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 ABSTRACT 

 In this paper, using the complete modified nonlocal elasticity theory, 

the deflection and strain energy equations of rectangular nanoplates, 

with a central crack, under distributed transverse load were 

overwritten. First, the deflection of nanoplate was obtained using 

Levy's solution and consuming it; strain energy of nanoplate was 

found. As regards nonlocal elasticity theory wasn’t qualified for 

predicting the static behavior of nanoplates under distributed transverse 

load, using modified nonlocal elasticity theory, the deflection of 

nanoplate with a central crack for different values of the small-scale 

effect parameter was achieved. It was gained with the convergence 

condition for the complete modified nonlocal elasticity theory. To 

verify the result, the results for the state of the small-scale effect 

parameter were placed equal to zero (plate with macro-scale) and then 

were compared with the numerical results as well as the classical 

analytical solution results available in the valid references. It was 

shown that the complete modified nonlocal elasticity theory does not 

show any singularity at the crack-tip unlike the classical theory; 

therefore, the method presented is a suitable method for analysis of the 

nanoplates with a central crack.                                 

  © 2021 IAU, Arak Branch. All rights reserved. 

 Keywords: Nonlocal elasticity theory; Crack; Small-scale effect; 

Nanoplate; Singularity. 

1    INTRODUCTION 

 ISTINCT methods are depending on the materials' scale for investigation and analyzing their behavior under 

different loading and boundary conditions, each of which has its application according to the problem 

definition, and the required accuracy in the results. The limitations of experimental methods and quantum mechanics 

(although it is very precise) have led to the interest of molecular methods. However, molecular models were 

unsuitable for the analysis of large structures, and consequently; continuum mechanics were considered.           

Defects of crystal lattice such as atoms' vacancy, dislocation, the existence of very small cracks, etc. can cause many 
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problems, including reduction of material strength. Many of these flaws can be simulated as very small cracks. 

Models of the classical continuum mechanics are scale-free and can't account for quantum effects, whereas the 

analysis of such defects must be performed on a nano-scale [1]. Therefore, several modified theories such as 

Eringen's nonlinear elasticity theory, strain gradient theory, couple-stress theory, and modified couple-stress theory 

have been proposed, which are capable of considering the small-scale effect. Among these theories, the theory of 

nonlocal elasticity has been more widely accepted because of its simplicity and proper prediction of nanomaterial 

behavior and also its concordance with molecular dynamics results. As regards it has not complex calculations, this 

theory is capable of analyzing large-scale structures and as the following is discussed, it is a very good method for 

investigating and identifying crack parameters in structures. In 1999, Gao [2] presented a general theory of nonlocal 

elasticity, which was very effective in rediscovering Eringen's nonlocal elasticity theory. Assuming the symmetry of 

the parameters of the nonlocal elasticity theory, Gao developed the theory based on the micron-scale behavior of the 

crystalline lattice and by reducing the relationships in the nonlocal elasticity theory, he proposed a higher-order 

gradient model called the couple-stress theory. The nonlocal elasticity theory enabled the researchers to solve many 

of the problems encountered with stress singularity in the local elasticity (such as crack-tip problems) and to show 

that this singularity disappears with nonlocal behavior. Many researchers have considered the analysis of cracked 

nanoplates under in-plane load and also have paid attention the singularity at the crack-tip such as Zhou et. al that 

obtained stress in a plate containing a crack, which was under out-of-plane shear stress, with using the nonlocal 

elasticity equations. The results [3] were shown that there is not any singularity of stress at the crack-tip. In 2003, 

