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ABSTRACT

This paper deals with the mathematical approach to discuss the
radially varying transient temperature distribution in a multilayer
composite hollow sphere subjected to the time independent
volumetric generation of heat in each layer. Initially the layers are
at arbitrary temperature and the analysis assumes all the layers of
the body are thermally isotropic and having a perfect thermal
contact. It is novel to obtain the exact solution for temperature field
by the separation of variables by splitting the problem into two
parts homogeneous transient and non-homogeneous steady state.
The set of equations obtained are solved by using the rigorous
applications of analytic techniques with the help of eigen value
expansion method. The thermoelastic response is studied in the
context of uncoupled Thermoelasticity. The results obtained
pointed out that the magnitude and distribution of the temperature
and thermal stresses are greatly influenced by the layered heat
generation parameter. The accuracy and feasibility of the proposed
model is demonstrated by an example of three layered hollow
sphere of Aluminium, Copper and Iron subjected to given
conditions. The results presented in this article could be found
hardly in an open literature despite of extensive search.
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1 INTRODUCTION

HE heat conduction in multilayer composites solids has a variety of engineering applications. The research in

industrial furnaces, nuclear reactors, chemical industry, turbines, space crafts and instruments are the topics of
continued research where these multilayer materials are highly employed. In early nineteenth century, the
manufacturing industry had to face critical problems of designing advanced materials with the different types of
geometries of multilayer having variety of boundary conditions. Many of these applications require a detailed
knowledge of transient temperature, heat flux and thereby stress distribution within the component layers. Both
analytical and numerical techniques are used to sort out the problems. The analytical solution is useful to gain better
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insight through the mathematical form of solution compared to other one. The series solution of one-dimensional
problem, using separation of variable were obtained several decades ago, Bulavin and Kashcheev [1] used the
method of separation of variables and orthogonal expansion and orthogonal expansion of function over a one
dimensional multilayer region to obtain transient heat conduction problem involving distributed volume heat source.
However, since computation of eigen values needed for this methodology is difficult. Yener and Ozisik [2]
discussed the solution of unsteady heat conduction in multi region media with time dependent heat transfer
coefficient, Lu et al. [3] obtained the analytical solution for the problem of transient heat conduction in
multidimensional composite cylinder slab is developed for a time dependent boundary conditions. They discussed
the problem by the application of the method of the Laplace transform and separation of variable together with
variable transformation, Jain et al. [4] presented an analytical double-series solution for the time-dependent
asymmetric heat conduction in a multilayer annulus. Recently, Kukla and Siedlecka [5] considered the heat
conduction in radial direction while time dependent boundary conditions are assumed. Chen and Yang [6] discussed
the thermal response one dimensional quasi-static coupled thermoelastic problem of an infinite long cylinder
composed of two different materials. They applied the Laplace transform with respect to time and used the Fourier
series and matrix operation to obtain the solution, Jen and Lee [7] considered the solution by using the Laplace
transform and the finite difference method. They obtained the solution for temperature and thermal stress
distribution, Lee [8] used Laplace transform and finite difference method to obtain the solution of wide range of
transient thermal stresses, Ootao [9] presented transient thermoelastic analysis for a multilayer hollow cylinder with
piecewise power law non-homogeneity. Recently, Koo and Valgur [10] discussed the thermoelastic effects in
deformation of plates with arbitrary changing elastic parameters and temperature through thickness. Using the semi
inverse method, a simple analytic solution is obtained for a thermoelastic problem of a nonhomogeneous plate with
arbitrary contour. Zamani Nejad et al. [11] introduced an analysis of displacements and stresses of FGM thick
spherical pressure vessels with exponential varying material properties using the semi-analytical solution. Pawar et
al. [12] presented the exact analytical solution for thermal stresses in a hollow thick sphere of functionally graded
material subjected to non-uniform internal heat generation using theory of elasticity. The distribution of thermal
stresses for different values of powers of the module of elasticity and varying power of index of heat generation is
studied, Pawar et al. [13] discussed the thermoelastic analysis of the functionally graded solid sphere due to non-
uniform heat source inside it .The implicit finite difference scheme is used to determine the transient temperature
and stress field inside the sphere. Guerrache and Kebli [14] investigated an analytical solution of an axisymmetric
frictionless contact problem developed on a rigid circular base with penetration of rigid punch into an elastic layer.
This investigation is concerned with the mathematical approach to obtain the transient temperature distribution for a
composite multilayer by the method discussed by Ozisik [15]. That method is applied to spherical geometry and
radially varying time independent volumetric generation of heat inside the each layer is introduced. Then solution is
obtained for thermal stress fields as Noda [16].

