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 ABSTRACT 

 In the present investigation the reflection and transmission 

phenomenon of plane waves between two half spaces elastic and 

orthotropic piezo-thermoelastic with two-temperature theory is 

discussed. A piezo-thermoelastic solid half space is assumed to be 

loaded with an elastic half space. Due to the phenomenon, four qausi 

waves are obtained; Quasi longitudinal (QP) wave, Quasi Transverse 

(QS) wave, Quasi Thermal (QT) wave and Electric Potential wave 

(EP). It is found that the amplitude ratios of various reflected and 

refracted waves are functions of angle of incidence, frequency of 

incident wave and are influenced by the piezo-thermo-elastic properties 

of media. The energy ratios are computed numerically using amplitude 

ratios for a particular model of graphite and cadmium selenide (CdSe). 

The variations of energy ratios with angle of incidence are shown 

graphically depicting the effect of two-temperature. The conservation 

of energy across the interface is justified. A particular case of interest is 

also deduced from the present investigation.   

                                  © 2021 IAU, Arak Branch. All rights reserved. 

 Keywords : Reflection; Piezo-thermo-elastic; Energy ratios; 
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1    INTRODUCTION 

 HEN and Gurtin [1], and Chen et al. [2, 3], explored the heat conduction equation for the two-temperature 

theory of thermoelasticity involving conductive temperature and thermodynamic temperature. Sharma and 

Marin [4] studied the effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves 

in micropolar elastic half-space. Kumar et al. [5] studied the propagation of plane waves in an anisotropic 

thermoelastic medium with void and two-temperature in the context of three phase lag theory of thermoelasticity. 

Mindlin [6] derived governing equations of a thermo-piezoelectric material. Nowacki [7, 8] examined the physical 

laws for the thermo-piezoelectric material. Due to piezoelectricity being the base of the modern engineering practice 

in various technologies like frequency control, signal processing, sound and ultrasound microphones and speakers, 

ultrasonic imaging, hydrophones, actuators and motors based on the converse effect, detection of pressure variations 

in the form of sound etc. different academicians have been exploring and solving different problems. Few of them 

are Vashishth and Sukhija [9-11], Kumar and Sharma [12], Marin and Ochsner [13], Sharma [14], Kumar and 

Sharma [15].  Youssef and Bassiouny [16] proposed the generalised two temperature theory of thermoelasticity to 

solve the boundary value problems of one dimensional piezo-thermoelastic half-space with heating its boundary 
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with different types of heating. Ezzat et al. [17] formulated the theory of two temperature theory of thermoelasticity 

for piezoelectric/piezomagnetic materials. 

The investigation of existing model involving ES and OPS with two temperature parameter has been taken into 

account with growing interest under the impact of various physical properties. An orthotropic piezothermoelastic 

half-space (OPS) loaded with elastic half-space (ES) is considered. Amplitude ratios are used to determine the 

energy ratios. These ratios are derived with suitable boundary conditions. The impact of two-temperature parameter 

on these ratios is shown graphically. 

2    BASIC EQUATIONS 

Following Kumar et al. [5] and Kumar & Sharma [15], the governing equations for a homogeneous, anisotropic, 

thermally conducting, piezoelectric elastic medium are as follows:     

Constitutive equations 

 

,ij ijkl kl ijk k ijc e E T      (1) 

 

, 0 ,i iq T S   (2) 

 

,ij ij i iS E rT       (3) 

 

,i ij j ijk jk iD E e T      (4) 

 

, , ( , , , 1,2,3)i iE i j k l   (5) 

 

Equations of motion 

 

, ( u ) 0,ij j i iF     (6) 

 

Equation of heat conduction 

 

, 01 ,ij j iK q
t

 
 

   
 

 (7) 

 

Such that ,ij ijT a   . 

Gauss equation 

 

, 0.i iD   (8) 

 

For ES, following Achenbach [32], the relations are 

 

, ,2 u u , ( , , , 1,2,3)e e e e e
ij i j k k ij i j k l       (9) 

 

 , ,u ( )u u 0, , 1,2,3e e e e e e e
i jj i ij i i j         (10) 

 

where 

iE - electric field intensity, 

iD - electric displacement,  

 - electric potential, 



Response of Two-Temperature on the Energy….                               188 
 

© 2021 IAU, Arak Branch 

i - pyroelectric constants, 

T - absolute temperature,   

  - conductive temperature,  

ija - two-temperature parameters, 

,ijk ije   - piezo-thermal coupling tensors, and other symbols are well defined. Superscript „ e ‟represents elastic 

half space. 