Zhou et. al [4] used these results to predict crack behavior in piezoelectric materials. They obtained a stress field at 

the crack-tip that depends on the crack length and the internal length of the material lattice. Zhou and Shen [5] 

studied the propagation of harmonic shear stress waves by the same-direction cracks on a plane using the nonlocal 

elasticity theory and obtained the stress field at the crack-tip, which depends on the crack length, and also were 

observed that there isn't any singularity at it. In 2003, Zhou and Wang [6] used the results for piezoelectric materials 

and validated these results. In 2005, Zhou and Wang [8] investigated the interaction of two parallel cracks in the 

functionally graded materials under out-of-plane shear loading by nonlocal elasticity theory using the Schmidt 

method, which their results showed there isn't any stress singularity near the crack-tip. They showed that the stress 

field at the crack-tip, in addition to the crack length and lattice parameter, depends on the distance between the two 

cracks from each other, and the characteristic parameter of the functionally graded materials (FGM). Subsequently, 

the bending of non-cracked nanoplates has attracted the attention of many researchers through various theories. In 

2012, Huang et. al [9] calculated the small-scale effect parameter for single-layer graphene sheets. They considered 

single-layer graphene sheets as rectangular sheets with simply-supported at all four edges under transverse 

concentrated load in the middle of the plate and obtained their deflection using both nonlocal elasticity and 

molecular dynamics. They concluded that the nonlocal parameter is not constant and depends on the sheet 

dimensions, and this dependence is different for the Zigzag and armchair graphene sheets. In 2015, Yan et. al [10] 

used the nonlocal elasticity method to obtain higher-order unlimited differential equations for non-cracked nanoplate 

and nanobeam models. They investigated the small-scale effect parameter on nanobeam and nanoplate deflection 

and obtained very close results to molecular dynamics simulations. In 2015, Rezatalab and Golmakani [11] 

investigated the nonlinear bending of graphene rectangular nanoplates in a two-parameter polymeric environment 

under uniform transverse load by the Eringen's nonlocal model. They obtained equilibrium equations based on the 

Mindlin's rectangular plates using Von-Karman's strains and also, applied the Eringen's nonlocal theory to consider 

the small-scale effect. They showed that by increasing the small-scale effect parameter, the deflection of nanoplate 

decreases. In 2016, Şeref [12] analyzed the static analysis of rectangular nanoplates under distributed transverse load 

based on the couple-stress theory using differential quadrature method. He showed that the geometrical properties, 

and the small-scale effect parameter play an important role in the show the bending behavior of nanoplates under 

distributed transverse load. In 2017, Eskandari et. al [13] analyzed bending of the Kirchhoff’s graphene rectangular 

nanoplate using modified couple-stress theory and simply-supported boundary conditions. Gaining strain energy and 

external force and placing them in Hamilton's principle, they obtained the basic and auxiliary equations of the 

nanoplate and used the Navier method to analyze the nanoplate. In 2018, Sadatmosavi et. al [14] showed that the 

nonlocal elasticity theory in some static problems, such as nanobeam and nanoplate bending with the simply-

supported under concentrated and distributed transverse load, is not able to account for the small-scale effect 

parameter. Creating changes in nonlocal structural equations and introducing the complete modified nonlocal 

elasticity model, they obtained maximum deflection of nanobeam and nanoplate with simply-supported boundary 

conditions and also under concentrated and distributed transverse load. Furthermore, they extended efficiency of 

nonlocal elasticity theory in the field. Researcher have been frequently focused on analysis of the cracked plates 

under transverse load over the last few decades. For example, Shvabyuk et. al [15], studied bending of orthotropic 

plates containing a central crack. Their analytical model modified and improved bending theory of plates and also, it 
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explains transverse deformation of plate. Chattopadhyay [16] also presented an analytical solution to obtain the 

bending stress intensity factor using the Reissner’s plate theory and Fourier integral method. He obtained the general 

formula of bending moment and twisting moment of infinite elastic plates, which contain cracks located on a single 

line.However, the present analysis suggests that the analysis of cracked nanoplates under transverse load has not yet 

been considered and also is one of the fields that need for more research. The nonlocal elasticity theory has wide 

application in the analysis of the nanoplates as well as fracture mechanics, which can be extended to the analysis of 

cracked nanoplates under transverse load.   

In the present study, a complete modified nonlocal elasticity theory for static bending analysis of nanoplate with 

a central crack in two modes: 1. simply-support at all four edges and 2. Simply-supported at two edges and clamped-

supported at the other two edges, are used. Furthermore, their deflection and strain energy equations have been 

obtained, and the lack of singularity existence at the crack-tip has been demonstrated. 

