

al. [12] employed the IGA for the buckling, static and dynamic response of plates. Huang et al. [13] performed 

Analytical characterizations of crack tip stress field and crack tip plastic zone for central cracked unstiffened and 

stiffened plates. Gadallah et al. [14] presented a new method to compute the mixed-mode SIFs for a through-

thickness crack in a welded medium with a residual stress field. Yuan et al. [15] studied Mode I stress intensity 

factor for cracked special-shaped shells under bending load. However, the isogeometric analysis method has been 

investigated richly by many researchers. There still exists an incompatibility between the volumetric representation 

of geometries and the boundary representation of the CAD models. To overcome this difficulty, Bézier extraction 

operator approach can be used with the isogeometric analysis. In general, NURBS basis functions span over the 

entire domain of geometries (models) and do not possess a local domain (element) as Lagrange shape functions. The 

global structure requires complex implementation within the traditional IGA context. Computation of stiffness 

matrix formulation needs to be further transformed into the parent element while the basis functions are defined in 

the parametric space. By choosing Bernstein functions as the basis functions in Bézier extraction, the isogeometric 

analysis will be performed similarly to what was done in traditional finite element. The Bernstein functions have the 

C
0
-continuity similar to Lagrange shape functions. The Bézier extraction operator allows the incorporation of non-

uniform rational B-spline based isogeometric analysis into the traditional finite element method framework. 

Cimrman et al. [16] performed a convergence study of IGA based on Bézier extraction in electronic structure. They 

explained a new method for non-periodic electronic structures based on the density functional theory, environment 

reflecting pseudo potentials and the IGA using Bézier extraction, ensuring continuity for all quantities up to the 

second derivative. Lieu B. Nguyen et al. [17] employed isogeometric Bézier with a C
0
-type shear deformation 

theory for structural vibration analysis of functionally graded piezoelectric porous plates. They have shown that the 

results of this method match very well with the similar numerical studies or other solutions. Kumar et al. [18] 

studied stress intensity factor on crack tip plastic zones by the XIGA. This study shows the effect of holes on the 

extent of crack. Shuohui et al. [19] developed a novel method for simulating static and dynamic crack problems in 

2D elastic solids through a XIGA. Their method provides several advantages in fracture modeling and analysis.  

In this study, the XIGA approach based on Bézier extraction is used to analyze the crack propagation in a plate 

with thermal and mechanical cyclic loading, for the purpose of SIFs extraction, determination of fatigue life and the 

adaptive refinement strategies. For this purpose, the concepts of enrichment were used to enrich the IGA control 

points with Heaviside and crack tip enrichment functions. Finally, several numerical examples considering the 

geometry, boundary and loading conditions are introduced, results on which are compared with other approaches. In 

Section 2 of this paper, the framework of IGA is discussed. The B-spline and NURBS basis functions, Bézier 

extraction of NURBS and the extended isogeometric analysis that govern a crack problem in a linear elastic fracture 

mechanic are also introduced. Section 3 presents the interaction integral method for computation of stress intensity 

factor. The crack growth and fatigue life- related work are detailed in Section 4. Fundamental equations of thermo-

elastic problems are given in Section 5. Section 6 describes the various numerical examples for evaluating the stress 

intensity factor and the fatigue life of a cracked plate to verify the accuracy of the method.  

2    ISOGEOMETRIC ANALYSIS METHOD 

2.1 B-spline and NURBS basis functions  

The B-spline basis functions are fundamental concepts of establishing IGA, which could be expressed by a set of 

knot values called knot vector, Ξ = {ξ1, ξ2,..., ξn+p+1} (ξi ∈ R), where n is the number of basis functions and p is the 

polynomial order. The B-spline basis functions are defined by the following recursive forms [11]. 
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 NURBS basis function is for exactly present the conical sections such as circle and ellipse that defined as: 
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Also the two dimensional NURBS are defined as: 
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2.2 Bézier extraction of NURBS 

In this section, the method of constructing the NURBS function using Bézier elements and the Bézier extraction 

operator is presented. The Bézier element spans traditionally [0,1] (in each direction) and is created by a knot vector 

without the internal knot. The knot vector contains (p+1) zeros and ones, where p is the polynomial order. The basis 

functions created by this kind of knot vector are named the Bernstein functions and have many similarities to the 

Lagrange basis functions that used in finite element method. Besides, the Bernstein functions can be defined over 

the interval [−1,1] such that the Bézier element spans the same interval as the quadrilateral elements in FEM. Since 

the knot values are restricted to −1 and 1 and each one of them is repeated (p+1) times, then the Bernstein functions 

defined as [20]: 
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These Bernstein functions, similar to the B-splines and NURBS functions, constitute the partition of unity and 

are nonnegative over the entire domain. In addition, The Bernstein functions identical to the Lagrange functions are 

symmetric and interpolator at the endpoints of the domain. The Bézier curve evaluated by a linear combination of 

Bernstein functions and control point coordinates set as: 
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Bézier extraction operator maps the linear combinations of Bernstein functions into NURBS basis functions. 

