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 ABSTRACT 

 In industry applications, planetary gear systems are widely used in 

power transmission systems. In planetary gears, dynamic loads, 

noise and reduction the structural life are produced by system 

vibrations. For gear transmission systems, the parametric excitation 

which introduced by the periodically time–varying mesh stiffness 

of each gear oscillation is the main source of vibration. Generally, 

there are two methods to evaluate the gear mesh stiffnesses, the 

finite element method and the analytical method. In this wok, the 

periodically time–varying mesh stiffness of planetary gears is 

investigated. The influence of pressure angles on mesh stiffness of 

meshing gears is shown and the dynamic model of planetary gear 

sets is studied. When planets of the single–stage spur planetary 

gear system are meshed by new planets, the system is converted to 

special type of system with meshed planets. Vibration for 

geometrical structures (symmetric and anti–symmetric) of 

planetary system with meshed planets is investigated. Mesh 

stiffness of meshing gears by estimation function is obtained and 

numerical results of natural frequencies and vibration modes are 

derived.                     © 2021 IAU, Arak Branch.All rights reserved. 

 Keywords : Planetary gear; Vibration; Time–varying mesh stiffness; 

Dynamic model. 

1    INTRODUCTION 

 ENERALLY, planetary gear systems are classified in two types of single–stage spur planetary gear system 

and system with meshed planets which planets are meshed with each other. Some advantages of planetary gear 

systems are: compactness, high torque to weight ratio and low noise. Some other positive points of planetary gears 

are: small radial bearing loads due to axi–symmetric orientation of planetary gears, high speed reduction in small 

volumes and also co–axial shaft arrangements. In dynamic model of planetary gears key design parameters are: 

mesh stiffnesses, bearing (support) stiffnesses, component masses and moments of inertia. The main source of 

vibrations in planetary gear systems is stiffness coefficients of the periodic time–dependent involvement of the 

contact between sun–planet and ring–planet. Planetary gears are widely used in the aerospace, aircraft, wind turbine, 

marine and automotive applications and mining equipment. A nonlinear time–varying dynamic model for gear 

systems, considering time–varying meshing stiffness and other nonlinearities is investigated in [1,2]. Camacho et al. 
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[3] presented a methodology to enhance the preliminary design of a single–stage gearbox by diminishing the 

dynamic load between gears. Chen and Shao [4] introduced a mesh stiffness model of internal gear pair with a tooth 

root crack in the ring gear based on the potential energy principle. Sun and Ha [5] presented the nonlinear dynamics 

of a planetary gear system with time–varying mesh stiffnesses and error excitation. A finite element model of the 

geared rotor system is established by Hao et al. [6] where the rotating beam elements are used and the linear mesh 

stiffness of engaged helical gears is involved. Inalpolat and Kahraman [7] proposed a nonlinear time–varying 

dynamic model to predict modulation sidebands of planetary gear sets with periodically time–varying gear mesh 

stiffnesses and the nonlinearities associated with tooth separations. An advanced model of spur gear transmissions 

developed by the authors is used to study the influence of carrier planet pin hole position errors on the behavior of 

the transmission [8]. Jiang and Liu [9] developed analytical models of mesh stiffness for cracked spur gears 

considering gear body deflection and dynamic simulation. Lin and Parker [10] studied on free vibration of single–

stage planetary gear sets and analyzed natural frequencies. Kahraman [11,12] investigated on dynamic and vibration 

of planetary gear sets and simulation of transient gear contact done by Kazaz et al. [13]. Nonlinear dynamic 

behavior of spur planetary gears examined using two models [14]: lumped–parameter model and finite element 

model. Li et al. [15] established a batch module called ―integration of finite element analysis and optimum design‖ 

by taking gear systems as testing examples. Meanwhile, a dynamic lumped–parameter gear model incorporating the 

effects of time–varying nonlinearity formulated by Chen et al. [16] to analyze the spur gear rattle response under the 

idling condition. Lin and Parker [17] studied on free vibration of single–stage planetary gear sets. Liu et al. [18] 

considered time–varying stiffness and internal and external excitations to analysis of gear system under fractional–

order PID control with the feedback of meshing error change rate. Mandol et al. [19] presented a computational 

approach to predict the load withstanding capacity of a planetary gear assembly. The dynamic scenario of planetary 

gear analyzed over a reasonable engineering range in terms of rotation speed and torque [20] and Parker [21] studied 

on effectiveness of planet phasing to suppress planetary gear vibration. Phadatare and Pratiher [22] studied on 