2    RELATIONSHIPS GOVERNING STATIC BENDING OF CENTREAL CRACHED RECTANGULAR 

NANOPLATES   

Using the complete modified nonlocal elasticity theory, it is possible to analyze the static bending of nanoplates 

under a concentrated and distributed transverse load. The cracked nanoplate is assumed and also, its thickness is tp. 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Rectangular nanoplate with a central crack. 

 

According to classical theory, the displacement and strain fields are defined as follows: 
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(1) 

 

where in Up, Vp and Wp are the displacements in the three directions ,p px y  and pz  respectively, and Also, Upo and 

Vpo are in-plane displacement of the middle-plane.  Assuming, Ep and νp are the elastic module and Poisson's ratio of 

the nanoplate, respectively, according to the plane stress assumption, the local stress-strain relationship is defined as 

follows: 
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(2) 

 

According to the nonlocal elasticity theory, the nonlocal constitutive equations can be expressed as follows [1]: 
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 (1 ) ,      
T

nl l nl nl nl nl

x y xyN         (3) 

 

In which nl  and  N are the nonlocal stress tensor and the nonlocal operator, respectively, and also are defined 

as follows: 
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where in   is the dimensionless nonlocal parameter,  iL  is the internal length (the distance between the carbon 

atoms),  eL  is the external length, which is usually considered equal to the length of the nanoplate ([9] and [14]), 

and 0e  is the intrinsic properties of the material, which is obtained from experimental results or lattice dynamics 

atomic modeling. In the complete modified nonlocal elasticity theory, modified nonlocal equations are used instead 

of nonlocal structural Eqs. (3). The complete modified nonlocal constitutive equations can be described as follows: 

 
nl lN    (5) 

 

In which *N  is the modified nonlocal operator and is defined as follows [14]: 
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It can be shown that the complete modified nonlocal Eq. (6) are a private solution of the nonlocal Eqs. (3). 

Omitting the middle-plane displacement of the plate,  0pu  and 0pv , the nonlocal moment tensor and the nonlocal 

shear force tensor, respectively, are: 
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In which: 
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The strain energy of the nanoplate can be written as follows: 
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and if the plate is subjected to a distributed transverse load  ,q x y , the work done by the transverse load is: 

 

 ,q x yW dA   (11) 

 

The total potential energy of the nanoplate is obtained by U W   , and applying the principle of virtual 

work, 0  , the governing equation of the nanoplate is obtained as follows: 
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 * 4

pD w q    (12) 

 

Also, making dimensionless relationships as following: 
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and assuming isotropy and also constant thickness of the nanoplate, the governing differential equation of the 

nanoplates is obtained as follows: 
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If the external length of the nanoplate be equal to its length, e pL a , the modified nonlocal operator can be 

written as follows: 
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where in *  was considered as the gradient in terms of dimensionless coordinate. Considering Levy's solution for 

the plate, shown in Fig. 1, the deflection equation of nanoplate with the dimensionless parameters is considered as 

follows: 
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1w  is the particular solution of the governing Eq. (14) and,  2w  is the general solution that their combination 

produces the overall solution equation. Placing 1w  in the equation of equilibrium (14), the following relationship is 

obtained: 
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That for convergence nE  series and consequently, convergence of the Levy's solution should be either 

2 2 2 1n     or
1

n



 . Also, based on the relationship (7), the dimensionless bending moment in the x-

direction is defined as follows: 
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Following, the solution of the governing Eq. (14) is investigated in two cases. At first, Boundary conditions for 

all four edges are supposed simply-supported and then, for two transversal edges simply-supported (x=0) and two 

longitudinal edges clamped-supported (y=±b) are assumed. 