The aim of the work is to obtain the mathematical model for predicting the temperature and stress field inside
multilayer composite hollow sphere experiencing internal heat source. The analysis is made on the basis of
uncoupled thermoelasticity. We have used the known temperature field obtained earlier to determine stress field
inside the body. The results are used in illustrative example involving three layered hollow sphere of Aluminium,
Copper and Iron subjected to given conditions and it is illustrated numerically and graphically. The results presented
here could not be found in an open literature despite of extensive search.

2 FORMULATION OF THE PROBLEM

This Works deals with uncoupled problem of thermoelasticity of multi-layered sphere using quasi static approach.
The problem possess the spherical symmetry with (i) material of each layer is assumed to be homogeneous, isotropic
and linearly thermoelastic (ii) the results are discussed for small variation in temperature (iii) the composite sphere
is constructed of multilayer with perfect material properties (iv) tll physical quantities are the assumed to be
functions of the radial coordinate and time only (v) the medium is initially undisturbed, traction free and without

body force. The time independent volumetric heat source g; (r) is actuated in each layer forz >0 .
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Fig.1
Geometry of the composite multilayer hollow sphere.

The radial heat conduction in the i * layer is governed by the differential equation as Ozisik [15]

o1, 207 &(r)_ 1T,
at ror  k,  a o (M

1

T, =T;(r.t), a<r<b,r_ <r<r,i=1234.... n (Layers)

where T; (K )is the temperature distribution in i " Jayer, r(m) is a radial coordinate, 7 (s) is time, k; (W /mK )

i

k
and o (m2 / s) are thermal conductivity and thermal diffusivity of i layer, &, = —— where P; (Kg / m3) and
C:

11
c; (J /Kg K ) are density and specific heat of material of i” layer. Without any generality the temperature at the

inner surface is assumed to be zero.

T; (r,t) =0 at »y =a inner surface of hollow sphere )

i o7, (rn,t)

n

+h,T, (r,,t)=0 at r=r, =b outer surface (3)
.

Inner surface of the layers (i =2,3,4.....n)

Ty (10t ) =T,y (1 000)
X or; (1 1.t) OT; . (r;1:t) )
! or B or

Outer surface of the layers (i =1,2,3,4......n)

T; (ri’t):TlJrl(ri’t)
or; (r;.t) _ T (1;:) ®)
ki ——=kign———
or or
Initially
T, (r,0)=f; (r) (6)

h, is the heat transfer coefficient of outer surface. The following dimensionless variables defined and used as
follows:
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(9.9 8,)=(T,T,,T,)ITy,
( RO’ ):(rsw’bv )/”n’

- k a,t h r ™
0[, ; s _,T:_Oz’Hn: n'n
0‘0 kg 7, k,

where T,,k, and ¢, are the typical values of temperature, thermal conductivity and thermal diffusivity

respectively. Introducing these new variables into the governing and auxiliary Eqs. (1-6) the problem of heat
conduction will transformed into more concise form as:

9,209 0,(n)_134 n

o , L=no<n<l, n_,<n<n, t20 8
8772 7 on T o 07 r To=1 i1 SNs1; (®)
Subjected to conditions
7727703 ‘91 (nst):O! (93)
09 T
n:nnzl’%‘}‘l—lnlgn(nn,‘[):o (9b)
n

Inner surface of the layers (i =2,3,4......n)

09, (11,7 08, 4 (11,7
n=mn 4, 19i(77i—1s7)=‘9i—1(77i—1’7)§ %ZK}—I% (%0)