bifurcation, stability, and route to chaos of nonlinear dynamic of flexible rotor–bearing system. Shu et al. [23] 

proposed a dynamic optimization approach to improve the dynamic performance of the multi–motor driving 

transmission system by improving its vibration displacement root mean square value. The dynamic model created 

using a lumped parameter model of the planetary gearbox by Tatar et al. [24] and the gears and carrier in the 

planetary gearbox are assumed to be rigid. Wang et al. [25] presented an intelligent fault diagnosis method based on 

an unsupervised learning algorithm called sparse filtering. Dynamical model of a spur gear pair with time–varying 

stiffness and static transmission error under uncertainties established in [26,27]. Because the fault features of 

planetary gear are very weak, Zheng et al. [28] presented a new fault diagnosis method for planetary gear based on 

image feature extraction. Variation of wear depth on tooth profiles of internal gears determined theoretically in [29]. 

Finite–element theory [30] associated with the lumped mass method for study on the influence of base excitation on 

the rotor–rolling bearings supports with rubber damping rings coupling dynamics model presented by Zhu et al. 

[31]. 

This work investigates on dynamic and vibration for geometrical structures of planetary gears with symmetric 

and anti–symmetric rotational structures. For rotational systems, the degrees of freedom of system components in 

translational directions are negligible and components of the system have freedom only in rotational direction. On 

the other hand for rotational system, translational bearing stiffnesses lead to infinity for negligible degrees of 

freedom of components in translational directions. For investigation on planetary gear vibration especially natural 

frequencies and vibration modes, study on the main source of vibration; i.e., the periodically time–varying mesh 

stiffness of gears is necessary. So, in this study the periodically time–varying mesh stiffness of gears in the form of 

Fourier series and finite element method are obtained by polynomial estimation function. The influence of pressure 

angles on mesh stiffness of meshing gears is investigated. According to results of mesh stifnesses, numerical results 

of natural frequencies and vibration modes for both symmetric and anti–symmetric systems with meshed planets are 

derived by mean values of gears mesh stiffness. 

2    MODELING OF PLANETARY GEARS DYNAMIC  

Two–dimensional (2D) lumped–parameter model of single–stage spur planetary gear system is shown in Fig. 1. 

Each element such as carrier (c), ring (r), sun (s) and J planets is assumed to have rigid behavior, i.e., lumped 

parameter system. Sun and carrier are connected to the input and output shaft respectively; the external torque and 

force are applied to the input shaft (
s  and 

sF  ) and the ring gear is held stationary. Planet bearings are connected to 

the carrier and they are free to rotate. Mass and moment of inertia of bearings are:  im   and  iI   for  , , ,i c r s j   

https://www.sciencedirect.com/topics/engineering/planetary-gear
https://www.sciencedirect.com/topics/engineering/sidebands
https://www.sciencedirect.com/topics/engineering/planetary-gear-set
https://www.sciencedirect.com/topics/engineering/lumped-parameter
https://www.sciencedirect.com/topics/physics-and-astronomy/finite-element-model
https://www.sciencedirect.com/topics/physics-and-astronomy/finite-element-model
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and  1, 2,...,j p p J   where J  is number of planets and p denotes to the planet. Bearings are modeled by springs in 

x and y directions which represent translational bearings stiffness ( , , , ,ix iyK K i c r s ). Rotational bearings stiffness 

( , , ,iK i c r s  ) are modeled by springs in rotational direction ( ) and stiffnesses for planet bearings are 

represented by 
jK . Translational and rotational coordinates of the carrier, ring and sun are:  ,i ix y  and 

i  where 

, ,i c r s . The radial and tangential coordinates are:  
j  and 

j  which are known as translational coordinates of 

planets center. Rotational coordinate of planets is:  
j j ju r   and 

j  is planets rotation. In the present model, each 

element has three degrees of freedom in planar motion: two translations and one rotation, so the system has 3( 3)J   

degrees of freedom. The base radius for bearings of the ring, sun, carrier and planets is shown by , , , ,ir i c r s j . 

For the carrier bearing, r is radius of the circle which passing through the center of planets. In the present model 

(Fig. 2), flexibilities of the gear teeth and gear bodies are simulated by springs (reciprocal actions of gear mesh 

modeled as springs). In Fig. 2, sun–j
th

 planet and ring– j
th

 planet meshes are shown. As an example for mesh of sun– 

j
th

 planet, the circumferential j
th 

planet location is identified by time varying angle of  ( )j t   and stiffness between 

sun and  j
th

 planet ( ( ))sjk t  acting along the line of action.  