Using this transformation, it is possible to use piecewise C
0
 Bézier elements as the FEM in isogeometric analysis. 

To decompose a set of NURBS basis functions to its Bézier elements, called Bézier decomposition, all internal knots 

of the knot vector are repeated until they have a multiplicity equal to p (polynomial order). In fact, the interior knots 

should have a multiplicity of (p+1) to create correctly separated Bézier elements. The multiplicity of p is enough to 

present the Bernstein functions, which in this study are also referred to as Bézier basis functions. The curves and 

surface created by the NURBS basis functions and as well as the Bézier basis functions are entirely similar but the 

number of control points increases similar to the number of basis functions while their location are changed. 

Considering that the Bézier decomposition is a knot insertion operation, the Bézier extraction operator is based 

on the equations of new control points created by the original control points when a knot is inserted. Assuming   ∈ 
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[ξ k, ξ k+1] & (k > p) is a new knot inserted into the existing knot vector Ξ ={ξ1, ξ2, ... , ξn+p+1}, then, the new set of 

control points are created as [16]: 
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where Pi and 
iP  are the existing and new control points, respectively. 

According to the operation of knots insertion, given a new set of knots { 1,  2,...,  m}, the Bézier extraction 

operator Cj (j =1,2,...,m) can be determined in a matrix form as: 
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Consequently, Eq. (8) can be recast in a matrix form to present the sequence of control points created by the knot 

insertion operation. 
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The final control points 
1m b P P  are explained as: 
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Moreover, the relation between new Bézier control points and the original NURBS control points is defining as: 
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Considering the knot insertion causes no change in parametric or geometric nature of the curve, then, one can 

write, 
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Therefore, the relation between the B-spline basis functions and the Bernstein functions can be expressed as: 
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In above equation, C is called the Bézier extraction operator. In Bézier extraction, the NURBS basis functions 

are expressed with Bernstein functions. The only input required to calculate C is the knot vector. Therefore, the 
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Bézier extraction operator is independent from control points as well as the basis functions. This means that the 

Bézier extraction operator is the same for B-splines and NURBS.  

To define the bivariate Bézier extraction operators suppose that i

ξC  and Ci


 are the ith, jth, univariate Bézier 

extraction operators in the 𝜉 and 𝜂 directions. Then the bivariate extraction operator is defined as: 
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where ⊗ is defined for the two matrices A and B, which may have different dimensions as: 
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To obtain the NURBS basis functions, the weighting function is written as: 
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In Eq. (18), wb = C
T
w are the weights of the Bézier basis functions, given as a vector. Substituting Eq. (15) into 

Eq. (4), the NURBS basis functions using the Bernstein functions and the Bézier extraction operator defined as: 
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where W is the NURBS weights. Since with the knot insertion, the Bézier decomposition of control points is 

performed directly to the NURBS curve. The relation between Bézier and NURBS control points is: 
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where, Wb is the Bézier weights and wb is given in terms of as a diagonal matrix. By Multiplying Eq. (20) by Wb  
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Combining Eqs. (19) and (21), the NURBS curve in terms of C
0
 Bézier elements is recast in Eq. (22). Similarly, 

the NURBS surface in terms of C
0
 Bézier elements is expressed in Eq. (23). 
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2.3 Extended isogeometric analysis 

2.3.1 Level set representation 

In the level set technique, a crack is defined by two orthogonal level set fields [21]. One of these fileds define the 
crack line {x: φ(x) = 0 and ψ(x) ≤  0}, and the other one is used to define the crack tip {x: φ(x) = 0 and ψ(x) = 0}. 

This implicit definition of the crack line and the crack tip by the level set can be illustrated in Fig. 1. 
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Fig.1 

Crack line function φ and crack tip function ψ. 

 

Quantity of the two level set functions are generated on control points around the crack line and crack tip, and 

used to obtain geometric information of the crack location and provides a local coordinate system that used to 
generate the enrichment functions used in the XIGA approach. This is accomplished as well by requiring that φ 

always represents the signed distance to the extended crack line, while ψ gives the signed distance to the line that 

intersects the crack line at the crack tip while being orthogonal to the crack line as well. To initialize the values of φ 

and ψ, we start by initializing φ on the control points of the elements that are cut by the extended initial crack line 

(Fig. 2).  

 
  

 

 

 

 

 

 

 

 

 

 

Fig.2 

Illustration of points around the crack line. 