3    STATEMENTS OF THE PROBLEM AND SOLUTION 

Consider an OPS, in welded contact with an elastic half space (ES) (Fig. 1and Fig.2) in order that the OPS occupies 

the region 3 0x   , and the ES occupies region 3 0x  and 3 0x  is the boundary interface. We take plane waves in 

the 1 3x x plane with wave-front parallel to the  2x  axis.  

 

 

 

 

Fig.1 

Geometry of the problem. 

 

  

 

 

 

 

 

 

 

 

Fig.2 

Reflection and transmission of plane wave. 

For two-dimensional problem, the displacement vectors are taken as 1 3(u ,0,u )u  and 1 3(u ,0,u )e eu
e . 

Following Tzou and Bao [18], the constitutive relations in 1 3x x  plane are 

 

11 11 1 13 3 31 3 11 ,c c e E T        (11a) 

 

33 13 1 33 3 33 3 33 ,c c e E T        (11b) 

 

13 55 5 15 12 ,c e E    (11c) 

 

1 11 1 15 52 ,D E e    (11d) 

 

3 33 3 31 1 33 3 3 ,D E e e T        (11e) 

 

1 ,1,E    (11f) 

 

3 ,3,E    
(11g) 
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Similar relations for ES are 

 

11 1,1 1,1 3,3u (u u ),e e e e e e      (12a) 

 

33 3,3 1,1 3,3u (u u ),e e e e e e      (12b) 

 

13 3,1 1,3(u u ).e e e e    (12c) 

 

Putting (11a)-(11g) into the field Eqs. (6)-(8) in the absence of body forces, heat sources, yield  

 

11 1,11 13 3,13 31 ,31 55 1,33 3,13 11 11 ,11 33 ,33 ,1 15 ,13 1u u (u u ) ( ) u 0,c c e c a a e                 (13a) 

 

55 1,31 3,11 13 1,13 33 3,33 33 11 ,11 33 ,33 ,3 15 ,11 33 ,33 3(u u ) u u ( ) u 0,c c c a a e e                 (13b) 

 

11 ,11 33 ,33 0 0 11 1,1 33 3,3 3 ,3 11 ,11 33 ,33( ) 1 ( u u ( )) 0,K K T r a a
t

         
 

         
 

 (13c) 

 

11 ,11 15 1,31 3,11 33 ,33 31 1,31 33 3,33 3 11 ,11 33 ,33 ,3(u u ) u u ( ) 0.e e e a a                  (13d) 

 

and for ES are 

 

  u u u u1,11 3,13 1,33 1( ) 0,e e e e e e e e         (14a) 

 

  u u u u3,33 1,31 3,11 3( ) 0.e e e e e e e e         (14b) 

 

Take the following dimensionless quantities: 

 

           

   

u u u u u u u u1 11
1 3 1 3 1 3 1 3 1 3 1 3 0 1 0 2

1 1

2
1 31 1

11 33 11 332
1 11 0 11 0 11 0 1 1

', ', ', ', ', ' , , , , , , ', ' , , ', ' , ,

1 1
' , ', ' , , ( ', ' ) ( , ), ( ', ') ( , ),

e e e e

e e e e
ij ij ij ij

x x x x t t T T
c c

e
P P P P a a a a

c T T T c c

 
    



  
    

  

  

   

 (15) 

 

where 

2
111

1 1
11

, eC cc
c

K





  . 

Invoking dimensionless Eqs. (15) in the system of Eqs. (13a) - (14b), with the removal of prime ( ' ), leads to the 

following form 

 

2 211 0
11 1,11 13 55 3,13 55 1,33 31 15 ,13 1 11 ,11 33 ,33 ,1 1 1

31

u ( )u u ( ) ( ) u 0,
T

c c c c e e c a a c
e


                (16a) 

 

2 233 11 0
55 13 1,31 55 3,11 33 3,33 1 11 ,11 33 ,33 ,3 15 ,11 33 ,33 1 3

11 31

( )u u u ( ) ( ) u 0,
T

c c c c c a a e e c
e

 
      


           (16b) 

 