In Fig. 2,  ( )rjk t   and  ( )sjk t   are the periodically time–varying mesh stiffness of the ring– j
th

 planet and also 

sun–
 
j
th 

 planet. The basis frequency of the system is 
T  and equal to: /( )T s s r s rQ Q Q Q    where 

s  is angular 

velocity of the sun gear and  
sQ  and  

rQ  are numbers of teeth for the sun and ring gears. So the periodically time–

varying mesh stiffness of the ring– j
th

 planet and also sun– j
th

 
 
planet in the form of Fourier series are obtained as 

Eqs. (1) and (2). In Eqs. (1) and (2),  
rh  and  

sh  are the number of harmonic acceptable terms to explain and show 

the periodic functions of ( )rjk t  and ( )sjk t . ( )rpk t  and ( )spk t are the harmonic coefficients of Fourier series with 

the average amounts of 1

rpk  and 1

spk . 

 

1 2 2 1

1

ˆ ˆ( ) [( cos 2 ) sin 2 )]
rh

j j

rj rp rp T rj rp T rj

j

k t k k t k t   



          (1) 

 

1 2 2 1

1

( ) [( cos 2 ) sin 2 )]
sh

j j

sj sp sp T sj sp T sj

j

k t k k t k t   



          (2) 

 

In the present model, the phasing (phase angle) of sun– j
th
 planet is  sj  . The phasing of ring– j

th
 planet is  ˆ

rj   

which equal to sj sr   and 
sr is the phasing of sun and ring gear (the phase angle between mesh of ring – j

th
  

planet and mesh of sun– j
th

 planet). Static transmission error ( ( )sje t ) is involved as dynamic excitation at the mesh 

spring and pressure angle between sun and  j
th

 planet is  ( )sj t  . In Fig. 1, coordinates used in this model are shown 

and ( )j t  depend on the unit vector’s rotation (i unit vector) and measure counter–clockwise from the first planet, 

so that 1 0p  . When planets of the single–stage spur planetary gear system are meshed by new planets, the system 

is converted to special type of system with meshed planets (planet 1 and planet 2 are meshed with each other, see 

Figs. 3 and 4). In system with meshed planets for all planets which relating to the carrier, a planet set is considered. 

In each planet set, planets are modeled as meshed planets which placing in some planet trains. For the carrier 

bearing of the system with meshed planets, in Fig. 4, r is radius of the circle which passing through the center of 

planets ( 1cr  for planet 1 and 2cr  for planet 2). For meshed planets (mesh of planet 1– planet 2), coordination of 

meshed planets is labeled by angles of   and the circumferential planet 1 location is identified by time–varying 

angle of 
1( )t . Each element has three degrees of freedom in planar motion: two translations and one rotation so the 

systems with meshed planets have degrees of freedom as: 

 

3( . )c s r PT PPTN N N N N    (3) 
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In Eq. (3), N shows total of elements and PT and PPT denote to planet train and planet per planet train in the 

planet set.  

 

 

 

 

 

 

 

Fig.1 

Lumped parameter model of the planetary gear and system 

coordinates. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Mesh of the sun, ring and jth planet bearings. 

  

 

 

 

 

 

 

 

 

 

 

Fig.3 

Planetary gear with meshed planets (planet 1 and planet 2 are 

meshed with each other). 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Dynamic model of system with meshed planets (planet 1 and 

planet 2). 
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Fig. 5 shows kinematics sketches to derive relative deflection components. As an example, the gear mesh 

deformation between the sun gear and the j
th

 planet gear (
sj ) is obtained from mixture of the sun and  j

th
 planet 

deflections along the line of action (see Fig. 5(a)). Similarly, the gear mesh deformation between the ring gear and 

the j
th 

planet gear (
rj ) and the planet bearing radial and tangential interfaces (

jr and  
jt ) with the carrier are 

derived by kinematics analysis of Figs. 5(b) and 5(c). So compressions of the elastic elements (  ) are defining as 

Eqs. (4)–(7): 

2.1 Sun– j
th

 planet bearings mesh 

      cos (   sin (     si) n  cos   )sj j sj s j sj s sj sj s sj jj jsy x r u e t                   (4) 

2.2 Ring – j
th

 planet bearings mesh 

      cos (   sin (     sin)   o  ) c s  rj j rj r j rj r rj rj r rr jj j jy x r u e t                   (5) 

2.3 j
th

 planet bearing radial 

sin    cos   jr j c j c jy x       (6) 

2.4 j
th

 planet bearing tangential 

cos    sin   jt j c j c j c cy x r         (7) 

2.5 Equations of motion 

The basic dynamical equilibrium equations contain 3( 3)J  nonlinear ordinary differential equations. Final equations 

of motion for single–stage spur planetary gear system of Fig. 1 are obtained by Newton’s second law as: 

2.5.1 Carrier equations 

                        
(a)                             (b)                                                                    (c)                                                                     

Fig.5 

Kinematics sketches to derive relative deflection components. 
 