 
For a given grid point, P, the value of φ is the minimum distance between P and the crack line. Assuming (x0,y0) 

and (x1,y1) represent the coordinates of the starting point and end point of a crack, and P=(x,y) is the point on a 

special element where the minimum distance is obtained, and n is the unit normal to the element containing the point 
P, φ is initialized as, 
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where φ is computed for each grid point to recognize the element cut by crack line. This extends φ, as the signed 

distance function, radially outward from the crack line. The crack tip function, ψ, determined as, 
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Similarly, the value of the level set function ψ is the minimum distance between each grid point and the crack 

tip. ψ is computed for each grid point (control points) of the model to recognize the element around the crack tip. 

Note that the values of φ and ψ are set only within a specified bandwidth, β, from the crack line. Thus, these values 

are set only for the grid points P such that ψ(y) ≤  β and φ(y) ≤  β. Updating the level set functions φ and ψ is to 

reconstruct the crack tip from the intersection of the two isosurfaces,      :  0     :  0x y x y    . On the other hand, 

for the split knot span (element)      φ Min φ 0    0Max and Max    and for the crack tip knot span (element) 

       φ φ 0         0Max Min and Max Min     . 
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2.3.2 XIGA approximations for cracks 

In the extended isogeometric analysis, the displacement approximation is locally enriched to simulate 

discontinuities. For this purpose, few fictitious nodes and their degrees of freedom are added to the selected control 

points near the location of a crack. The basic concept of XIGA is the extent of approximation of the basis functions 

by special enrichment functions selected according to the behavior of the crack problem. To model the cracks in 

XIGA, the elements divided by the discontinuities are recognized as the enriched elements. Furthermore, in the 

XIGA, the crack is represented independent of the meshing process and hence, remeshing is not required for the 

analysis of crack propagation. The level set technique is used to identify the enriched and nonenriched elements as 

well as their control points. The elements intersected by the crack line are called split elements while the elements 

intersected by the crack tips are named tip elements. There is one to one communication between the control points 

and the basis functions. Hence, each basis function can be uniquely assigned to its control point. Moreover, each 

basis function has its supported domain (control points) and becomes zero outside this domain. These specifications 

are unified to detect the control points related to the split and tip elements. The number of control points related to a 

split element or tip element depends on the order of basis functions. However, the change in the basis functions 

order changes the number of control points. The typical XIGA discretization with the enriched control points is 

shown in Figs. 3(a), and Fig. 3(b) for basis functions of orders 1 and 3, respectively. 

 
 

 

 

 

 

       (a)                  (b) 

 

 

 

 

 

 

Fig.3 

Crack model with XIGA and enriched control points for (a) 

basis functions of order 1, and (b) basis functions of order 3. 

 

The control points associated with the split elements and the tip elements are enriched with the Heaviside 

function and the crack tip enrichment functions, respectively. The XIGA approximations in the 2D continuum 

formulation for cracks are given as [22,23], 
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The first term in Eq. (26) represents presents the standard isogeometric analysis approximation. Additionally, 
Ri(ξ) is the basis functions and ui are the standard degrees of freedom related to a special control point. Other terms 

in the displacement field are used to represent the discontinuous behavior by enrichment function. Eq. (26) can be 

expressed in terms of the Heaviside function and crack tip enrichment functions as: 
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where (Ri) are the basis functions; H(ξ)s are the Heaviside functions and Q𝛼(ξ)s are the asymptotic crack tip 

enrichment functions. Moreover, aj and kb  are the additional degrees of freedom related to the modeling crack line 

and the crack tip, and nh and nt are the number of control points enriched with Heaviside and crack tip enrichment 

functions, respectively. 
The Heaviside function H(ξ) is equal to +1 or −1 depending on the location of the control point concerning the 

crack lines. For each individual control point in the particular element, the H(ξ) is equal to +1 if the point lies above 

the crack line and -1 otherwise. The asymptotic crack tip enrichment functions are defined as: 
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where r and 𝜃 are the polar coordinates of a point concerned with the crack tip. Each split node is enriched by one 

function, H(x). Each tip node is enriched by four functions,  Q

 . Then, the total degrees of freedom is number of 

standard node*2 + number of split node*1*2 + number of tip node*4*2. We use fictitious nodes/control points to 

handle these additional degrees of freedom. At a H(x) enriched node, we add one fantom node and at tip enriched 

node, four fantom nodes are added. These fictitious nodes are numbered from the total number of true nodes. 

In XIGA, the domain consists of split elements, tip elements (enriched elements), and the standard (nonenriched) 

elements. The enriched elements are the elements that are intersected by the discontinuities such as a crack. The first 

term in the right-hand side of Eq. (27) evaluates the displacement field using the standard IGA approximation, while 

the remaining terms are the enrichment approximations to model the discontinuity as well as representing the 

accurate solution of the displacement field, near the crack tip. On substituting the trial functions, the following 

discrete system of equations are obtained as, 

 

    K d F        (29) 

 

where, [K] is the global stiffness matrix, {d} is the vector of nodal unknowns and {f} is the external force vector. 