1
11 ,11 33 ,33 0 0 11 1,1 33 3,3 3 ,3 11 ,11 33 ,33

11

( ) 1 ( u u ( )) 0,K K T r a a
t


         



 
         

 
 (16c) 
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2
11 0 1

11 ,11 33 ,33 15 1,31 3,11 31 1,31 33 3,33 3 11 ,11 33 ,33 ,3
31 11

( ) (u u ) u u ( ) 0,
T c

e e e a a
e

 
       


           (16d) 

 
2 2 222 2 2 2

31 1 1 1

2 2 2 2 2 2
3 11 1 1 1 3

uu u u u
,

ee e e ee e e

x xc x c x x t

         
        

             

 (17a) 

 
2 2 22 2 2 22

3 3 3 31

2 2 2 2 2 2
3 11 3 1 1 3

u u u uu
,

e e e eee e e

x xc x c x x t

         
        

              

 (17b) 

 

where 
2

,
e e e

e e

e e

  
 

 


  are velocities of longitudinal and transverse waves respectively. The 

displacement components are  

 

1 3
1 3 3 1

u , u ,
e e e e

e e

x x x x

      
   
   

 (18) 

 

where e  and e  satisfies 

 

2 2

'2 '2
1 1

, , ' , ' .
e e e e

e e

c c

   
   

 
       (19) 

 

For plane wave solution, we take 

 

    1
1 3 3u ,u , , , , , exp ,

x
U A B C i qx t

c
  

  
     

  
 (20) 

 

where  
  - Circular frequency,  

q  - Slowness parameter, 

c  - Apparent phase velocity, 

, , andU A B C  - Amplitude vectors.  

Eqs. (16a) - (16b), along with Eq. (20), lead to a system 

 
0,VS  (21) 

 

where 

 
2 2

55 11 12 13 15 14

2 2 3
12 33 17 18 19 21 20

2
22 23 24 30 29

2 2 3
31 33 32 34 33 36 35

c q x x q x q x q x

x q c q x x x q x q x q

x x q x q x q x

x q e q x x q x x q x q

  
 

   
  

 
 

   

V  (22) 

 

and
 

 , , ,
tr

U A B CS . Here, superscript symbol “ tr ” represents transpose of the matrix. The symbols used in 

matrix V are mentioned in the Appendix A. To solve the system (21), we have 
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det 0.V  (23) 

 

Eq. (23) yields a characteristic equation in q. 
 
Solution of Eq. (23) determines the roots 1 2 3, ,q q q and 4q  with 

positive imaginary parts and 5 6 7 8, , ,q q q q  with negative imaginary parts. The eigen values are arranged in 

descending order such that 1 2,q q  and 3q  corresponds to the propagating quasi P (qP) mode, quasi S (qS) mode, 

quasi T (qT) mode and 4q
 
corresponds to the electric potential component wave mode (eP) of wave propagation, 

respectively. For each ( 1,2,...,8)iq i  , the corresponding eigen vectors , ,i i iU A B and iC  are  

 

 

 

 

 

 

 

4342 44

41 41 41

, , ,i i i

i i i

q q q

i i i

q q q

cof Vcof V cof V
W

cof V cof V cof V
      (24) 

 

where 

 

, , ,i i i
i i i

i i i

A B C
W

U U U
      (25) 

and  
i

ij
q

cof V denotes the cofactor of ijV to the eigen value iq . The formal expression for displacement, the 

electric potential and temperature becomes 

 
8

1
1 3 3

1

(u ,u , , ) (1, , , ) exp ,i i i i i

i

x
W U i q x t

c
  



  
       

  
  (26) 

 

The solution of e and e can be expressed as: 

 

1 0 3 0 1 0 3 0

1 0 3 0 1 0 3 0

sin cos sin cos

' '
0 1

sin cos sin cos

' '

0 1

,

,

x x x x
i t i t

e e e

x x x x
i t i t

e e e

A e A e

B e B e

   
 

 

   
 

 





         
       

      

         
       

         


  


  

 (27) 

 

where 0 0( )e eA B  - amplitudes of the incident P(or SV) wave and 1 1,e eA B - the amplitudes of reflected P wave and  

reflected SV wave, respectively.   