 

 

[(sin    cos  )cos  cos( ) ( ) (  ( ) ( ) c c j j c c jjj j ct tx y ytx tm K            

sin   )sin ( ] 0) ( )j c j c c j cy ct tx r K y        
(8) 
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( ) ( )[(sin    co )s    sin  (cos ( ) ( ) c c j j c j jjc j cm y K y xt t yt t          

sin   )cos ( ] 0) ( )j c j c c j cy ct tx r K y        
(9) 

 

(cos  sin   )( 0) ( )c c j j c j c j c c c cI K y t xt r K             (10) 

2.5.2 Sun gear equations 

     ( )( ( ) ( )) ( ) ( )) ( )cos (   sin (     sin  cos  ( ) s s sj j sj s j sj s sj sjj jt t t t t tm y x tx k                

   ) ( )sin(   ) ( )s s sj j sj sx s sj xr u e t t K x F t        
(11) 

 

     ( )( ( ) ( )) ( ) ( )) ( )cos (   sin (     sin  cos  ( ) s s sj j sj s j sj s sj sjj jt t t t t tm y x ty k                

   cos   ) ( ( ) ( )) ( )s s sj j sj j sy s syr u e t tt Kt y F        
(12) 

 

     ( ) ( )) (( )(cos (   sin ( ) ( )) ( ) (    sin  c s )o    s s sj j sj s j sj s sj sjj jt t t t t tI k t y x                

 ) ( )js s sj s s sr u e t K t       
(13) 

2.5.3 Ring gear equations 

     ( )( ( ) ( )) (cos (   sin (     sin  cos ) ( )) ( ) ( ) r r rj j rj r j rj r rj rj j jx t t t t t t tm k y x               

   )sin(   ) 0( ) ( )r rj j rj rxr rj tr u e t Kt x        
(14) 

 

     ( )( ( ) ( )) (cos (   sin (     sin  cos ) ( )) ( ) ( ) r r rj j rj r j rj r rj rj j jy t t t t t t tm k y x               

   )co (s ) (  ])( ) 0r rj j rj rj yr rtr u e t Kt y        
(15) 

 

     ( ) ( )) (( )(cos (   sin ( ) ( )) ( ) (    sin  c )os   r r rj j rj r j rj r rj rjj jt t t t t tI k t y x                

 ) 0r rj rj rrr u e t K       
(16) 

2.5.4 j
th

 planet equations 

     ( )( ( ) ( )) ( ) ( )) ( )cos (   sin (     sin  co   ( )s  sj j sj s j sj s sj j jj sj jm k t t t t t t ty x                

       ) ( ) ( )( ( ) ( ))sin  cos (   sin (  ( ) ( )) (  sin )  co  )s  (j j js s sj sj rj j rj r j rj r rj rjr u e t k yt t t t t t t tx                   

  sin  (sin    cos ) ( ) ( ) ( )  ) 0r rj rj pn j c j cr j jr u e t Kt t ty x           

(17) 

 

     ( )( ( ) ( )) ( ) ( )) ( )cos (   sin (     sin  cos  ( ) j j sj j sj s j sj s sj sjj jt t t t t tm y x tk                

       ) ( ) ( )cos  cos (   sin (     sin ( ( ) ( )) ( ) ( )) ( ) co (  )ss s sj sj rj j rj r j rj r rjj jjj rr u e t t t t t tt k y t tx                   

  cos  (cos ) ( ) ( ) ( )  sin    ) 0r rj rj j j c jj c j cr cr u e t t tt K y x r             

(18) 

 

     2
( ( ) ( )) ( )cos (   sin (     sin( )) (  c) s  (o ) 

j

sj j sj s j sj s sj sj

j

j j j

I
u k yt t t t t tx

r
               

       cos (   sin (  ) ( )( ( ) ( )) ( )   sin  cos ( )) ( ) ( ) s s sj rj j rj r j rj r rj jrjj jr u t t t t t te k y x tt                   

  0)r jr rjr u e t     

(19) 
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Similarly, for the planetary gear system with meshed planets (system of Figs. 3 and 4 for one planet train with 

planet 1 and planet 2) the following equations of motion are obtained: 