The displacement control variables and the additional enrichment degrees of freedom are as, 

 

 1 2 3 4              
T

u a b b b bU        (30) 

 

The global stiffness matrix K is explained as, 
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 
 
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The discretized form of the governing equation is  

 

                  ,  , ,
T

r s

i j d where r s u a b


  K B DB        (32) 

 

The global force vector F is expressed as, 
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where in Eq. (32) 
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31 2 4bb b bb

i i i i iB B B B   B        (37) 

 

 

 

   

1

α

2

2 1

,

b

,

, ,

0

0

i x

i i x

i ix x

R Q

R Q

R Q R Q





 

 
 
 
 
 
 

B        (38) 

 

and 𝛼 = 1, 2, 3, 4. Finally, by calculating the displacement values, strain and stress values can be obtained using Eq. 

(52) and (53). 

 

    ε B d        (39) 

 

    D         (40) 

 

where d is the displacement vector,  D is the Mechanical properties matrix,   is the strain matrix and   is the 

stress matrix.  

3    INTERACTION INTEGRAL AND STRESS INTENSITY FACTOR EVALUATION  

In this section, the interaction integral will be derived for extracting SIF (SIFs) along the crack tip. Throughout this 

work, the material is limited to linear elastic and isotropic conditions, and small strain kinematics is assumed. The 

interaction integral or M-integral is derived from the path independent J-integral [24]. The formulation of the M-

integral is presented here followed by techniques to calculate SIFs.  

The path independent J-integral [24], is defined as, 

 

 
1 ,10

J lim
j ij i jw u n d 


          (41) 

 

where w is the strain energy density defined as: 

 

0

kl

ij ij
w d



          (42) 

 
and nj denotes the outward normal vector to the contour Γ, as shown in Fig. 4. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Integration path and coordinate systems. The cartesian (x1, 
x2) and polar (r,θ) coordinate systems located at the crack tip. 

Notation ū denotes displacements and   denotes tractions. 

 

If two supportable and independent fields are considered in a condition that the displacements, strains, and 

stresses of the actual fields and the auxiliary fields are denoted by (u,ε,𝜎) and (u
aux

, ε
aux

,𝜎aux
) respectively, then the J-

integral of these fields can be defined as: 
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     
1 ,1 ,1

1
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2 ik j ij i

s aux aux aux aux

ik ik ik ij i ju u n d      


 
       

 
        (43) 

 

This integral can be decomposed into 

 

J J Js aux M          (44) 

 

where J is given by Eq. (41) and J
aux

 is given by 
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1 ,1J
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
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with 

 

0

aux
klaux aux aux
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
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M is the interaction integral including the cross-terms of actual and auxiliary fields, that is defined as: 
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 
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The auxiliary stress fields in polar coordinates are explained as [25]: 
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where the functions fij (θ) are provided in [25] and the auxiliary displacement fields are defined as: 
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2 2
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i i i
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where 
aux

IK and 
aux

IIK are the auxiliary mode I and mode II SIFs, respectively. The functions gi (θ) are also provided 

in [25].  Moreover, the auxiliary strain fields are explained as: 

 

, ,

1
( )

2

aux aux

ij i j j iu u          (50) 

 

The relationship between J-integral and KI and KII  is defined as [25]: 

 
2 2

J
'

I IIK K

E


        (51) 

 

where E 
'
 is defined in terms of  E (Young’s modulus) and   (poison’s ratio) as: 
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By superposing the actual and auxiliary fields, and using Eq. (51), Eq. (53) obtains as: 
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and 

 

 
2

I II

aux aux

I IIM K K K K
E 
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The integral Eq. (47) is not the appropriate form for further evaluations. Thus, it is necessary to recast this 

integral into a similar domain form. This task would be done by multiplying the integrand by a sufficiently smooth 

weighting function q(x). This weighting function takes a value of unity on an open set including the crack tip and 
losses on an outer prescribed contour C0. Then for each  part of contour Γ as shown in Fig. 5, it is assumed that the 

crack line is traction free and straight in the domain A which is bounded by the contour C0. Then the interaction 

integral may be rewritten as, 
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Fig.5 

Domain A contains Γ, C+, C−, and C0. Unit normal mj = nj  

on C+, C−, and C0 and mj = −nj on Γ. 

 
where contour C =Γ+C++C−+C0 and m is the normal unit outward to the contour C. Now by the divergence 

theorem and passing to the limit as the contour Γ is miniaturized to the crack tip, gives the Eq. (56) for the 

interaction integral in domain form, 
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 
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where mj =−nj on Γ and mj =nj on C0, C+ and C−. 

For the numerical calculation of this integral, domain A is set to be a band of elements around the crack tip. In 

this study, the first step is determining the characteristic length of an element near the crack tip and designates this 

quantity as hlocal. For two dimensional analysis, this value is computed as the square root of the area of the element. 

