
© 2021 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 13, No. 4 (2021) pp. 503-512 

DOI: 10.22034/jsm.2021.1920891.1672  

Anisotropic and Isotropic Elasticity Applied for the 
Study of Elastic Fields Generated by Interfacial 
Dislocations in a Heterostructure of InAs/(001)GaAs 
Semiconductors 

R. Makhloufi
 1
, A. Boussaha

 2
, R. Benbouta

 1,*
, L. Baroura

 3 

1
Mechanical Engineering Department, Faculty of Technology, LICEGS Laboratory, University of Batna 2 

Mostafa Ben Boulaid, Batna, Algeria 
2
Mechanical Engineering Department, Faculty of Technology, University of Batna 2 Mostafa Ben Boulaid, 

Batna, Algeria 
3
Mechanical Engineering Department, University of Constantine 1, Algeria 

Received 1 August 2021; accepted 9 October 2021 

 ABSTRACT 

 This work is a study of the elastic fields’ effect (stresses and 

displacements) caused by dislocations networks at a heterostructure 

interface of a InAs / GaAs semiconductors thin system in the cases of 

isotropic and anisotropic elasticity. The numerical study of this type of 

heterostructure aims to predict the behavior of the interface with 

respect to these elastic fields satisfying the boundary conditions. The 

method used is based on a development in Fourier series. The 

deformation near the dislocation is greater than the other locations far 

from the dislocation.       

 © 2021 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HE production of new miniaturized semiconductors is highly demanded by the electronics industry for their 

important physical and chemical properties [1, 2]. The manufacturing of this semiconductor creates mechanical 

stresses which generate failure and reliability problems because of the elastic fields (displacements, stresses) caused 

by different types of dislocation networks at the interfaces in anisotropic and isotropic elasticity cases. This leads to 

studies allowing to know the effects of these elastic fields on the interface of the heterostructure. The heterojunction 

formed by two different semiconductors as for InAs / GaAs is of great interest practically because of the association 

of specific properties (electrical and opto-electronic properties of the two semiconductors and to overcome the 

difficult problems to solve with only one material. The heteroepitaxial system of III-V InAs/GaAs semiconductors 

(001) attracted interests and researches for these promising optoelectronic properties [3, 4]. Yonemoto et al. [5] 

studied the adsorption - desorption behavior on the surface of the InAs wetting layer cultivated on (001) GaAs 

substrate. A stress calculation method was proposed by improving the force and moment equilibrium method to 
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calculate stress in semiconductor layers such as InGaAs/GaAs multilayers [6]. Derardja et al. [7] treated, taking into 

account the anisotropic elasticity specific to each crystal, the elastic fields relating to a layer / substrate system and 

to an ultra thin bi-crystal when the network of dislocations is hexagonal. The stress relaxation processes in InAs 

heteroepitaxy on substrates was studied by Akihiro et al. [8]. The Stranski-Krastanov SK growth pattern occurs in 

the InAs/GaAs (001) system with a 7.2% parametric disagreement reported by Leonard et al. [9]. An optimization of 

the morphological and optical characteristics of BQs InAs / GaAs quantum dots as a function of the nominal 

thickness of InAs epitaxied by chemical jets on a GaAs substrate (001) was studied by Jihene Zribi [10]. Stress 

relaxation of ultrafine InAs layers on InGaAs substrates during heteroepitaxy plays a central role in the growth and 

engineering of III - V single crystals [11]. 

In this work we studied the elastic behavior of a thin bimetallic strip whose interface is lined with a parallel 

network of dislocations of parametric disagreement. The analytical method used is a formulation in Fourier series in 

which the analytical expressions of its coefficients was determined numerically with an accuracy which was checked 

with respect to the series convergence. It is necessary to have models, which can describe in explicit form the elastic 

fields for different cases in the cases of isotropic and anisotropic elasticity. We also examined the contrast of 

different results.  

2    BASIC FORMULATIONS 

Based on a double Fourier series formulation proposed by Bonnet [12], the elastic fields (displacements and 

stresses) [13], were calculated in the case of isotropic and anisotropic elasticity. 

