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 ABSTRACT 

 Functionally graded materials (FGMs) belong to a noble family of 

composite material possess material properties varying gradually in 

a desired direction or orientation. In a past decade, functionally 

graded materials were remained in an interest of material 

investigators due to its prominent features, and have extensively 

used in almost every discipline of engineering which in turn 

significantly increases the number of research publication of FGM. 

In this paper the exact elasticity solution for an FGM circular shaft 

with piezo layers is analysed. piezoelectric layers are homogeneous 

and the modulus of elasticity for FGM varies continuously with the 

form of an exponential function. The shear modulus of the non-

homogeneous FGM shaft is a given function of the Prandtl’s stress 

function of considered circular shaft when its material is 

homogeneous. state equations are derived. The Prandtl’s stress 

function and electric displacement potential function satisfy all 

conditions. The shearing stresses, torsional rigidity, torsional 

function for FGM layer and shearing stresses, electric 

displacements, torsional rigidity, electrical torsional rigidity, 

torsional and electrical potential functions for piezoelectric layers 

are obtained. Exact analytical solution for hollow circular cross-

section presented. At the end some graphs and conclusions are 

given.                       © 2022 IAU, Arak Branch. All rights reserved. 

 Keywords: FGM (functionally graded material); Piezoelectric; 

Elasticity; Torsion; Cylindrical shaft; Exact solution. 

1    INTRODUCTION 

HE FGM(functionally graded material) was first considered in Japan in 1984. Appropriate macroscopically 

inhomogeneous phase concentrations, and particle morphologies and orientation distributions have recently 

been applied in a variety of fields, including aircraft, aerospace, and automobile technologies, heat exchanger tubes, 

thermoelectric generators and heat-engine components [1]. The properties of FGM vary smoothly and continuously 
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from one surface to the other [2]. In many cases, properties change between metal and ceramic phases. The ceramic 

in a FGM provides insulation against heat and protects the metal from corrosion and oxidation while the FGM is 

strengthened by the metallic composition. As a result, these materials are able to withstand high temperature 

gradients without structural failures [3]. Piezoelectricity was first discovered by Jacques and Pierre Curie in 1880. 

Piezoelectric materials have various applications because of their unique behavior. Piezoelectric effect is an 

interaction between electrical and mechanical state of some materials [4]. As a result, these materials can be used in 

sensors and actuators and wherever there is a need for electromechanical interactions, These materials should have 

crystals with no inversion symmetry in order to exhibit piezoelectric properties [4].Torsional problems have a great 

importance in structural analysis and design of mechanical parts [4].Torsion is an important factor in the design of 

some load carrying elements such as shafts, curved beams, edge shafts in buildings, and eccentrically loaded bridge 

girders [5]. In recent years, the composition of several different materials has been often used in structural 

components in order to optimize responses of the structures subjected to thermal and mechanical loads. Saint-

Venant’s torsion of a homogeneous, isotropic or anisotropic elastic circular bar is a classical problem of elasticity 

which was solved using the semi-inverse method by assuming a state of pure shear in the body such that it gives rise 

to a resultant torque over the end section [6]. Also, Saint-Venant’s torsion of a non-homogeneous circular bar was 

solved, in this method the solutions of homogeneous torsion problems are employed to find solutions corresponding 

non-homogeneous problems. Saint-Venant’s torsion of a homogeneous, monoclinic piezoelectric shaft is formulated 

in terms of Prandtl’s function and electric displacement potential function. In all cases of Saint–Venant’s torsion 

mention above the states of strains and stresses are independent of the axial coordinate. Following Saint–Venant it is 

assumed that the character of elastic and electric fields depends only in a secondary way of the exact distribution of 

the tractions on the ends of cylinder so that the end torques are introduced in an integral manner in the case of 

torsional problem [7]. Saint-venant’s torsion of a homogeneous isotropic, elastic cylindrical body was solved by 

Higgins [8], Timoshenko and Goodier [9], Sokolnikoff [10]. A novel class of graded cylinders is proposed by Chen 