Domain A is then allowed to encapsulate all elements with their control points being with a circle of radius rd around 

the crack tip. Fig. 6 shows a band of elements for the domain A with the circle domain with radius rd taken to be 

twice the length hlocal. The q function would have a value of unity for all control points within this domain and zero 

on other control points. The function can be smoothly interpolated within the elements using the nodal shape 

functions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Selected Elements around the crack tip. 
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4    FATIGUE CRACK GROWTH ANALYSIS   

In structures, it is important to be able to predict the rate of the crack growth and the structure’s fatigue life during 

cyclic loading such that a component in operation either can be replaced or repaired before the crack reaches its 

critical length. In this study, the rate of crack growth is calculated for each crack increment using Paris law which is 

defined as, 

 

 
mda

c K
dN

         (57) 

 
where c and m are Paris low constant parameters and the change in SIF (ΔK) for constant amplitude cyclic load is 

defined as, 

 

max minK K K          (58) 

 

where Kmax and Kmin are the SIFs that correspond to the maximum and minimum value of the applied loads, 

respectively. After computing the crack growth rate, the numerical integration approach has been employed for 

calculating the fatigue life which is corresponded to the applied load. 

5    THERMO-ELASTIC EQUATIONS  

The strain in problems with thermo mechanical loads includes two parts [26], 

 
T m th           (59) 

 
where ε

m
, ε

th
, and ε

T
 are mechanical, thermal and total strains, respectively. The thermal strain can be calculated as, 
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where αij and ΔT are thermal expansion coefficient and temperature gradient, respectively. Furthermore, the 

mechanical strain is calculated as, 
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The thermal equation can be written as, 

 

0h th PT f        (62) 

 

where P is the thermal stiffness matrix,  f
th

 is the thermal force vector. Also, the temperature vector T
h
 is defined as, 

 

 
1

h u a bT        (63) 

 

The thermal stiffness matrix P and the thermal force vector f
th

 Calculated as: 
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The matrices of basis functions derivatives are defined as: 
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where Qth is asymptotic thermal crack tip enrichment function as: 

 

  sin   
2

thQ r
 
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By solving the thermal Eq. (71), the thermal strain can be computed by Eq. (69) using temperature values. 

Moreover, the total force vector in Eq. (29) can be defined as: 

 

 th m T th mf f f B D d f


           (73) 

 

where the B matrix is presented as Eq. (35) to Eq. (38).  

Finally, using both indicated total force and Eq. (29) could lead to the calculation of the total strain.  

6    NUMERICAL EXAMPLES   

To demonstrate the accuracy and verify the convergence of the proposed method, some numerical example of 

fracture problems for the isotropic materials has been solved. Presented numerical example were two isotropic 

problems as, (I) an edge cracked plate (Fig. 7(a)), and   (II) a center cracked plate that both of them subjected to 

uniform tension, (Fig. 7(b)). 

Stress intensity factor results are independent of material constants. The constants of used material are as 

Young’s modulus E = 207 GPa and Poisson’s ratio = 0.3. The evaluated models are of unit thickness. The material 

is assumed to be the plane strain and analysis in linear elastic fracture mechanic. For the sake of convenience, the M-

integral values are converted to stress intensity factor. In this study, exact solutions of the stress intensity factor are 

also calculated. 
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Fig.7 

The edge cracked plate and the center cracked plate. 

 

 

 

6.1 Edge cracked plate 

Consider the geometry shown in Fig. 7(a), a plate of width D and height L with an edge crack of length a, that 

values are given in Table 1. Moreover, mechanical and thermal load and boundary condition are specified in Table 1 

and Fig. 7(a).  

In this study, the properties of material are temperature independent. The values of Physical, mechanical and 

thermal properties of material are in room temperature. 

 
Table 1   

Dimensions and condition of the edge cracked plate. 

Measure Specifications 
400 mm Plate length 

200 mm Plate width 
95 mm Crack length 

 1000 KPa Applied stress 

1000 W/m2 Top edge(Heat flux) 

60oc Bottom edge(Constant temperature) 

Insulated Left edge 

Insulated Right edge 

50 W/moK Heat conductivity 

15e-6 1/oC  Thermal expansion coefficient 

        

Using basis functions and proper control points, the geometry of the plate is formed and then the crack is created 

at the desired position. To show the effect of refinement operation on the convergence rate and results, present 

problem is solved for linear (p=q=1), quadratic (p=q=2) and cubic (p=q=3) basis functions. In addition, by 

definition the appropriate level set function, the control points around the crack line and the crack tip are identified. 