2.1 Deflection of nanoplate in case of the Simply-Supported for all four edges   

The nanoplate boundary conditions for this case are as follows: 
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(21) 

 

In the above relationships, two relationships (a) and (b) represent four simply-supported for all four edges of the 

plate; relationship (c) indicates the zero shear force on the x-axis, due to the plate symmetry than the x-axis and also 

zero shear stress at the crack-free surface. relationship (d) with respect to symmetry than the x-axis, represents the 

zero deflection gradient in the section of the without crack of the plate along the x-axis, and the relationship (e) with 

respect to the zero normal stress in the crack-free surface, represents the zero bending moment in the crack-free 

surface. It should be noted that using the complete modified nonlocal theory, the nonlocal operator *N , has 

appeared in the boundary conditions resulting from the obtained moment and shear force. 

The boundary condition (a), from the set of boundary conditions (21), is established spontaneously in the 

governing Eq. (14) and can be obtained ,n nA B  by applying boundary conditions (b). 
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In which nb  . By applying boundary condition (c) from the set of boundary conditions (21),  nC  obtain: 
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By placing 
nC  in relationships (22), the coefficients ,n nA B  in terms of 

nD  will obtain: 
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Three coefficients ,n nA B  and 
nC  in terms of the coefficient 

nD  have been obtained and also, the coefficient 

nD  must be calculated from the other two boundary conditions. 

By applying boundary condition (d) from the set of boundary conditions (21), the following relationship is 

obtained: 
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and finally, by applying boundary condition (e) from the set of boundary conditions (21) and after some algebraic 

operations, the following relationship is obtained. 
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Therefore the following equation-couple is obtained to achieve the coefficient 
nD : 
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where in: 

 

1 (1 )n pP      (29) 

 

If it is assumed that n n n nR D S T  , the right side of the second Eq. (28) can be zeroed, then with determining 

nT  from the following two equations,  
nD  can be obtained. 

 

1

1,3,...

1,3,...

(1 ) sin( ) ( )

sin( )

              0

                                         
2

0  

n n

n

n

n

n U T nx P x c

c x

x

T nx











  

 




 

 

 

(30) 
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where in: 
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(31) 

 

To determine 
nT , It is assumed: 
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(32) 

 

and also using the following two equations [17]: 
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In these two equations, the Heavyside Function is: 
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(34) 

 

First, by placing 
nT  from the Eq. (32) in the second Eq. (30) and using the first Eq. (33), then, shift of the 

integral operator ordering and series, the result will obtain as following: 
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(35) 

 

Due to the 0t x  , thus ( ) 0H x t  , and as a result, the Eq. (35) becomes equal to zero and it satisfies the 

equation. By placing 
nT  from the Eq. (32) in the first Eq. (30), the following equation will obtain: 
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By placing the first Eq. (33) in the relationship (36), and after some algebraic operations and simplification, the 

state of Fredholm Integral Function of second kind is obtained: 
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Thus, by numerical solution of the Fredholm Integral Function (37), which is given in the appendix, ( )   will 

be obtained: 
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0
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0( ) ( )nT nc J n c d      
 

(39) 

 

and consequently, 
nD will be obtained: 
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(40) 

2.2 Deflection of nanoplate in the case: clamped-supported in y=± b and simply-supported in x=0, π  

Boundary conditions of nanoplate, in this case, are as follows: 
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(41) 

 

All boundary conditions in this case are the same of the previous case, except the boundary condition (b). By 

applying boundary condition (b) to the set of boundary conditions (41), 
nA and 

nB  will be obtained: 
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(42) 

 

The coefficient nC  is the same of the previous case. Therefore, by placing nC  from relationship (23) in the 

relationship (42), the coefficients nA  and nB  are simplified. 
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As in the previous case, the coefficients ,n nA B  and 
nC  have been obtained in terms of the coefficient 

nD , 

Now, the coefficient 
nD  must be calculated from two other boundary conditions. Relationships (20) and (21) also 

satisfy this case. By replacing 
nA  and 

nB  from the relationship (43) in the relationship (25), the following equation 

obtains: 
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As in the previous case, by solving two Eqs. (44) and (25), the state of the Fredholm Integral Function (second 

kind) is obtained: 
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and consequently,  
nD  will be obtained: 
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(48) 