2.5.6 Carrier equations 

1 1 1 1 1[ ( cos sin cos( ) ( ) ) ( )c c c p c px c ct ty tm x K x K x          

1 1 1 1 1( ( ) ( ) ) ( )]sin cos sinc c pc ct t r tx y         2 2 22 2[ ( cos sin( ) ( ) c )s) o (p c c ptK t tx y       

2 2 2 2 2( ( ) ( ) ) ( )]sin s n 0co sic c pc cx t t r ty          

(20) 

 

1 1 1 1 1[ ( cos sin sin( ) ( ) ) ( )c c c p c py c ct ty tm y K y K x          

1 1 1 1 1( ( ) ( ) ) ( )]sin cos cosc c pc ct t r tx y         2 2 22 2[ ( cos sin( ) ( ) s )n) i (p c c ptK t tx y       

2 2 2 2 2( ( ) ( ) ) ( )]sin s s 0co coc c pc cx t t r ty          

(21) 

 

1 1 1 1 11[ ( )( sin c ( ) )o ]sc c c c p cc cc cpI t t r rK K x y             

2 2 2 2 22[ ( ) ( ) ) ]( sin 0cosp c c c c p cK x yt t r r         
(22) 

2.5.7 Sun gear equations 

1 1 1 1 1( ).[ cos( sin(( ) ( )) ( ) ( ))sp sps s sx s s s ss spm t t t t rx K x k t y x          

1 1 1 1 1 1 1 1sin ( ) cos ( ) ( )] ( ) (si ( ]n ) ( )p sp p sp p sp sp sxt t u e t t t F t           
(23) 

 

1 1 1 1 1( ).[ cos( sin(( ) ( )) ( ) ( ))sp sps s sy s s s ss spm t t t t ry K y k t y x          

1 1 1 1 1 1 1 1sin ( ) cos ( ) ( )] ( ) (co ( ]s ) ( )p sp p sp p sp sp syt t u e t t t F t           
(24) 

 

1 1 1 1 1( ).[ cos( ( ) ( )) ( ) ( )s n )i (s s s s sp sps s ssp sI t t t t rK k t y x             

1 1 1 1 1 1sin ( ) cos ( ) ( )] ( )p sp p sp p sp s st t u e t r t         
(25) 

2.5.8 Ring gear equations 

2 2 2 2 2( ).[ cos( sin(( ) ( )) ( ) ( ))rp rpr r rx r r r rr rpm t t t t rx K x k t y x          

2 2 2 2 2 2 2 2sin ( ) cos ( sin) ( )] ( ) (( )] 0p rp p rp p rp rpt t u e t t t           
(26) 

 

2 2 2 2 2( ).[ cos( sin(( ) ( )) ( ) ( ))rp rpr r ry r r r rr rpm t t t t ry K y k t y x          

2 2 2 2 2 2 2 2sin ( ) cos ( sin) ( )] ( ) (( )] 0p rp p rp p rp rpt t u e t t t           
(27) 

 

2 2 2 2 2( ).[ cos( ( ) ( )) ( ) ( )s n )i (r r r r rp rpr r rrp rI t t t t rK k t y x             

2 2 2 2 2 2sin ( ) cos ( ) ( )] 0p rp p rp p rp rt t u e t r        
(28) 

2.5.9 Planet 1 equations 

1 1 1 11 1 1 1 1 1 1( cos sin ( ).[( ) ( ) ) ( )cos( sin( )) ( ) )( ( )p sp p p c c sp s sp sp s sm t t tK x y k t xt t t ry                 

1 1 1 1 1 1 1 1 2 1 1 2 1 2 2 2 1 1 2sin ( ) cos ( ) ( )] ( ) ( ).[ sin( ( ) ( )) sin( ( )sin ( ))p sp p sp p sp sp p p p p p p p p p p p pt t u e t t k t t t t t                    

1 1 2 1 2 2 2 1 1 2 1 2 1 2 1 2 1 2cos( ( ) ( )) cos( ( ) ( )) ( )]sin( ( ) ( )) 0p p p p p p p p p p p p p p p p p pt t t t u u e t t t                

(29) 
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1 1 11 1 1 11 1 1 1 1( sin cos ( ).[ cos( sin(( ) ( ) ) ( ) ( )) ( ) ( ))p p p c c spc c p sp sp s ss st t r tm K x y k t t t ty x r                   

1 1 1 1 1 1 1 1 2 1 1 2 1 2 2 2 1 1 2sin ( ) cos ( ) ( )]cos ( ) ( ).[ sin( ( ) ( )) sin( ( ) ( ))p sp p sp p sp sp p p p p p p p p p p p pt t u e t t k t t t t t                    