After calculating the total stiffness matrix, enrichment of control points around the crack line and the crack tip, 

applying boundary conditions and force, displacement and consequently strain and stress values for each element 

and related control points are obtained. To validate the results of XIGA method, finite element solving of the 

problem has been done. Contour plot from the extended IGA based on Bézier extraction method and the finite 

element method are shown in Fig. 8. The results obtained from the solution with XIGA based on Bézier extraction 

and finite element methods are presented in Table 2. Based on the results, the convergence study and comparison 

between the XIGA based on Bézier extraction and finite element methods are shown in Fig. 9. 

 
Table 2   
Maximum displacement in X and Y direction (m)  × 10-5 and Maximum von Mises stress σvon×107 (pa). 

Bézier XIGA, (p=q=1) FEM 

σvon
max 

Uy
max Ux

max No. of elements σvon
max

 Uy
max

 Ux
max No. of elements 

5.9963 7.3921 7.3356 48 2.8026 7.2957 7.2913 129 

7.7428 7.7267 7.7918 140 4.3082 7.6982 7.7848 191 

9.9254 7.9471 8.0860 600 6.4046 7.8799 8.0084 324 

12.185 8.0317 8.1978 1800 8.1495 8.0010 8.1597 639 

16.795 8.0637 8.2349 4200 12.628 8.0467 8.2159 2356 

25.293 8.0803 8.2574 16200 18.144 8.0784 8.2551 42474 

26.642 8.0820 8.2608 25200 26.736 8.0806 8.2582 166216 

http://en.wikipedia.org/w/index.php?title=Coefficient_of_thermal_expansion&oldid=213746248
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(a)                       (b) 

 
 (c) (d) 

Fig.8 

Comparing the results of isogeometric analysis and finite element analysis. (a) Finite element displacement in Y direction 

(mm). (b) Isogeometric displacement in Y direction (mm). (c) Finite element von Mises stress (Pa). (d) Isogeometric von 

Mises stress (Pa). 

  

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 (b) 

Fig.9 

Convergence study and comparison of maximum displacement in (a) X direction and (b) Y direction. 
 

After obtaining the above results, the stress intensity factor at the crack tip is calculated using the interaction 

integral. The exact solution (analytical) for calculating the stress intensity factor of the first mode for a plate with 

edge crack is obtained using the following equation [27]: 

 
2 3 4

1.12 0.23 10.55 21.72 30.39
I

a a a a
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         

       (74) 

 

where a, is the length of the crack and D is the width of the plate. The results obtained for the SIF from the XIGA 

based on Bézier extraction, FEM and the exact solution are presented in Table 3. In this table the exact solution is 

equal to 1.4261. The accuracy of all results is excellent, there is less than 1 percent variation among all 

configurations tested in the convergence range. 

 
Table 3   

Stress intensity factor (KI), (pa√𝒎)  × 107. 

Bézier XIGA, (p=q=3) Bézier XIGA, (p=q=2) Bézier XIGA, (p=q=1) FEM 

Error K No. of 

elements 
Error K No. of 

elements 
Error K No. of 

elements 
Error K 

No. of 

elements 

13.15% 1.2385 44 12.36% 1.2498 45 11.52% 1.2617 48 27.54% 1.0333 129 

10.09% 1.3021 52 7.54% 1.3186 70 3.88% 1.3707 140 8.82% 1.3003 191 

5.17 % 1.3523 64 4.28% 1.3651 150 1.54% 1.4081 600 4.61% 1.3604 344 

3.94% 1.3948 76 1.59% 1.4034 375 0.63% 1.4160 1800 3.01% 1.3832 639 

0.46% 1.4195 90 0.87% 1.4179 750 0.46% 1.4194 4200 1.42% 1.4059 2356 

0.02% 1.4235 128 0.08% 1.4249 1125 0.15% 1.4239 16200 0.46% 1.4196 42474 

0.01% 1.4263 156 0.01% 1.4264 1500 0.04% 1.4254 25200 0.15% 1.4235 166216 

 

The study of convergence and comparison of the values for stress intensity factor based on XIGA (with the knot 

insertion and increase in the number of elements) and the FEM is shown in Fig. 10(a). The values of stress intensity 

factor from solving with the XIGA with order elevation (p-refinement) for p=q=1, p=q=2, and p=q=3, and the exact 
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solution are presented in Fig. 10(b). The results show that the application of p-refinement produces higher precision 

results with lower computational costs. 

 
 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 (b) 

Fig.10 

(a) Convergence study and comparison of stress intensity factor (KI). (b) Comparison of stress intensity factor (KI) for p=q=1, 

p=q=2 and p=q=3. 
 

The calculation of the SIF in the present problem is solved for different crack lengths by XIGA method and 

finite element methods, and the results are compared with the exact solution. Results and comparisons are presented 

in Table 4 and Fig. 11(a).  

 
Table 4   

Stress intensity factor (KI), (pa√𝒎)  × 107 for different crack lengths. 