Outer surface of the layers (i =1,2,3,4......n —1)

08, (.7) _ 081 (m;.7)

772771 ’ '91 (’71'32-):‘91'+1 (771919)7 Ki 877 877 (gd)
1205 8 (m0)=L (i Z12340 ) (%)
0
k; 4
where x;_; =—i=L i =23.n and x; :k—’ J=12,.n-1
ki i+l
. ntn 8 (I”)l"n
Surface heat transfer coefficient H, = i and heat transfer parameter Q; (17) = T
n 0

3 THERMOELASTICITY PROBLEM

In this the temperature determined from Eq. (1) as the known temperature function to obtain the temperature
(thermal) stresses in a given body. We consider the multilayer hollow spherical body is free of external mechanical

loads, in which the inner (r, =a) and the outer surfaces (7, =b) are under given thermal condition and ambient

medium is at zero temperature. We assume that an ideal thermos-mechanical contact exists between the layers and
that the material properties are different but constant in each layer.
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One dimensional problem in a spherical coordinates which means spherically symmetric problem, in which
shearing stress and strain components vanish, stress and strain components along 0 and ¢ directions are identical.

The only nonzero components of the displacement are the radial component u, ; ( r) which can be denoted by u, ;

for i™ layer. The stress displacement relations for the isotropic and homogeneous material layer may be expressed
as Noda [16]

r,i _ _ i
Epi = o €00,i = €pp.i T (10)

The corresponding thermoelastic stress strain relation or Hook’s law are

Cpi =244 €, +A€; — B AT,
(1D
Ogo; =Oppi =2M;Egg; +4€; — BiAT;

where 0, ;,0p,; and oy, (GPa) the component of stress in radial and tangential direction, &,,.; ,&4,; I8 strain
components in radial and tangential direction for the i layer of the composite hollow sphere. AT; =T; —-T; (r 0)
e; =&, ; +2¢&q, is dilatation and 4 and g are the lame constants related with the modulus of elasticity

E, (GPa)and the Poisson’s ratio v; as,

v.E. Ei

1 1

AT i=2) M T 2 (0ew) (12)

The equilibrium equation in radial direction excluding the body forces and inertia term as,

d .
%—'—%(O—n’,i —Oyp,i )=O (13)

Assuming the traction free condition i.e. the boundary conditions of inner and outer surfaces
Oy, (r)=0 at r=ry, o,, (r)=0at r=r, (14)

The stress components are obtained can be expressed for multilayer composite hollow sphere as [16]

3 r3
Cpi = % Ei % ( 3 03 J.AT rzdr—J.AT r2dr
(l—Vl-)r (r” " )’:—1 T
28 41 (15)
oo = Ogpi = % E; % ( O)J.ATrzerrJ‘ATrzdr AT, 7*
QG IR A
i=1,23,4...... n (n , layers)

where a,; (KLJ is the coefficient of linear expansion of i " layer.

Assuming the interface conditions i.e. continuity on the interfaces

r=r 5 0, (’?):Gw,i—l (}"i),i =1,2,....... N (16)
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Using the dimensionless coordinates defined as (7) one can obtain the following stress functions in
dimensionless form as,

3

3\ n
_ (1-v, m—=n
o (lzvi) 1 ( 3 Z) IA% (n.7)n’dn- I A8, (nt)n’dn
(nn _770)77[71 i1

3.3\ n
= — o, (1-vi) 1 (2'7 +'70)J' 2 2 3 17
000, =0gpi =— =— AS (n,7)n°dn+ I A8 (n,7)n“dn-AS (n,7)n (17)
211,,-E,-T0 773 (772 —778) ( ) ( ) ( )
G (7)=0 at n=ny, opmy, (1)=0 at n=n,

n=n ; i (7, )=‘;nmi71 ()i =2,.cccccon, where A (n,7)=9 (n,7)—3 (,0)

i i1

The Egs. (1-9, 17) constitutes the mathematical formulation of the heat conduction and thermoelasticity problem
in dimensionless variables.