1 1 2 1 2 2 2 1 1 2 1 2 1 2 1 2 1 2cos( ( ) ( )) cos( ( ) ( )) ( )]cos( ( ) ( )) 0p p p p p p p p p p p p p p p p p pt t t t u u e t t t                

(30) 

 

1

11 1 1 1

1

12
( )( ).[ cos( sin(( )) ( ) ( ))

( )

p

sp sp s s

p

p sp s s

I
u t t t r

r
x tk t y           

1 1 1 1 1 1 1 2 1 1 2 1 2 2 2 1 1 2sin ( ) cos ( ) ( )] ( ).[ sin( ( ) ( )) sin( ( ) ( ))p sp p sp p sp p p p p p p p p p p p pt t u e t k t t t t t                   

1 1 2 1 2 2 2 1 1 2 1 2 1 2cos( ( ) ( )) cos( ( ) ( )) ( )] 0p p p p p p p p p p p p p pt t t t u u e t             

(31) 

2.5.10 Planet 2 equations 

2 2 2 22 2 2 2 2 2 2( cos sin ( ).[( ) ( ) ) ( )cos( sin( )) ( ) )( ( )p rp p p c c rp r rp rp r rm t t tK x y k t xt t t ry                 

2 2 2 2 2 2 2 1 2 1 1 2 1 2 2 2 1 1 2sin ( ) cos ( ) ( )] ( ) ( ).[ sin( ( ) ( )) sin( ( )sin ( ))p rp p rp p rp rp p p p p p p p p p p p pt t u e t t k t t t t t                    

1 1 2 1 2 2 2 1 1 2 1 2 1 2 2 1 1 2cos( ( ) ( )) cos( ( ) ( )) ( )]sin( ( ) ( )) 0p p p p p p p p p p p p p p p p p pt t t t u u e t t t                

(32) 

 

2 2 22 2 2 22 2 2 2 2( sin cos ( ).[ cos( sin(( ) ( ) ) ( ) ( )) ( ) ( ))p p p c c rpc c p rp rp r rr rt t r tm K x y k t t t ty x r                   

2 2 2 2 2 2 2 1 2 1 1 2 1 2 2 2 1 1 2sin ( ) cos ( ) ( )]cos ( ) ( ).[ sin( ( ) ( )) sin( ( ) ( ))p rp p rp p rp rp p p p p p p p p p p p pt t u e t t k t t t t t                    

1 1 2 1 2 2 2 1 1 2 1 2 1 2 2 1 1 2cos( ( ) ( )) cos( ( ) ( )) ( )]cos( ( ) ( )) 0p p p p p p p p p p p p p p p p p pt t t t u u e t t t                

(33) 

 

2

22 2 2 2

2

22
( )( ).[ cos( sin(( )) ( ) ( ))

( )

p

rp rp r r

p

p rp r r

I
u t t t r

r
x tk t y           

2 2 2 2 2 2 1 2 1 1 2 1 2 2 2 1 1 2sin ( ) cos ( ) ( )] ( ).[ sin( ( ) ( )) sin( ( ) ( ))p rp p rp p rp p p p p p p p p p p p pt t u e t k t t t t t                   

1 1 2 1 2 2 2 1 1 2 1 2 1 2cos( ( ) ( )) cos( ( ) ( )) ( )] 0p p p p p p p p p p p p p pt t t t u u e t             

(34) 

3    NATURAL FREQUENCIES AND VIBRATION MODES  

Equations of motion for both planetary systems (single–stage spur planetary system and system with meshed 

planets) in matrix form are written as follows: 

 

 ( ) ( ) ( ) ( )t t t t t     m b
Mq K K q τ F  (35) 

 

where, M is inertia matrix,  
b

K  is diagonal support (bearing) stiffness matrix and  t
m

K  is symmetric stiffness 

matrix from coupling between components.  ( )tτ  is external torque applied on the sun gear and ( )tF  shows the 

static transmission error excitation. Vectors of general coordinates for single–stage spur planetary system and 

system with meshed planets are: 

 
T

1 1 1[ , , , , , , , , , , , ,..., , , ]c c c r r r s s s p p p J J Jx y x y x y u u      q  (36) 

 
T

1 1 1 2 2 2[ , , , , , , , , , , , ,, , , .. ].c c c r r r s s s p p p p p px y x y x y u u      q  (37) 

 