Error FEM Error Bézier XIGA Exact  crack length (m) 

0.18 % 1.4235 0.15 % 1.4239 1.4261 0.095 
2.25 % 1.7252 0.47 % 1.7565 1.7649 0.105 
2.89 % 2.1413 0.49 % 2.1941 2.2051 0.115 
3.15 % 2.6896 0.01 % 2.7768 2.7772 0.125 
3.41 % 3.3974 2.71 % 3.6017 3.5170 0.135 

 

Now, the fatigue life of an edge cracked plate is evaluated by extended IGA method. The thermal load, thermal 

and mechanical boundary conditions, control net and crack increment are kept the same as above. The mechanical 
load has a zero base as σmin= 0 and σmax=1000 Kpa at the top edge of the plate. This problem is also solved by the 

finite element method using quadrilateral elements for a uniform mesh. 

The fatigue life of an edge cracked plate is evaluated by Paris law. The Paris constant of material considered as 

 
m

122.087 10   MPa m
mm

C
cycle


   and m=3. Also, the critical SIF (KIC) is equal to 80 MPa m . In this study, 

initial crack length considered to be 20 mm and the crack length increment coefficient for each iteration is 

c=1.1(  
1 0

  0.1
n n

a a a


   ) until reaching the critical stress intensity factor. A comparison of fatigue life obtained by 

extended IGA and finite element methods is shown in Fig. 11(b). The fatigue life of the plate obtained by XIGA is 

found to be 399,374 cycles, whereas the fatigue life obtained by finite element is found to be 385,457 cycles. The 

crack growth paths obtained by both two methods are nearly a straight path. 

 
 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 (b) 

Fig.11 

(a)Comparison of stress intensity factor (KI) for different crack lengths. (b) Fatigue life variation with the crack length for an 

edge cracked plate. 



393                          Investigating Stress Intensity Factor and Fatigue Life …. 
 

Journal of Solid Mechanics Vol. 14, No. 3 (2022) 
© 2022 IAU, Arak Branch                                      

6.2 Center cracked plate 

For the next example, consider the center cracked plate shown in Fig. 7(b), a plate with width D, height L and a 

center crack of length a, that values are given in Table 5 mechanical and thermal load and boundary condition are 

specified in Table 5 and Fig. 7(b). 
 
 

Table 5   

Dimensions and condition of the edge cracked plate. 

Measure Specifications 
200 mm Plate length 

200 mm Plate width 
95 mm Crack length 

1000 KPa Applied stress 

1000 W/m2 Top edge(Heat flux) 

60oc Bottom edge(Constant temperature) 

Insulated Left edge 

Insulated Right edge 

50 W/moK Heat conductivity 

15e-6 1/oC  Thermal expansion coefficient 

 

All analyzes that done for the edge cracked plate, for the center cracked plate were performed as well, and the 

results are shown in Figs. 12- 15 and Tables 6-8. 

 
 

Table 6   

Maximum displacement in X and Y direction (m)  × 10-5 and Maximum stress in Y direction σy ×107 (pa). 

Bézier XIGA, (p=q=1) FEM 

σy
max 

Uy
max Ux

max No. of elements σvon
max

 Uy
max

 Ux
max No. of elements 

0.0899 5.0183 6.0183 36 0.0626 5.5156 5.8325 64 

0.1128 6.5817 6.5817 100 0.1082 6.1997 6.4529 96 

1.0254 7.0292 7.0292 625 1.1989 6.8673 6.7245 163 

2.0081 7.1529 7.1329 1600 1.9985 7.1184 6.9116 325 

2.9859 7.1993 7.1693 3025 2.9367 7.2016 7.1223 1132 

3.2819 7.2262 7.1942 7225 3.5941 7.2529 7.1829 21319 

3.6420 7.2308 7.2008 13225 3.7016 7.2644 7.1992 84211 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 (b) 

Fig.12 

Convergence study and comparison of maximum displacement in (a) X direction and (b) Y direction. 
 

http://en.wikipedia.org/w/index.php?title=Coefficient_of_thermal_expansion&oldid=213746248
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 (a) (b)                       
 (c) (d) 

Fig.13 

Comparing the results of isogeometric analysis and finite element analysis. (a) Finite element displacement in Y direction 

(mm). (b) Isogeometric displacement in Y direction (mm). (c) Finite element stress in Y direction (Pa). (d) Isogeometric stress 

in Y direction (Pa). 

 

    Convergence study of stress intensity factor for XIGA based on Bézier extraction and FEM is shown in Fig. 

14(a). Comparison of stress intensity factor values from extended IGA method with order elevation (P-refinement) 

for p=q=1, p=q=2, and p=q=3, and the exact solution are presented in Fig. 14(b). This figure shows that p-

refinement cause Results obtained with high precision and lower computational cost. The exact solution for the first 

mode SIF is obtained using the following equation [27]: 

 
2

1 0.326 1
2I

a a a
K a

D D D
 

       
                    

       (75) 

 

where a, is the length of the crack and D is the width of the plate. The exact solution for the stress intensity factor is 

equal to 0.9998. 