2.1 Formulation in the isotropic case 

In the isotropic case, the deformation is assumed to be plane and periodic along the Ox1 axis. The displacement field 

uk components can be written: 
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The field of displacements as defined must satisfy the differential equation of elasticity obtained by combining 

the equilibrium equations of a volume element with the linear equations of Hooke. 
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where λ and μ are the Lamé coefficients of the deformed medium. For i, k = 1, 2, 3 and by inserting Eq. (1) into Eq. 

(2), we get for each harmonic n of non-zero rank a system of equations. 
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The fields of displacement components are: 
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For the expression of the stress field in the case of plane strain: 

 

, , ,( )ij ij k k i j j iu u u               

 
By elimination the parameter λ and using the classical relation (Hirth and Loth), we get the following constraints: 
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In our work, we considered the fact that a periodic series of dislocations produces in each medium a 

displacement field uk and a stress field σij whose components can be developed in a double Fourier series. The field 

of displacements u is bi-periodic parallel to the hetero-interface, in media noted respectively with the signs + and -. 

The boundary conditions relating to a thin bimetallic strip valid for the isotropic and anisotropic case are 

summarized as follow:  

a) Condition on the linearity of the interfacial relative displacement: 
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b) Condition on the stresses continuity  2k  at the interface 

 

2 2k k     for   2 0x          

 

c) Condition of the stresses nullity 2k  at free surfaces 
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To explicitly find each of the Fourier coefficients, the components of the displacement field 
 n

kU   of the 

displacement field (1), it is necessary to solve Eqs. (6), (7) and (8). It remains to solve a linear system of twelve 

equations with twelve complex unknowns , , , , , , , , , , ,A B C D E F A B C D E F           
. This system splits into 
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two independent sub-systems. The first contains only the unknowns , , ,E F E F    .The solutions are purely 

complex. The component of the displacement field parallel to the dislocations therefore depends on the Burgers 
vector b, the coefficient ν and the ratio k of the shear moduli. The other system of equations has eight 

unknowns , , , , , , ,A B C D A B C D        . It is written in the form of a matrix product, where the column 

matrix  , , , , , , ,X A B C D A B C D          contains these eight complex unknowns written in the same order from 

top to bottom . .A X B   

In this equation, the matrices A and B are respectively an 8   8 complex square matrix and a column matrix. The 

equation was solved analytically and we obtained the explicit expressions of the field of displacements for the two 

mediums: 

 

     

 

2 2 2

2

1

2 2 2 1 2

1

1

2

cos( )

sin( )

n x n x n x

re re re re im im

n n x

im im

n x
b a n b x e c n d x e b a n b x e

n
u

n x
c n d x e

n

  




  








      




  

 
     

  
 
 
  

  

   

   

2 2

2 2

1

1 2 2

2

1

2 2 2

cos( )
3 4 ) ( 3 4 )

sin( )
3 4 ) ( 3 4 )

n x n x

im im im im

n n x n x

re re re re

n x
b a n x v b e c d n x v e

n
u

n x
b a n x v b e c d n x v e

n

 

 


 




 



     




      

 
         

  
 

       
  

  

 2 23 1

3

sin( )n x n x

im im

n

b n x
u f e e e

nv

  




  



 
   

 
  

     

 

2 2 2

2

1

2 2 2 1 2

1

1

2

cos( )

sin( )

n x n x n x

re re re re im im

n n x

im im

n x
b a n b x e c n d x e b a n b x e

n
u

n x
c n d x e

n

  




  








      




  

 
     

  
 
 
  

  

   

   

2 2

2 2

1

1 2 2

2

1

2 2 2

cos( )
3 4 ) ( 3 4 )

sin( )
3 4 ) ( 3 4 )

n x n x

im im im im

n n x n x

re re re re

n x
b a n x v b e c d n x v e

n
u

n x
b a n x v b e c d n x v e

n

 

 


 




 



     




      

 
         

  
 

       
  

  