4 SOLUTION

Defining new dependent variable U, (n,r) as:

U, (n,7)=n8 (n,7) (18)
The Egs. (8-9) will take the form as:

o, Qi (n) _ 1 au;

on* ki ai 0t (19)
U, =U; (n.7), mo<n<n,, 5, <n<mn,

Subjected to the conditions
n=n,, U;(n7)=0

n=n, =1, M_{H,’ _ljU” (77”,1):0
on n

Inner surface of the i” layer (i =2,3, 4...n)

oU; (n;_,t) U;(miy»7 oU, y(n;_1,7) U (min7
n=m_, Ui(’]i—l’r):Ui—l(’]i—l’T) (6771 )_ (771 )=Ki1( 16(771 )_ 1(771 )]

Outer surface of the i layer (i =1,2,3,4..n -1)

U, (771‘ .7) U (m: ’T)J _ U, (1;57) Uiy (771' ,T)

=17 U[ i > :U[ i > [
n=mn; (1:.7)=U;. (m f)'f,[ o . o ”

Initially
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nf: (1)

Ty

r=0,U,; (nt)= (20)

The problem of heat conduction defined by (19-20) is a heat conduction is with non-homogeneity due to
dimensionless heat generation parameter Q; (77) and initial temperature U, (77,0) are the function of space variable

n and hence the problem as Ozisik [15] can be solved by splitting the problem (19-20) into nonhomogeneous steady
state with heat generation and homogeneous transient problem then solution written as

U (n.t)=U,,; (m)+U,, (n.7) 1)

4.1 Nonhomogeneous steady state

azUsi n 9;
87;2( )+?7 E.(n)zo'ﬂogﬂgﬂn:ﬂilgngm 22)

Subjected to the conditions

77:’70’ Us,i (77):0

U, (m){

= :1’
=1y on

1
Hn__ Usn My =0
77) n (1)

Inner surface of the i layer (i =2,3,4...n)

n=m_, Us,i (Ui—l):Us,i—] (771‘—1)

Uy, (77i—1)_Us,i (7:4) — (anl (’7:>1)_U171 (77,'1)]
on i1 -

on n

Outer surface of the i " layer (i =1,2,3,4...n—1)

n=mn;, U, (77i ):Us,i+1 (77i )
. [aUs,n‘ (’71‘ ) _Us,i (’7i )J _ aUs,Hl (’7i ) _Us,i+l (77i ) (23)
' on 7 on n

The problem (22-23) can be solved by using general method of higher order i.e. variation of parameter with
constant coefficients, writing the solution of (22) as:

U,,(n)= CF+PL

24

CF= (¢ +0277)eo’7 =c, +c,n 24)
Let the primitive be ¢; +c,77 . Assume that

U, (1)=vU; +v,U, (25)

From primitive U, =1,U, =7 and U/ =0,U; =1, W =U U, -U,U| =1
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i ];i

Hence, v, = [0, [—UQ]%—(U)]dn, v, :J'U{—"Q" ('7)}177

Therefore, P.I. :—InQ 77——J.77Q (n¥n

Hence,

_ 1.2 _n
Us,i (77)_as,i +bs,i77+Ei J.n Qi (U)d?] Ei IUQl (77}177

4.2 Solution of homogeneous transient problem

aZUh,,. (m7) 1 0U,; (n.7)

== s Mo SN=1, , o ST

8772 o or
Subjected to the conditions

n=ny,U; (77,7)20

oUu
77:77,,:1, h,n(’]n)_'_[Hn _lJUh,n(nn):O
on n

Inner surface of the i layer (i =2,3,4..n)

n=mn,_, Uy, (771'—1’7):Uh,i—1 (Ui—ls")

oU,, (771'—157)_Uh,i (771‘—1’1) e (aUh,i—l(ni—l’T)_Uh,i—l (’7i—1>7)
=K

OR 71 on

Outer surface of the i ™ layer ( =1,2,3,4...n —1)

n=n, U, (77i »f):Uh,iﬂ (’7i 97)

. (aUh,i (77i ,z‘) _Uh,i (77i ’T)J = OUnin (77i :T) _Uh,i +1 (77i sT)

on 1; on i
o
K ==
ki+l
=0, Uh,i (77’7’-) = ﬂf]l"(n) _Us i (77) :fi* (’7)
0

Using the value of U ; (77) from Eq. (26) one gets

' (77)