 
Table 7   

Stress intensity factor (KI), (pa√𝒎)  × 107. 

Bézier XIGA, (p=q=3) Bézier XIGA, (p=q=2) Bézier XIGA, (p=q=1) FEM 

Error K No. of 

elements 
Error K No. of 

elements 
Error K No. of 

elements 
Error K 

No. of 

elements 

28.41% 0.7158 25 31.05% 0.6894 36 38.12% 0.6187 36 49.61% 0.5038 64 

19.24% 0.8074 36 20.73% 0.7925 64 24.69% 0.7529 100 35.96% 0.6403 96 

10.04% 0.8949 49 11.88% 0.8812 100 9.03% 0.9095 625 16.54% 0.8344 163 

5.80% 0.9418 64 4.00% 0.9598 225 4.34% 0.9564 1600 9.76% 0.9022 325 

0.40% 0.9958 81 0.82% 0.9916 625 2.15% 0.9783 3025 4.10% 0.9589 1132 

0.01% 0.9997 100 0.21% 0.9976 900 1.02% 0.9889 7225 3.02% 0.9796 21319 

0.03% 1.0002 121 0.08% 0.9989 1089 0.67% 0.9931 13225 %1.03  0.9868 84211 
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 (b) 

Fig.14 

(a) Convergence study and comparison of stress intensity factor (KI). (b) Comparison of stress intensity factor (KI) for p=q=1, 

p=q=2 and p=q=3. 
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The result of stress intensity factor for different crack lengths by extended IGA, finite element, and the exact 

solution are presented in Table 8 and compared in Fig. 15(a).  

 
Table 8 

Stress intensity factor (KI), (pa√𝒎)  × 107 for different crack lengths. 

Error FEM Error Bézier XIGA Exact  crack length (m) 

1.03 % 0.9791 1.02 % 0.9869 0.9998 0.095 
2.25 % 1.3011 0.47 % 1.3204 1.3165 0.105 
2.89 % 1.7984 0.49 % 1.8321 1.8239 0.115 
3.15 % 2.2796 0.01 % 2.3414 2.3196 0.125 
3.41 % 2.9212 2.71 % 3.0311 2.9859 0.135 

 

The fatigue life of a center cracked plate is evaluated by extended IGA method and finite element method. The 

thermal and mechanical load, thermal and mechanical boundary conditions, crack increment and all other conditions 

are kept the same as edge cracked plate. A comparison of fatigue life obtained by extended IGA and finite element 

methods is shown in Fig. 15(b). 

 
 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 (b) 

Fig.15 

(a)Comparison of stress intensity factor (KI) for different crack lengths. (b) Fatigue life variation with the crack length for a 

center cracked plate. 

7    CONCLUSIONS 

In the present work, extended isogeometric method based on Bézier extraction has been used for analyzes of plane 

crack problems under thermal and mechanical cyclic loading. We investigated the advantages and rectified the 

drawbacks of the approach, and proposed some improvements to the procedure, which makes the approach 

amenable to realistic damage tolerance assessment problems. We have used the interaction integral, to estimate SIF 

and Paris law, to evaluate the fatigue life in linear elastic fracture mechanics. Furthermore, the level set method has 

been developed to identify grid points around the crack line and crack tip then added discontinuous enrichment 

functions to the IGA approximation and modeling crack growth without remeshing. Some numerical example has 

been solved to check the accuracy of the presented approach to predict the SIF and fatigue life. Based on the present 

work, the following conclusions are drawn, 

- In all examples, good agreements between the two solutions are found. The extended isogeometric method 

based on Bézier extraction has been found quite effective, useful and more accurate and beneficial to 

compute the stress intensity factor and the fatigue life of crack problems. Moreover, the saving in CPU is 

quite significant in this method.  

- The proposed integration scheme preserves the accuracy for highly distorted elements or control points 

which commonly arise in isogeometric analysis. 

- The fatigue life of an edge crack plate is found small as compared to the center crack plate under the same 

loading and boundary conditions. 

- These analyses show that the accuracy achieved using this method with higher-order basis function found 

more as compared to the finite element method. The IGA based on Bézier extraction with higher-order 
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approximations required fewer degrees of freedom than lower-order finite elements for solutions with the 

same accuracy. 

- Because of the Bézier decomposition process (creating piecewise C
0
 Bézier elements), k-refinement is not 

applicable in the isogeometric analysis based on Bézier extraction. Actually, in this method, k-refinement is 

equivalent to order elevation (p-refinement). 

- The present IGA based on Bézier extraction of NURBS or another type of basis function could be enhanced 

by enrichments in the framework of the partition of unity to solve discontinuous problems. 
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