4    REFLECTION AND TRANSMISSION COEFFICIENTS  

4.1 Amplitude ratios 

A plane wave (longitudinal or transverse), making an angle 0  with the 3x  axis is incident at the interface through 

the ES. This wave results in one reflected longitudinal wave (P wave) and one reflected transverse wave (SV wave) 

in the ES and four transmitted waves, represented by qP, qS, qT corresponds to the quasi-longitudinal, quasi-

transverse, quasi-thermal and electric potential wave mode in the OPS. For OPS, the solution is: 

 

   

   

1
1 3 3

1
33 31 3 1 2 6 3

u ,u , , 1, , , exp ,

, , , , exp ,

i i i i i

i

i i i i i

i

x
W U i q x t

c

x
D i D D D U i q x t

c

  

   

  
        

   


   
      

   




 (28) 
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where 0

0sin

V
c


 , 0 'V   for incident P wave and 0 'V   for incident SV wave. The coefficients 1 2,i iD D  and 

6iD  have been computed and are mentioned in Appendix B. The formal solution of wave in elastic medium is given 

by Eq. (26). The boundary conditions at the interface 3 0x 
 
are as follows:  

Continuity of normal stress 

 

33 33,e   (29a) 

 

Continuity of the tangential stress 

 

13 13,e   (29b) 

 

Continuity of tangential displacement 

 

1 1u u ,e  (29c) 

 

Continuity of normal displacement 

 

3 3u u ,e  (29d) 

 

Thermally insulated boundary 

 

3

0,
T

x





 (29e) 

 

Vanishing of electric displacement 

 

3 0,D   (29f) 

 

Eqs. (16a) - (19), (26) - (27) and boundary conditions (29a) - (29f) determine 

 
,AX = B  (30) 

 

where  

 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54

61 62 63 64

1 2 3 4 5 6 1 2 3 4

,

0 0

0 0

, , , , , , , , , ,0,0 .
tr tre e

D D D D D D

D D D D D D

D D D D D D
A

D D D D D D

D D D D

D D D D

X X X X X X N N N N

 
 
 
 

  
 
 
 
 
 

      
X B

 

 

 

The elements of 6 6 matrix A  and notations used in X  and B are given in the Appendix B. After solving the 

system (30), the transmitted and the reflected amplitude ratios are obtained.  

 

 



193                           R. Kumar and P. Sharma 
 

© 2021 IAU, Arak Branch 

4.2 Energy ratios     

The distribution of energy between different reflected and transmitted waves at the interface
 3 0,x  across a surface 

element of unit area is considered. Following Vashishth and Sukhija [20], the normal acoustic flux P  in OPS is 

 

31 1 33 3 3 33 ,3
0

Re u u
T

P D K T
T

  
 

     
 

 (31) 

 

 and, in ES is 

 

31 1 33 3Re( u u ).e e e e e   P  (32) 

 

The time average of P  over a period denoted by P   represents the average energy transmission per unit 

surface area per unit time. The average energy flux for 

The incident waves 

 
2 2

4 2 4 2
1 0 0 1 0 0

1 1
Re(cos ) , Re(cos ) ,

2 ' 2 '

e e e e e e
IP ISP c A P c B     

 
   (33) 

 

The reflected waves 

 

   
2 2

4 2 4 2
1 1 1 1 2 1

1 1
Re cos , Re cos ,

2 ' 2 '

e e e e e
RP RSP c A P c B     

 
     (34) 

 

The transmitted waves  

 

   
22 233

2 1 6 5 14 15
0

1
Re , 1,2,3,4 .

2
s s s s s s s s s s

Ki
P D D W D D t t q U s

T




 
        

 
 (35) 

 

The energy ratios of the reflected and transmitted waves for incident 

(i) P wave 

 

 , , , 1,2,3,4 .

e e
RP RS s

RP RS se e e
IP IP IP

P P P
E E ES s

P P P
     (36) 

 

(ii) SV wave 

 

 , , , 1,2,3,4 .

e e
RP RS s

RP RS se e e
IS IS IS

P P P
E E ES s

P P P
     (37) 

 

The interaction energy ratios for the both cases, which account for the interaction between different fields and 

displacements corresponding to transmitted waves are; 
st

st e
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P
E

P
 for incident P wave and 

st
st e

IS

P
E

P
 for 

incident SV wave where 
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The energy is conserved if  
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1
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     (39) 

 

where 

4

int

, 1

st

s t
s t

E E




  is the resultant interaction energy between the transmitted waves.  