Uy (1,0)=——=~a,, —bs,in—%j‘ﬂzQi( dn+—an (nen=1"(n)

Ty

Using the method of separation of variable differential Eq. (27) will be separated as:
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T.
T, o)-o @
T
dRim (77) ﬂ _
an e (=0 o

A, 15 @ separation constant, the subscript m is induced to imply there are infinite number of discrete values of
Eigen A of corresponding eigen function 7,,, and subscript i for layers. The solution for the time variable function

I'(7) is immediate from Eq. (29) as:
T(r)=e e (31)

and the general solution for U, ; (77, z') in any region i is constructed as [15]

) 2 .
Ui (77’ T) =D CiuMlim [ = nJe%T 32)
2 Contin| 2=

A
where the summation is taken over all Eigen values 4,,,7 =1,2,3,....n and 7, ( ﬁn] is the solution of (30).
ai

Using the initial condition (28) of the problem (27-28) one gets

1k 2
Cim =— ——'I mm[ — nJ/f(n)dn (33)
N ;ai i1 @i

Hence one gets the solution U, ; (77,7) as:

— =
Ly J 2.
Ups (17)= D =i | 2= |25 | | =’ [ () g ==y, i =123
h ZN{A] R Wl G ‘ (34)

A, kit oo oA
N| == |=D.— | Tim| =nHn 35
(“\/ai j gai ,i'i {«,aii } 35)
Hence the temperature distribution U, (n,r) is obtained by adding (26) and (34) as:

1
U; (m.7)=a,, +bs,in+k=fn2Qi (n)dn—kijﬂQ,- (n¥n

- g | S S | A J
+';N(’1im]n [\/‘Z]_/Z—;“j ”"’[/]77] \[5_1.'7 5 ()dn

4.3 To find the coeefficents a;; and by

Applying the conditions (23) to (26) one gets the equations in a,; and b ;

© 2020 TAU, Arak Branch



892 S.P. Pawar et.al.

]
agy+bg 1 = —E—ljanl (n)dﬂ+g_(ianl (npn=G,

| 1
ag y +bg 41 —ag 5 —bg o1y =—;—1_[772Q1 (n)dn+k2—lljf7Ql (?7)477+EI772Q2 (n)dn—g—lzfﬂQz(n)dFGz

K 1
-—La,, +—a,, Un 0, (n)dn— In 0, (n)d } G
T T
d; 5 +bg 511, —ag 3 —by 517, ———IU Qz d77+ J"?Qz dﬁ+—jﬁ Q3 d77 L IUQs d’? Gy
Ky 1
——=a,, +—ay, Un 0, (n)dn- jn 0s(n dn]
Ul m 772k3
In general
1 H, -1
(Hn _])as,n +Hn bs,n :E_[(Hn _1)77;1 _I:IIUQn (U)dﬂ—%]‘ﬂan (77)d77 :Gn (37)

The system of equations in unknowns (37) is expressed in a matrix form as:

1 19 O o o ) o )
1 m -1 -1, O o o Y A1 G
S B L 0 0 0 0 b G2
T ™ a, . Gs.
0 0 1 7 —1 —7, O ) o || b, G,
0 o -2 o L . - o () Ss3 || Os (39)
772 772 b3 .
a.f B
bs N2 Gn
(o) [0} H, -1 H

From (38) one gets the values of a,,,b, .4, 5.b, 5,0, 3.b; 5. a; , and b, and thenU_ (1)U, ,(1).U,5(n)..Us,, (1),

for layers i =1,2,3,.....n. We follow the method given as Ozisik [15] to solve eigen value problem. The

homogeneous system of equations to obtain 4,, and B,,, , assuming 4,,, =1 and for heat flux to be continuous at

im >

> im

. . fa . . . .
the layer interfaces for all values of time 7 , 4, = 4, ads for i =2,3,4...n is expressed in a matrix form as,
a;