 2 23 1

3

sin( )n x n x

im im

n

b n x
u f e e e

nv

  




  



 
   

 
    

 

 

The explicit expressions of the stress field for the two media are: 
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2.2 Formulation in the anisotropic case 

In the case of anisotropic elasticity and during the epitaxy of two materials, where the two lattice parameters are 

different, an interface composed of a periodic network of dislocations will appear to relax the constraints of 

parametric disagreement "misfit dislocations ". 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Thin bicrystal strip +/-, with a network of dislocations at the 

interface, h thickness, ijklC  elastic constants and Λ period. 

 
with the assumption that the interface is plane and the displacement field is periodic (period Λ). The linearity of the 

relative displacement can be described by the following expression: 
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As the relative displacement uk (x1) is periodic along ox3, it can be developed as Fourier series: 
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This displacement field can be written as: 
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where nX   and nY   represent complex constants which will be determined using the boundary conditions related to 

the problem [14]. 

For more numerical performance, it is convenient to write the equation of the field of displacements in a form 

where the summation takes only into account the positive values of the integer n which can be written as [15]: 

 
3

1 2 2 2

1 1

1 2 2 2

1
[{cos[ ( )].Re[( )exp( ) ( )exp( )]}

sin[ ( )].Re[( )exp( ) ( )exp( )]} 1,2,3

n n

k k k

n

n n

k k

u n x r x iX n s x iY n s x
n

n x r x X n s x Y n s x k

      


      

    


    



 
      

 

    

 
        

 

 

In the same way for the stress field, we have: 
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3    DESCRIPTION OF THE PROBLEM AND BASIC FORMULATION 

Fig. 2. Shows the Misfit for a layer-to-layer heterostructure. 

 
  

 

 

 

 

 

 

 

 

 

 

Fig.2 

Geometry of the thin bimetal InAs / (001) GaAs with a 

dislocation network at the interface x2 = 0. 

 

4    InAs / (001) GaAs SYSTEM 

Epitaxy of thin films of InAs on GaAs is possible. Thin epitaxial films have a good interface quality. 

Free surface 

Misfit

t 

x2 

x1 
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Table  1  

General characteristics of InAs/GaAs isotropic bicrystals [16, 17]. 

Settings InAs GaAs 

a       0.6058        0.56533 

v    0.30  0.25 

    29.18 46.27 

b    0.41405 

p 5.984 

 

Table  2  

General characteristics of  InAs/GaAs anisotropic bicrystals [17, 18].   

Settings InAs GaAs 

a       0.6058        0.56533 

22C  86.5       118 

22C  48.5 53.5 

22C  39.6 59.4 

b    0.41405 

p 5.984 

 

The relative elasticity constants Cij for each crystal are taken in the reference Cartesian frame Ox1x2x3. The 

unidirectional network is studied by considering that the dislocations are distributed on both sides of the origin O of 

the Cartesian coordinate system  Ox1x2x3, knowing that a dislocation is located at the origin of the axes. The Burgers 

vector b is oriented parallel to the Ox1 axis. The deposited layer of the InAs single crystal is chosen on the positive 

side while the GaAs is chosen on the negative side and therefore represents a substrate.  

5    RESULTS AND DISCUSSION 

5.1 Displacement fields iso values 

We illustrated displacement fields’ iso values around dislocations belonging to the unidirectional network in the 

isotropic and anisotropic elasticity cases. 

 

 
 (2D) (3D) 

 

 

 

 

 

 

Fig.3 

Iso values of the displacement fields u1 of the InAs / (001) 

GaAs bicystals induced by a network of interfacial 

dislocations where b // Ox1; isotropic case. 