Note that in Eqs. (20)–(34) when numbers of planets are increased in the systems, new coordinates are exerted in 

equations. In order to evaluate natural frequencies, the associated eigenvalue problem of Eq. (35) is: 
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2[ ( )]( )i b m it   M K K φ 0  (38) 

 

where, 
i are natural frequencies and 

iφ  are vector of vibration modes. For planetary gear systems vibration modes 

are classified into three types of translational, rotational and planet modes [10]. To evaluate vibration of symmetric 

planetary gear system with meshed planets, all planet trains in the planet set must be: equally spaced, the same (all 

properties) and three or more than three numbers. So the system leads to symmetric structure [10] and when 

positions of planet trains are unequally spaced around the carrier, the system leads to anti–symmetric structure. Note 

that for planetary gear system with meshed planets, vibration modes are depended on number of components.  

4    NUMERICAL RESULTS  

Mesh stiffness of gears depends on different factors such as tooth parameters (gears pressure angle), geometric 

parameters (gears diameter) and material properties and varies with the gears rotation in the mesh cycle. Contact 

stiffnesses of tooth pairs in some contact points (coefficients of Fourier series), are obtained separately for both 

external (sun–j
th

 planet) and internal (ring– j
th

 planet) gears by finite element method for some pressure angles, see 

Fig. 6.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.6 

Model of gear meshes by (a) finite element with (b) 200 (c) 250 and (d) 300 pressure angle of gears. 

 

So the periodically time–varying mesh stiffness of the ring– j
th

 planet and also sun– j
th 

planet caused by the 

change in the number of contact tooth pairs for rotational system in the form of Fourier series is obtained as Eqs. (1) 

and (2) by polynomial estimation function with system parameters of [10]. Moreover, 206000 
2

N

mm
 for Young’s 

modulus, 0.3 for Poisson’s ratio and 7850 3

kg
m

 for density and 5 mm for gears modules are considered. All sun– 

j
th 

planet and ring– j
th

 planet meshes have the same phase ( ˆ
sj rj   ). So, all sun– j

th 
planet and ring– j

th
 planet mesh 

stiffnesses have the same profile. Time–varying mesh stiffness of sun– j
th 

planet and ring– j
th

 planet are shown in 

Figs. 7 and 8 by estimation function along the line of action. Moreover, in Figs. 7 and 8, the influence of sun– j
th 

planet and ring– j
th

 planet pressure angles on gears mesh stiffness is shown. The influence of the higher pressure 

angle of gears on mesh stiffness is perceptible. Similarly for the system with meshed planets by parameters of Figs. 

9 and 10, time–varying mesh stiffness of sun–planet 1, ring–planet 2 and planet 1–planet 2 are shown in Fig. 11 by 

estimation function along the line of action. When planets of the single–stage spur planetary gear system are meshed 
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by new planets, the system is converted to the system with meshed planets which shown in Fig. 3. In Fig. 3, an 

example of system with meshed planets is presented with four equally spaced planet trains (SS) and in each train; 

two planets are meshed with each other. Position of each planet in one train has 90 degree deference with planet of 

other train as Fig. 9. So positions of planet 1 are: 0, 90, 180 and 270 degree and positions of planet 2 are: 40, 130, 

220 and 310 degree in four planet trains. Positions of planet 1 and planet 2 in one train can be unequally spaced with 

planet 1 and planet 2 of other train. It means that the system with meshed planets leads to anti–symmetric structure 

(ASS). For anti–symmetric system with meshed planets, positions of planet 1 are: 0, 80, 180 and 260 degree and 

positions of planet 2 are: 40, 120, 220 and 300 degree in four planet trains of this study. According to Eq. (3): 
1, 1, 1, 4c r s PTN N N N     and 2PPTN  , so the system of Fig. 11 has 33 degrees of freedom and natural 

frequencies and vibration modes of SS and ASS are tabulated in Table 1.  

To evaluate natural frequencies and vibration modes, the system with meshed planets is rotational and system 

parameters are considered as Figs. 9 and 10. Time–varying mesh stiffness of meshing gears is considered as mean 

values of Fig. 11 for all planet trains.  

 

 
(a) 

 
(b) 

 
(c) 

 

 

 

 

 

 

Fig.7 

Mesh stiffness variations of ring– jth planet with (a)  20rj  , 

(b)  25rj   and (c)  30 .rj   

  

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

Fig.8 

Mesh stiffness variations of sun– jth  planet with (a)  20sj   

, (b)  25sj    and (c)  30 .sj    
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Fig.9 

Example of the system with meshed planets and system 

parameters. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Parameters of the system with meshed planets.  