Clin Coin 0 0 0 0 0 1 0
X1 X2 X130 Xig 0 0 0 By, 0
Y Yiz Yiz Vi 0 0 0 Az 0
0 0 B, 0

0 0 0 X Xgo X3 X4 0 As, _ 0 (39)
0 0 0 - Y Yiz Vi3 Yia 0 -

0

0 0 - - .- .- Yna11 YVu-12 Vu-13 Vnu-14 Ay 0
0 0 . . .. . . . Clows Coour B, 0

© 2020 IAU, Arak Branch



Thermoelastic Behaviour in a Multilayer Composite ... 893

The 2n equations of above matrix can be used to find the coefficients 4,, and B,,

c,,m, O 0 0 O 0 0 B — Cui
X, X3 X, O O 0 0 2m — X1
Yi2 Y15 Yia O O 0 0 B — Y
.. 0 0 A,
0] 0 (0] X Xia X3 Xia 0 B;., _ . (40)
O O 0 . yil yi2 yi3 yi4 O - .
0
O O . . b . yn—l,l yn—1,2 yn—1,3 yn—1,4 Anm
0 0 " e . . . . Clout C20ut Bnm
The solution of above matrix gives coefficients B,,,,4,,, B2, A3 B3 - A,, and B, .The transcendental

equation to find positive roots i.e. the eigen values 4, i e.4; <A, <453 <.....< A4, <..., which is obtained from
the determinant of the (27x2n) coefficient matrix in (39) should vanish. This is the condition leads to the

following transcendental equation for determination of the eigen values 4;,, and hence eigen functions will be

obtained.
Clin  Coin 0 0 0 . .. . 0 0
X111 X122 X130 Xig 0 0 0 0
Yir Yiz Yz Via Y - .- 0 0 0
0 .. X ; X ; X ; X ; .. .. 0 0
il i2 i3 i4 =0 (41)
0 . Yir Yiz Yiz Yia 0 - 0 Y
0 .- .- .- 0 0 Yn-11 YVn-12 Vn-1,3 Vn-14
0 0 . .- .- - .- 0 Clout Coout
where
I I
Clin = COS i U Coip = S 70
Jal Jal
A | A .
Xy, =cos l—mlR1 , X1 =sin —;"_er1 , X3 =—COS ﬂQ—,ﬂ/Rl , X14 =—sin ﬂa—yi’Rl
Kidim .| Him K Aim K A Aim K .| Aim
Yiu=- sin| —=R, |——cos| =R, |, ¥, =—7==cC0s| =R, |——sin| =R,
Joi ol ) R\ Joi o ) R\
. 1 1 .

A W it v R Wl i N
X =cos(%R2], X5 :sin{%RzJ, X 53 :—cos{j/fle} X4 =—sm(f/30’:—3,sz
et R e e i i
y23—%sm[\%&]+écos[%&}y24 %”CO{% }f—sm{\%&J
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nm nm ﬂ’nm nm

5 NUMERICAL RESULTS AND DISCUSSION

ﬂ“nm

Crour __\/ZSH{\/ZJ+(HH —l)cos[\la_};} Coout :\/T_L,COS[ ”

J+(Hn —l)sinL%J

In this work, we carried out some numerical results for temperature distribution in a multilayer composite hollow
sphere and the resulting thermal stresses. For this a three layer composite multilayer hollow sphere was selected to
demonstrate the numerical calculations. For the multilayer the geometry is shown in Fig.1 and the dimensionless
physical and mechanical quantities are given in tables. We considered the multilayer composed of Aluminium,
copper and Iron. The inner and outer radii of the sphere are assumed to be 0.02 to 0.30 (m). Each layer assumed to
have different thickness. The numerical results are illustrated in terms of the dimensionless Temperature distribution

U, (n,r) and components of thermal stresses g‘,m,i and ggg,i . The results are represented graphically. The initial

temperature in multilayer sphere is assumed as f; (r):T 0 =293.5K and it is also assumed as reference

1

temperature T, and internal heat source is taken asQ; (77) =0,7n.