Unique case  

If we put 11 33 0,a a   in system of Eqs. (13) then the matrix V  reduces to 
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and, for the non-trivial solution 0,V  yielding a characteristic equation  

 
8 6 4 2

11 12 13 14 15 0,m q m q m q m q m       

 

where the notations 1 , ( 1,2,3,4,5)im i   are mentioned in the Appendix A. Solving the characteristic equation we 

obtain the unknown amplitude of the respective waves and hence, energy ratios at the interface of ES and OPS can 

be obtained verifying the law of conservation of energy. 

5    RESULTS AND DISCUSSION 

The amplitude ratios and energy ratios for different waves are computed numerically with the help of softwares 

Matlab 9.0 and Origin 6.1. Graphs of energy ratios of waves are shown depicting the effect of two-temperature 

parameter. Further, law of conservation of energy is verified. Following Vashishth and Sukhija [10], the numerical 

values of cadmium selenide (CdSe) have been taken. Elastic constants (in units of GPa) are 11 1374.1, 39.3,c c 
 

33 5583.6, 15.1,c c  thermo-elastic coupling constants ( 5 1 210 NK m  ) are 11 336.21, 5.51,   electric 

permittivity constants ( 11 2 1 210 C N m   ) are 11 8.26,  33 9.03,   thermal conductivity constants ( 1 1Wm K  ) 

are
 11 339, 9,K K   pyroelectric constant is 6 2 1

3 2.6 10 Cm K      . 15 3,e  31 3335, 34e e  are the 

piezoelectric constants ( 3 210 Cm  ). Numerical values for the remaining constants are 

3 20
115504 , 10 ,Kgm a    20 1 1 12

33 0 02 10 , 298 , 260 , 2 10 ,ea T K C JKg K s         32 10 Hz .  
 

Following Bullen [19], the numerical data of graphite in elastic medium is given by 
3 1 3 30.0011 10 , 2.65 10 ,e ems Kgm      3 10.001 10 .e ms   In all the graphs, notations 
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WOTT denote the energy ratio curves corresponding to orthotropic piezo-thermoelastic solid with two-

temperature and orthotropic piezo-thermoelastic solid, respectively. 

5.1 Incident P wave 

From Figs. 3,4, it is clear that for both models i.e. WTT and WOTT, energy ratios of reflected and transmitted 

waves demonstrate the same behavior but a slight difference in magnitude values demonstrating very small impact 

of two-temperature parameters. For WTT and WOTT models, energy ratio of reflected QP wave ( )RPE  exhibits an 
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increasing trend with increase in the magnitude values for 0
00 80   and then monotonically decreases as angle 

of incidence increases. Energy ratio of reflected QS wave ( )RSE depicts the opposite behavior to RPE . For a 

particular range of angle of incidence i.e. 0
00 80  , it displays a decreasing trend and then increases with further 

changes in angle of incidence. In Fig. 5, due to activeness of two temperature parameters ES1  propagates fluctuating 

with small change in values whereas for WOTT model, it exhibits constant behavior  for 0
0 60   and then displays 

increasing-decreasing trend for 0
0 80  . In Fig. 6, a significant change in the magnitude values of ES2 can be seen 

due to the effect of two-temperature parameters for 0  varying from 0 to 20
0
 . For a particular range of 0  i.e. 20

0
 to 

80
0
 , a slight increase in magnitude values is noticed gradually but for 0  greater than or equals to 80

0
, it again 

demonstrates a decreasing trend. For WOTT, ES2 possesses a constant behaviour irrespective of change in 0 . It is 

clear from Fig. 7 that for WTT model, ES3 depicts a continuous increasing trend and for WOTT, it shows a constant 

behaviour with slight difference in numerical values as 0  changes. In Fig. 8, ES4 demonstrates a constant behaviour 

due to the presence of two-temperature effect. For WOTT model, ES4 propagates in a constant manner for 
0

0 60  and then decreases sharply for 0 0
060 80   and further tends to increase such that the magnitude value 

for 0
0 60   is approximately similar to the value obtained at 0 = 100

0 
. It is clear from Fig. 9 that although the 

change in magnitude values of Eint are ominous but the behaviour of interaction energy remains the same in the 

presence of two-temperature parameters. It demonstrates the decreasing behaviour with the change in direction. 
 