 

where in ( )  is the solution of Fredholm Integral Function of the second kind (46), which must be calculated from 

numerical methods. Also, its solution is given in the Appendix. 
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2.3 Strain energy of a central cracked rectangular nanoplate under bending  

Physically, strain energy values and stress intensity factor are important. Strain energy can be obtained by 

calculating the work done, and with applied load to the plate through its displacement: 
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2
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(49) 

 

This equation can be written as the sum of two relationships. The first relationship is the plate strain energy 

before the fracture and the second relationship is strain energy of the cracked plate which is limited to increase strain 

energy along the crack. Therefore, increase in strain energy resulting from the crack creation as follows: 
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Because 0nD  , corresponds to pre-fracture of the plate, terms that do not include 
nD  can be omitted and strain 

energy expansion determined by terms containing 
nD . Therefore, for the central cracked nanoplate on the four 

simply-supported, the coefficients 
nA  and 

nB , and 
nC  of the Eqs. (51) and the coefficient 

nD  of the Eq. (40) are 

calculated and placed in Eq. (50). According to this, the strain energy increase rate will be obtained: 
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(51) 

 

For a central cracked nanoplate on two simply-support in x=0,π  and two clamped-supported in y=± b, 

coefficients ,n nA B  and,  
nC  are calculated from the relationship (52) and also the coefficient 

nD  from the 

relationship (48). And then, they are placed in the relationship (50) to obtain the strain energy increase rate: 
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(52) 

3    THE INVESTIGATION RESULTS AND ITS ANALYSIS     

To validate the results obtained from the equations, in the equations of nonlocal elasticity theory can µ becomes 

equal to zero, until these equations transform into classical theory relationships. This comparison and validation 

were performed with reference [18]. As well as analysis using ABAQUS software to verify the obtained equations, 

was carried out. The non-cracked rectangular plate is assumed to have π -meter length, a variable width (0,2π] and 
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thickness 1mm, and also four simply-supported at its four edges. An elastic modulus 100 GP, a Poisson's ratio 0.25 

and a distributed load 1 N/m
2
, are considered. In the finite-element analysis, a square shell element with side length 

5cm was used and its degrees of freedom in-plane (u=v=0) were constrained to be similar to Levy's solution. The 

comparison of strain energy is shown in Fig. 2, which shows very good conformity between the results. Also, in 

Levy's series, the numerical solution has been done for 200,000 sentences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Strain energy of the non-cracked rectangular plate in terms of 

its width under distributed transverse load. 

 

Then, the same of the previous plate was analyzed with a central crack all over the plate length. In the finite-

element analysis, the nodes located on the crack were considered separately and the nodes were not merged to model 

the global longitudinal crack conditions. Then, for each plate width, strain energy resulting from the finite-element 

solution in the state of without crack (Fig. 2) was subtracted from strain energy obtained from the finite-element 

solution in the global longitudinal crack state. It was happened to obtain strain energy increase rate resulting from 

the crack creation and then, according to the relationship (50), became dimensionless. The comparison between the 

strain energy increase values caused by the creation crack in terms of the plate width is shown in Fig. 3, which 

shows very good conformity between the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Strain energy of a rectangular plate with length π  and a crack 

along its entire length, in terms of its width under distributed 

transverse load. 

 

By comparing Figs. 2 and 3, it can be seen that total strain energy of the plate increases strongly with increasing 

plate width, but the strain energy increase value due to the global crack in the plate length, initially, increases with 

increasing plate width and then, in a specified width reaches a maximum value and converges to a specified number 

after some descent and never reaches zero. This indicates that the strain energy increase value of a plate with a large 

width, or an infinite width, and having a global central crack in the plate length, does not depend on the plate width 

and, it is a constant number dependent on the nanoplate length. 

The percentage difference of the strain energy obtained from the complete nonlocal elasticity theory with 

reference [18] as well as with the ABAQUS results for the rectangular plate without crack and the global 

longitudinal crack under distributed transverse load in terms of its width are shown in Table 1. 
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Table 1 

The percentage difference of the strain energy obtained from the results of the present study for 1. Non-cracked plate and also 2. 