Table 1
Physical parameters of the composite hollow sphere 77.
Layer n_ton ,i=123 Width of each layer
i=1 1y to 7y, 0.06to 0.33 0.027
i=2 n to 17, , 0.33 10 0.66 0.33
i=3 1, ton; 0.66 tol 0.34
77 varies as 1y to 73 0.06 to 1 inner & outer surface 0.94
Table 2
Material properties of layers of the composite hollow sphere.
Layer > i=1 2 3
Material properties (Aluminium) (Copper) (Tron)
Thermal conductivity k; (W /mK) 204.2 386 72.7
Thermal diffusivity ~ e (m2 /s) 84.18x107° 112.34x107° 20.34x107°
Poisson’s ratio v; 0.35 0.33 0.30
Modulus of Elasticity £; (GPa) 70 117 100
Coefficient of thermal expansion a, (1/K ) 231070 16.5x107°
Average conductivity ko (W /mK ) 221
Average thermal diffusivity o (m /s ) 72.29x107°
Table 3
The dimensionless mechanical material properties of the layers of composite.
Layer > i=1 i=2 i=3
Material Properties 4
Thermal Conductivity l?i =k; kg 0.92 1.74 0.33
Thermal diffusivity ;i =a; /o 1.16 1.56 0.28
Ei K= 0.528 Ky = 5.27

Ratio of conductivity parameter x; = T
i+1
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Table 4
First 15 Eigen values obtained layer wise.
Aim m=1 2 3 4 5 6 7 8 9 10 11
Am 1.4978 3,7256 8.7587 11.0230 17.0512 18.5606 19.9434 21.8516 23.5826 254256 27.2574
Aom 1.2916 3.2126 7.5528 9.5053 14.7035 16.0051 17.1975 18.8430 20.3357 21.9249 23.5045
A 3.0486 7.5830 17.8276 224362 347060 37.7782 40.5928 44.4768 48.0001 51.7513 55.4797
Aim m=12 13 14 15
Am  28.6724 304880 35.1396 37.7836
om 247247 262903 30.3015 32.5814
A 583599 62.0563  71.5232  76.9048
Temperature distribution
2 ﬂ, ﬂ
e AL cos[ m 77]+ B,, sin[ in nﬂ
U~(772')=a-+bv77—Q0774+i { \/07 \/07 o
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Thermal stresses
S (77. 77._1)+ =X l)( L —nit)— 72;’( (28 — 78, )+
7% —1n5
77??_773 mlN[ ﬂ,lm Jclsz
1 Ve
Ooni = ? a 1) Q (43)
; (7% — i 1)+ B (7 —m1)— 72;’( (7° — 128 .)+
e F D,
mz: N ﬂlim |mz
where, i =1,2,3

+ Bim

el )
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Table 5
Layer wise 15 Values of 4,,, and B,, .
A m=1 2 3 4 5 6 7 8 9 10 11
Ay, 1 1 1 1 1 1 1 1 1 1 1
Ay, -2.5154 -1.5685 -0.6153 3.3577 0.2204 -0.6682 -1.1711 -2.0915 -2.2473 -0.6599 -0.5753
A3, 10.4452 4.1164 -2.9170 0-0794 -1.8274 0.4104 0.3430 1.9040 -2.9699 1.6762 -0.3901
4, m=12 13 14 15
Ay, 1 1 1 1
Ay, -0.6126 -0.2947 -0.0983 -1.3637
As,, 0.8751 -1.1074 0.7178 1.3113
By m=1 2 3 4 5 6 7 8 9 10 11
By, -11.9567 -4.7488 -1.8842 -1.4184 -0.7153 -0.5951 -0.4952 -0.3690 -0.2629 -0.1556 -0.0524
By, -6.0651 -3.8177 -2.1769 3.5159 0.2204 -0.6682 -1.1711 -2.0915 -2.2473 -0.6599 -0.5753
B3, -4.0210 -15.7357 3.2544 -7.8540 0.7120 -0.4672 1.3765 -1.8062 1.2021 0.7498 -0.9541
B, m=12 13 14 15
By, 0.0265 0.1283 0.4073 0.5914
By, -0.6126 -0.2947 -0.0983 -1.3637
Bs,, 03117  -1.8962  0.0606 14317
Table 6
Layer wise values of a, ; &b, ;
i 1 2 3
Ay i -0.1756 -0.0927 -0.4886
by i 2.9265 2.6738 3.3325

o1

=

. aue006

o2

£

0.06 ) //'/

0.04 S — /

N L Fig.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Radius

In Fig. 2 the temperature distribution is shown along radial locations for 0;,=0.02, 0.04, 0.06 and a fixed time