 

 

 

 

 

Fig.3 

Profile of RPE with .0θ   

  

 

 

 

 

 

 

 

 

 

 

Fig.4 

Profile of RSE with .0θ  

  

 

 
 
 
 
 
 
 
 
Fig.5 

Profile of 1ES with .0θ  
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Fig.6 

Profile of 2ES with .0θ  

 

 

 

 

 

Fig.7 

Profile of 3ES  with .0θ  

  

 

 

 

 

 

 

 

 

Fig.8 

Profile of 4ES  with .0θ  

  

 

 
 
 
 
 
 
 
Fig.9 

Profile of intE  with .0θ  
 

 

5.2 Incident SV wave  

Figs. 10, 11 depict that ERP and E RS both display the similar behaviour in the presence/absence of two temperature 

parameters as angle of incidence varies. Initially, ERP  increases as 0  increases for 0
00 20   and for 0

0 20   , 

it possesses constant behaviour. E RS displays the behaviour opposite to ERP  for both models but both behaves as a 

constant function for 0
0 20  . It is clear from Fig. 12 that for WTT model, ES1 demonstrates a fluctuating 

behaviour with smaller variations in numerical values as direction of propagation changes. In the absence of two-

temperature effect, ES1  exhibits a monotonic increasing behaviour for 0  lies between 0 and  80
0 

 then decreases 

monotonically for further values of 0  . In Fig.13, ES2 depicts an alternating behaviour for WTT as angle of 
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incidence varies. Initially it increases for  0
00 80   and then decreases for 0

0 80  . In the absence of two-

temperature effect, it shows a monotonic increasing trend with the change in direction of propagation. From Fig. 14, 

it is depicted that for WTT, ES3 increases monotonically whereas for WOTT, it possesses constant behaviour with 

the small variations in magnitude values as 0  changes. In Fig. 15, ES4 demonstrates a constant behaviour due to the 

presence of two-temperature effect. If two-temperature effect is neglected then ES4 propagates in a constant manner 

for 0
0 60  and then decreases monotonically for

 
0 0

060 80   and for 0
0 60   , it tends to increase 

monotonically. Fig. 16 displays that for 0
00 40  and in the presence of two-temperature effect Eint shows an 

alternating i.e. increasing/decreasing behaviour and then it propagates as a constant function for further values of 

angle of incidence. Similarly, for WOTT, it possesses an alternate behaviour; first increase then decreases 

possessing small amplitude but for 0
0 40  , it demonstrates an increasing behaviour as direction changes. 

 

 

 

 

 

 

 

Fig.10 

Profile of RPE with 0θ  (P wave). 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.11 

Profile of RSE  with 0θ  (SV wave). 

  

 

 
 
 
 
 
 
 
 
 
Fig.12 

Profile of 1ES  with .0θ  
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Fig.13 

Profile of 2ES  with .0θ  

 

 

 

 

 

Fig.14 

Profile of 3ES with .0θ  

  

 

 

 

 

 

 

 

 

 

Fig.15 

Profile of 4ES with .0θ  

  

 

 
 
 
 
 
 
 
Fig.16 

Profile of intE with .0θ  
 

 

6    CONCLUSIONS 

The mathematical study is to discuss the wave phenomenon of elastic waves at an interface of ES and OPS. This 

phenomenon is studied with the consideration of two-temperature. The energy ratios of different reflected and 

transmitted waves are obtained by using the amplitude ratios and these ratios are discussed and represented 

graphically to show the effect of two-temperature. The following observations are made from the above study. 
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 Amplitude ratios and energy ratios are impacted by the frequency, angle of incidence, two-temperature 

parameter and physical properties of the material. The nature of this dependence is different for distinct 

waves. 

 Numerical results reveal that the reflection and transmission coefficient along are influenced significantly 

by the two-temperature parameter. 

 It is found that sum of these energy ratios is approximately unity at each angle of incidence. This shows 

that there is no dissipation of energy during reflection and transmission phenomenon. 

 It is observed that due to the effect of two-temperature parameter the larger part of energy goes into 

transmitted QT wave and some into reflected wave and interaction energy of the waves.  

 For WTT model, for the incident P wave, only the energy ratios ERS , ES3 tend to increase as angle of 

incidence increases whereas for SV wave to be the incident wave, the energy ratios ERS , ES3 , Eint tend to 

increase with respect to angle of incidence.  

 Principle of conservation of energy has been verified. 
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For incident P wave 
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