Plate including a global longitudinal crack, in terms of its width with ABAQUS and reference [18]. 

 

 Without Crack Completely Cracked 

b/π  Abaqus  106 (%) Reference [18]   106 (%) Abaqus   106 (%) Reference [18]   106 (%) 

0.1 0
121 0.027 1.095 0.118 

0.2 0.597 -0.278 10.310 -0.140 

0.3 0.913 -0.2
1 9.940 0.350 

0.4 0.660 0.292 10.280 -0.370 

0.5 0.249 0.105 8.804 0.049 

0.6 0.348 -0.019 10.089 0.234 

0.7 1.214 0.750 9.864 -0.294 

0.8 2.864 -0.124 8.812 0.027 

0.9 5.167 0.628 9.577 -0.072 

1 8.146 0.656 10.000 0.425 

1.1 11.442 0.843 10.001 -0.428 

1.2 15.001 0.399 10.003 0.473 

1.3 18.759 0.605 10.132 0.286 

1.4 22.696 0.733 10.883 0.347 

1.5 26.582 0.217 10.087 0.111 

1.6 29.864 0.521 10.957 0.208 

1.7 34.459 0.911 11.000 0.484 

1.8 39.480 0.990 10.112 0.399 

1.9 42.436 1.269 10.170 0.194 

2 47.187 1.342 10.350 -0.110 

2.1 51.188 1.420 10.101 0.224 

2.2 55.750 1.058 9.181 0.426 

2.3 58.869 1.009 11.387 -0.468 

2.4 62.162 1.134 11.201 -0.239 

2.5 67.306 1.355 9.010 -0.240 

 

Additionally, the previous plate with a central crack was analyzed with a length less than the plate length, and 

also the plate width 0.4π was assumed. The diagram of the strain energy increase caused by the crack creation in 

terms of crack length was shown by Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Strain energy of the central cracked rectangular plate with 

length π  in terms of crack length for the plate width 0.4π . 

 

As can be seen in Fig. 4, when the crack length is zero, the strain energy increase value caused by the crack 

creation is zero, and also with crack length increase, the strain energy increase value caused by crack creation, 

increased as is expected. 

The percentage difference of the strain energy increase value obtained from the complete nonlocal elasticity 

theory with reference [18] as well as with the ABAQUS results for the rectangular plate with a central crack under 

distributed transverse load in terms of its length are shown in Table 2. 
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Table 2 

The percentage difference of the strain energy increase value obtained from the results of the present study for the rectangular 

plate, with a central crack in terms of its length, with ABAQUS and reference [18]. 

-2c/π Abaqus   106 (%) Reference [18]   106 (%) 

0 0.03% 0.08% 

0.15708 0.03% 0.00% 

0.314159 0.03% 0.00% 

0.471239 0.21% 0.00% 

0.628319 0.03% 0.00% 

0.785398 0.0
% 0.00% 

0.942478 0.03% 0.00% 

1.099557 0.03% 0.00% 

1.256637 2.01% 0.00% 

1.413717 0.03% -0.01% 

1.570796 0.03% 0.00% 

1.727876 0.03% 0.00% 

1.884956 0.03% 0.00% 

2.042035 0.03% 0.00% 

2.199115 0.10% 0.00% 

2.356194 0.02% 0.00% 

2.513274 0.03% 0.00% 

2.670354 0.03% -0.01% 

2.827433 0.03% 0.00% 

2.984513 0.03% 0.00% 

3.141593 0.21% 0.00% 
 

As can be seen from Figs. 2 to 4, the results obtained from zeroing μ in the equations achieved from the modified 

nonlocal equations are consistent with reference [18] and the finite-element analysis, and also prove the accuracy of 

the relationships obtained.  

After checking the validity of the equations with reference [18] and ABAQUS in the macro-scale, by placing the 

crack length equal to zero, the deflection of non-cracked nanoplate is obtained, that in this condition, the achieved 

results with reference [14], can be compared. Fig. 5 shows the ratio of the maximum deflection in terms of the 

small-scale effect for a non-cracked rectangular nanoplate that its length is twice its width and also, simply-

supported were assumed at all of its edges. The results are compared with reference [14] and are shown there is good 

conformity between their results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

The ratio of the maximum deflection for a non-cracked 

rectangular nanoplate in terms of µ for four simply-supports 

at all of its edges. 