 

  

 
                 (2D)                                         (3D) 

 

 

 

 

 

 

Fig.4 

Iso values of the displacement fields u1 of the InAs / (001) 

GaAs bicystals induced by a network of interfacial 

dislocations where b // Ox1; anisotropic case. 
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The contrast of the heterogeneous system (Fig. 3 and Fig. 4) indicates values varying from -0.15nm up to 

+0.15nm. These results provide information on the heterogeneity effect, which will be visible in the representation 

of the stress distribution. For the 5nm thick deposited InAs layer, the result appears as an ascending ripple 

mechanism along Ox1. Already described in the literature as a 3D growth mode specific to InGaAs layers which is in 

accordance with the behavior of Fourier series. In the anisotropic case, the contrast indicates for the heterogeneous 

system, values varying from -0.015 nm up to +0.015 nm. The 3D representation of the displacement fields in both 

isotropic and anisotropic elasticity cases indicates that the deposited layer is in tension while the substrate is in 

compression. These calculations show in particular the fields’ displacement extrema. We also notice that the 

symmetry of the displacement fields respects the linear symmetry of the dislocation network.  

The theoretical method of development by Fourier series for the case of the heterojunction InAs / (001) GaAs a 

clear difference between anisotropy and isotropy was detected knowing that the single crystals of InAs and GaAs are 

very anisotropic. Their respective Zener factors are A = 2.084 for InAs and A = 1.82 for GaAs calculated by the 

following expression: 

 

44

11 12

2C
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C C



        

 

 

The applied elastic field is felt differently in the two cases due to the effect of anisotropy. 

5.2 Stress fields iso values 

The stress distributions are shown in Fig. 5-8 for a thin bimetal InAs/(001) GaAs and for two dislocations with a 

Burgers vector b = 0.41405 nm parallel to Ox1.  

 

 
 (2D) (3D) 

 

 

 

 

 

 

Fig.5 

Iso-stresses σ11 of the InAs / (001) GaAs bicystals induced by 

a network of interfacial dislocations where b // Ox1; isotropic 

case. 

 

  

 
                 (2D)                                         (3D) 

 

 

 

 

 

 

Fig.6 

Iso-stresses σ11 of the InAs / (001) GaAs bicystals induced by 

a network of interfacial dislocations where b // Ox1; 

anisotropic case. 

  

 

 

 

 

 

 

Fig.7 

Iso-stresses σ22 of the InAs / (001) GaAs bicystals induced by 

a network of interfacial dislocations where b // Ox1; isotropic 

case. 
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(2D)                                  (3D) 
  

 
(2D)                                  (3D) 

 

 

 

 

 

 

Fig.8 

Iso-stresses σ22 of the InAs / (001) GaAs bicystals induced by 

a network of interfacial dislocations where b // Ox1; 

anisotropic case. 

 
The iso- stresses σ11 correspond to -10 GPa up to +10 GPa for the isotopic case (Fig. 5) and from -3 GPa up to 

+3 GPa in the anisotropic case (Fig. 6). For the iso-stresses σ22 correspond to -30 GPa up to +30 GPa for the 

isotopic case (Fig. 7) and from -1.5 GPa up to +1.5 GPa in the anisotropic case (Fig. 8). We notice positive peaks 

and negative peaks which mean that there is a positive tensile stress in the first case, and conversely, we are in 

compression if the stress is negative. 

6    CONCLUSION 

Determining the elastic field’s effect of nanometric materials is important in both experimental applications and 

theoretical modeling. In this context we solved the problem of a thin system composed of InAs / GaAs 

semiconductors in the cases of isotropic and anisotropic elasticity. We analyzed the results contrast for different 

parameters. We analyzed the contrast of the results for different parameters like the deposited layer thickness, the 

burger vector orientation and the network dislocation in order to apprehend the tensile and compressive stresses 

relaxation. 

The iso value results of the displacement fields around the dislocations belonging to the unidirectional network 

provide information on the heterogeneity effect. The curves symmetry with respect to the x2 axis is very visible, 

because of the dislocation network periodicity which reflects the behavior of the Fouries series. For the anisotropic 

case, the contrast indicates for the heterogeneous system values varying from -0.015 nm up to +0.015 nm. The 

displacement fields in both isotropic and anisotropic elasticity indicate that the deposited layer is in tension while the 

substrate is in compression. The iso stress results show positive and negative peaks, it means that there is a positive 

tensile stress in the first case, and conversely, we have a compression if the stress is negative.  
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