  

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

Fig.11 

Time–varyin mesh stiffness of (a) sun–planet 1 (b) ring–

planet 2 and (c) planet 1 and planet 2 for compound planetary 

gear system with meshed planets. 

 

Variations of vibration modes for the system with meshed planets and four equally and unequally spaced planet 

trains are presented in Fig. 12. Moreover, typical vibration mode of the system with meshed planets for SS and ASS 

are shown in Figs. 13 and 14. Equilibrium and deflected positions are shown by dashed and solid lines. Table 1 for 

SS shows that, 9 natural frequencies with multiplicity two ( 2M   and 18 natural frequencies) have translational 

modes and 9 and 6 natural frequencies with multiplicity one ( 1M  ) have rotational and planet modes [10]. Unlike 

the SS, results show for ASS natural frequencies of translational modes have multiplicity one and according to Table 
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1, 18 natural frequencies with multiplicity one have translational modes and multiplicity of other natural frequencies 

of ASS is similar to the SS. 

 

 
(a) 

 
(b) 

Fig.12 

Variations of vibration modes for the system with meshed planets and four equally (a) and unequally (b) spaced planet trains. 

  

 
(a) Rotational mode:  

5 813.2Hz     

 
(b) Planet mode:  

2 535.1Hz   

  

 
(c) Translational mode:  

3 613.2Hz    

 
(d) Translational mode:  

4 624.9Hz    

Fig.13 

Types of vibration modes of the ASS with four planet trains (planet 1: 0, 80, 180 and 260 degree and planet 2: 40, 120, 220 

and 300 degree). 

 

 
(a) Rotational mode:  

5 808.9Hz   

 
(b) Planet mode:  

2 528.7Hz   
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(c) Translational mode:  

3 617Hz    

 
(d) Translational mode:  

4 617Hz    
Fig.14 

Types of vibration modes of the SS with four planet trains (planet 1: 0, 90, 180 and 270 degree and planet 2: 40, 130, 220 and 

310 degree). 

 

Table 1 

Natural frequencies and vibration modes of ASS and SS with four planet trains. 

 ASS with four planet trains  SS with four planet trains Vibration mode 

Natural frequencies [HZ] 

with M=1 

0 0 Rotational 

813.2 808.9 Rotational 

1251.8 1245.6 Rotational 

3043.3 3037 Rotational 

4697 4688.4 Rotational 

5289.9 5277.7 Rotational 

6224.1 6213.6 Rotational 

8084.3 8068.4 Rotational 

8891.5 8874 Rotational 

Natural frequencies [HZ] 

with M=2 

— 617 Translational 

— 1484.9 Translational 

— 2799.3 Translational 

— 4402.5 Translational 

— 4749.1 Translational 

— 6237 Translational 

— 7049.9 Translational 

— 8067.1 Translational 

— 8857.2 Translational 

Natural frequencies [HZ] 

with  M=1 

535.1 528.7 Planet 

1912.9 1905.7 Planet 

3851.4 3842.3 Planet 

4804.2 4792.8 Planet 

5758.9 5744.4 Planet 

8082.7 8066.1 Planet 

Natural frequencies [HZ] 

with  M=2 

613.2, 624.9 — Translational 

1489, 1478.8  Translational 

2806.1, 2791.9 — Translational 

4412.6, 3993.5 — Translational 

4757.1, 4740.3 — Translational 

6349.3, 6223.8 — Translational 

7068.3, 7030 — Translational 

8101.8, 8022.7  Translational 

8901.4, 8814.6  Translational 

5    CONCLUSION 

In this paper, dynamic and vibration of single–stage spur planetary gear and planetary gear with meshed planets are 

investigated. For single–stage spur planetary gear the periodically time–varying mesh stiffness of the ring–j
th

 planet 

and also sun–j
th 

planet in the form of Fourier series and finite element method are obtained by polynomial estimation 
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function. The influence of gears pressure angle on mesh stiffness of gears is obtained. Similarly, for planetary gear 

with meshed planets mesh stiffness of meshing gears are obtained by estimation function. For an example of 

planetary gear with meshed planets, numerical results of natural frequencies and vibration modes are derived by 

mean values of gears mesh stiffness. According to numerical results, the influence of the higher pressure angle of 

gears on mesh stiffness is perceptible. Like the structures of the single–stage spur planetary gear system, for 

structures of the planetary gear system (symmetric and anti–symmetric) with meshed planets, vibration modes are 

depended on number of system components. It means that characteristics of natural frequencies are similar for both 

systems. 
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