 

In the calculations, the graphene nanoplate with the following properties are considered: 
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(53) 

 

In Fig. 6 was shown the deflection of the central cracked nanoplate, which has half of the plate length in y=0 in 

terms of x, for two simply-supported and clamped-supported. And in Figs. 7 and 8, the deflection of the same 
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nanoplate has drawn in the specified x in terms of y for the two states of simply-supported and clamped-support, 

respectively. 
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Fig.6 

The deflection of the central cracked nanoplate in y=0 in 

terms of x for 1. Four simply-supported and 2. Two simply-

supported in x=0,π  and two clamped-supported in y=±b. 
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Fig.7 

The deflection of the central cracked nanoplate under 

distributed transverse load on the four simply-supported in 

the specified x in terms of y. 

  

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6

w

y 

x=0
x=0.196
x=0.393
x=0.589
x=0.785
x=0.982
x=1.178
x=1.374
x=1.571

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

The deflection of the central cracked nanoplate under 

distributed transverse load on the two simply-supported in 

x=0,π  and two clamped-supported in y=±b for the specified x 

in terms of y. 

 

As can be seen in Fig.6, the deflection is higher on the four simply-supported than on the two simply-supported 

and clamped-supported, which is expected. Furthermore, according to Fig. 6, it is uniformly without fracture, but 

according to the two Figs. 7 and 8, the deflection in terms of y from the point x=0.785, where is the crack-tip, and 

after it, the crack line fracture, is obvious. The variations of the maximum deflection are shown in terms of µ for the 

central cracked nanoplate with half of the plate length for nanoplate on four simply-supported in Fig. 9. With the 

increase of µ, the maximum deflection has increased to the value that with reference [14] is consistent. 
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Fig.9 

The diagram of the maximum deflection in terms of µ for the 

simply-supported. 

 

Furthermore, the variations of the maximum deflection in terms of µ for the central cracked nanoplate with half 

of the plate length on two simply-supported and two clamped-supports is shown in Fig. 10. As can be seen, in this 

case, in contrast to the simply-supported, the maximum deflection has been increased with the increase of µ, and 

similar results have been acquired in reference [10]. 
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Fig.10 

The maximum deflection in terms of µ for the state of on two 

simply-supported and two clamped-supports. 

 
As stated, the condition for the deflection series convergence is μ<1/nπ . In order to see the effect "n" on the 

maximum deflection of the nanoplate for a specified value µ, the figure of the maximum deflection percentage 

difference was drawn according to Fig. 11. The percentage difference for n=27 was considered that its consequences 

μ<1/27π . This figure was drawn for 
0 0.25699e  . As shown in Fig. 11, with rapid convergence, the error for n>11 

is less than %1. 
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Fig.11 

The maximum deflection percentage difference in terms of 

"n" for the nanoplate with  0 0.25699e  . 

 

In classical theory, there is a singularity at the crack-tip, and the value of stress or moment near the crack-tip 

does not indicate a defined value and tends to infinity. This lack is not observed in nonlocal elasticity theory, and 
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using this theory, a certain value of stress or moment can be obtained at the crack-tip. Also, there is not such 

singularity in the complete modified nonlocal elasticity theory. Fig. 12 shows the bending moment in terms of 

distance from the crack-tip for the previous nanoplate in the two state, including: two simply-supported and two 

clamped-supported. As can be seen, the bending moment has a definite value on the crack-tip (c-x=0) and there is 

not any singularity at the crack-tip, whereas the maximum bending moment is higher in the simply-supported state 

than in the clamped-supported state, as is expected. 
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Fig.12 

The moment diagram yM  in terms of c-x. 