7 =0.015. The heat source is a function of radius R & hence the source parameter increases along radius and
accordingly the variation in the temperature distributions is observed. The temperature gradient varies in each layer
because of the difference in the thermal conductivity coefficients which has been seen at radial positions. Internal
Source is the only means by which the body getting heated. Since the inner boundary of multilayer is kept at zero
temperature and convection at outer boundary to ambient at zero temperature. The graphs shows change in
temperature from inner to outer. In Fig. 3 the variation is shown for varying time 7 = 0.005, 0.015 and 0.025 for
fixed source Q,=0.04. This graph shows that the layer has spectacular temperature variation with respect to time

and satisfies boundary conditions.
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In Fig. 4(a) and 4(b) the transient, radial and tangential stress distributions are shown along radial direction with
varying values of heat source and time respectively. Fig. 4(a) shows that the transient radial stresses vanish on the
inner and outer boundary surfaces of the multilayer hollow sphere as per induced mechanical boundary conditions.
In observations it is found clearly that the stress increases along radial direction and spectacular changes are seen for
different layers. The first layer shows compression which decreases on interface. The compression is large for lesser
source parameter. Interior of the first layer is under compression and it decreases on its outer interface. There is a
decrease with respect to source parameter. In second layer the nature of the stress function is same but it changes its
sign from negative to positive and compression decreases while in third layer the variation for considered source
parameter again decreases becomes zero on outer surface of multilayer as per assumption. It is observed that the
inner surface of the Multilayer hollow sphere is under compression while outer surface shows tension. Fig. 4(b)
shows the variation of Tangential stress distribution along radial direction. It is observed that the inner surface of the
first layer means inner surface of the multilayer is under compression and changes to tension with respect to radius
and this nature continues to tension on outer surface and changes from negative to positive. In Fig. 5(a) and 5 (b) the
variation of radial and Tangential stress fields is shown foe different time parameter = for fixed value of O, and the

nature is found to be same as 4(a) and 4(b). As expected the temperature and stress distribution exhibits significant
jumps at all interfaces and these are due to the differences in a material properties.

2.5 . s
~ v =—O.0L1LS5
O, ,=0.02 e} —
2 ——Q,—0.04 |
a.—o.06 s + —0.015
_ -0
= 2 a0 Q,—0.02
P ar — O, =0.04
=} =
= o O, —0.06
= . = —1s o
= — = —z20
= - — _
= =
o.s s 25
=
o ! e —————— e
{ -35
_o.s .
o o.5 1 —4a0
Radius o 0.5 1
Radius
(a) (b)

Fig.4
Radial and Tangential stress distribution versus radius with varying heat source Qg =0.02,0.04,0.06.
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(=" | '(_u
] —20
° / L -25
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Fig.5
Radial and Tangential stress distribution versus radius with z =0.005,0.015,0.025.
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6 CONCLUSIONS

The results and the calculations in the analysis can be summarised as follows;

1. The transient thermoelastic problem involving a multilayered hollow sphere with internal heat generation is
analyzed in this work. The analytical solutions are obtained for temperature and stress functions.

2. The exact analytic solution for temperature distribution is obtained using separation of variable method by
splitting the problem into homogeneous transient and nonhomogeneous steady state. The solution of
homogeneous transient part is obtained in a series solution by eigen function expansion. In this
inhomogeniety is due to internal heat source and initial temperature which function of radius.

3. The transient thermoelastic response of a multilayer experiencing internal heat source is studied by using
temperature function which is obtained earlier.

4. The results were discussed numerically and graphically layer wise and observations are presented. The
mathematical software MATLAB is used for the purpose.
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