4    CONCLUSIONS 

In this paper, using the complete modified nonlocal elasticity method, the strain energy and deflection equations of 

the rectangular nanoplate with a central crack under distributed transverse load in two states: four simply-supported 

at four edges, and two simply-supports at two edges and two clamped-supported at the other two edges, were 

obtained. To do this, by writing the governing equation for the nanoplate and using Levy's solution, it led to the 

solution of an equation-couple that must be solved simultaneously. By performing the mathematical operations and 

solving the mentioned equation-couple, a Fredholm Integral equation of second kind was obtained. The results of 

the present study show that:  

 

 The convergence condition of solution is that it should always be  
1

n



. 

 The strain energy increase value of the plate, with the global longitudinal crack along the plate length, and 

with a very large width does not depend on the plate width and is a constant value depending on the 

nanoplate length.  

 In the clamped-supported state, the maximum deflection value increases slightly with increasing the value 

µ, but in the simply-supported state, the opposite happens. 

 The convergence rate of deflection of the nanoplate is very high compared to the increase in the number of 

Levy's solution sentences, so that the error for n>11 is less than %1. 

 Based on the nonlocal elasticity theory, there is not any singularity at the crack-tip. 

APPENDIX  

Solving Fredholm Integral equation (second kind) by the Mean Value Theorem (MVT). 

The Fredholm Integral equation of second kind is assumed as follows: 

 
1

0

( ) ( ) ( , ) ( )r K r dr h       
 

(54) 

 

with using the Mean Value Theorem can be written: 
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1

0

( ) ( ) ( ). ( , )h c K r dr        
 

(55) 

 

where c   is the average point length, which is between zero and one, and by placing c  in the relationship (55), 

the following equation is obtained: 

 

1

0

( )
( )

1 ( , )

h c
c

K c r dr




 

 

 
 

(56) 

 

Then, in the relationship (54) instead of ( )r  from the relationship (55) is placed: 

 
1 1

0 0

1 1 1

0 0 0

( ) ( ) ( ) ( ). ( , ) ( , )

( ) ( ) ( , ) ( ). ( , ) ( , )

h h r c K r d K r dr

h h r K r dr c K r K r d dr

      

     

 
   

 

  

 

  

 

 

 

(57) 

 

Then, again c  is placed in the relationship (57). 

 
1

0

1 1

0 0

( ) ( ) ( , )

( )

1 ( , ) ( , )

h c h r K c r dr

c

K c r K r d dr



 

 

 





 

 

 

 

(58) 

 

Now, the right side of the two relationships (56) and (58) be placed equal to each other. 

 
1

0

1 1 1

0 0 0

( ) ( ) ( , )
( )

1 ( , ) 1 ( , ) ( , )

h c h r K c r dr
h c

K c r dr K c r K r d dr 

 




  



  

 

 

 

(59) 

 

As a result,  c   from the following nonlinear equation solution is obtained using one of the numerical methods, 

for example, the Bisection Method. 

 
1 1

0 0

1 1 1

0 0 0

[ ( , ) ( ) ].[1 ( , ) ]

( )

( , ) ( , ) ( , )

K c r h r dr K c r dr

h c

K c r dr K r K c r d dr 

 

 

 

 

  

 

 

 

(60) 

 

Eventually, by placing c   in the relationship (56),  ( )c  is obtained and by placing it in the relationship (55),  

( )   is obtained. 

 

List of English Symbols 

Bending module D 

The material intrinsic properties 0e  

Elastic module pE  
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Bessel's function of the zero-order 0J  

Modified Bessel's function of the zero-order 0I  

The Moment M 

The nonlocal operator N 

The modified nonlocal operator *N  

The external length eL  

The internal length iL  

The Distributed transverse load q
 

The Shear force Q
 

The plate thickness pt  

The total strain energy U 

The strain energy increase value caused by the crack creation U  

The displacement in the direction 
px  

pu  

The displacement in the direction py  pv  

The displacement in the direction 
pz  pw  

Greek Symbols 
Stress   

Strain   

Poisson's ratio pv  

The small-scale effect parameter   

Curvature k 

Subtitle 
Nanoplate p 

Superscript 
Local l 

Nonlocal nl 
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