[11] as neutral inclusions inside host shafts of arbitrary cross section under Saint-Venant’s torsion. Baron [12] 

studied torsion of hollow tubes by multiplying the connected cross sections, He used an iterative method to satisfy 

the equilibrium and compatibility equations. A computational method for calculating torsional stiffness of multi-

material bars with arbitrary shape was studied by Li et al. [13], In this work, they considered additional 

compatibility and equilibrium equations in common boundaries of different materials in their formulation and got 

good results. Mijak [14] considered a new method to design an optimum shape in beams with torsional loading, In 

his work, cost function was torsional rigidity of the domain and constraint was the constant area of the cross-section 

while shape parameters were co-ordinates of the finite element nodes along the variable boundary, The problem was 

solved directly by optimizing the cost function with respect to the shape parameters. He solved this problem using 

finite elements (FE) method. Kubo and Sezawa [15] presented a theory for calculating the torsional buckling of 

tubes and also reported on experimental results for rubber models. However, this theory did not show an agreement 

with experimental results. Lundquist [16] performed extensive experiments on the strength of aluminum shafts 

under torsion reported in 1932. Recently, Doostfatemeh et al. [17] obtained a closed-form approximate formulation 

for torsional analysis of hollow tubes with straight and circular edges. In this work, the problem was formulated in 

terms of Prandtl’s stress function. Also, accuracy of the formulas was verified by accurate finite element method 

solutions. Muskhelishvilli [18] presented the governing equation and boundary condition of the torsion of composite 

bars and its solution in Fourier series for composite section with two sub-rectangles. This solution was extended 

later for multiple rectangular composite section by Booker and Kitipornchai [19]. Kuo and Conway [20–23] 

analyzed the torsion of the composite sections of various shapes. Packham and Shail [24] extended their work on 

two-phase fluid to the torsion of composite shafts. Ripton [25] investigated the torsional rigidity of composite 

section reinforced by fibers. Herrmann [26] utilized the finite element method to calculate the warping function of 

the torsion of irregular sectional shapes. Torsion of elastic circular bars of radially inhomogeneous, cylindrically 

orthotropic materials is studied with emphasis on the end effects by Tarn and Chang [27]and compared their method 

with Saint-Venant’s torsion. anisotropic or non-homogeneous materials has been considered by Lekhnitskii 

[28,29],Rooney and Ferrari [1], Bisegna [30,31]and Horgan [32]. The formulation of the theory of uniform torsion 

for piezoelectric shafts has been analysed by Bisegna [30,31], Rovenski et al.[33,34],Yang [35], a relaxed version of 

this problem including the torsion is also formulated and solved by Bisegna [30,31].The papers by Bisegna [30,31] 

use the Prandt’ls stress function and electric displacement potential function formulation for simply-connected 

cross-sections which is based on Clebsch-type hypothesis. Tawaka et al. [36] studied torsional vibration control with 

piezoelectric actuation. Zehetner [37] studied compensation of torsion in rods by piezoelectric actuation. Maleki et 

al. [38] presented exact three-dimensional analysis for torsion of piezoelectric rods. Rovenski et al.[33,34]give the 

torsional and electric potential function formulation of the saint-venant’s torsional problem for monoclinic 

piezoelectric shafts.In the papers by Rovenski et al.[33,34] a coupled Neumann problem is derived for the torsional 
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and electric potential functions, where exact and numerical solutions for elliptical and rectangular cross-sections are 

presented. Torsion of circular cylinders made of ceramics with tangential poling is studied by Yang [35]. In  the 

paper Ecsedi et al. [7] the Saint–Venant’s torsional problem is formulated in the framework of the linear theory of 

piezoelectricity for homogeneous, monoclinic piezoelectric cylinders with arbitrary cross-sectional geometry, the 

Prandtl’s stress function and electric displacement potential function formulation is developed for multiply-

connected cross-sections [7]. 

In this paper, piezoelastic  solution  for an FGM cylindrical shaft with piezo layers under the Saint-Venant’s  

torsion is presented, piezoelectric layers for solved example are homogeneous(Although obtained relations also 

satisfies the non-homogeneous state) and length is finite.Influence of layers together applied, all results about the 

Saint-Venant’s torsion which is solved,verified.Finally,the obtained state equations are solved, and the stresses, 

electric displacements, torsional functions,electric potential functions are presented. The Sadd [39] results about the 

Saint-Venant’s  torsion are recovered in sections 2.1 and 2.1.1 for FGM layer, here Prandtl’s stress function is 

introduced, expressions for displacement single value condition, torsional function and torsional rigidity are also 

presented. The base of the study about the piezoelectric layers is section 2.2 that formulates the governing field 

equations and boundary conditions of the Saint–Venant’s torsional problem for piezoelectric shafts by the use of 

results of Rovenski et al. [33]. In section 2.2.1, Prandtl’s stress function and electric displacement potential function 

are introduced, here the expressions for torsional and electric potential functions in terms of Prandtl’s stress function 

and electric displacement potential function are also presented with the equations of coupled Dirichlet boundary-

value problem, torsional and electric potential functions are single valued. In section 2.2.2 torsional rigidity and 

electric torsional rigidity are presented. Formulas for Continuously Conditions which shows Influence layers on 

together are derived in section 3. the electric potential between surfaces FGM and piezo is zero. Section 4 contains 

one exact analytical example for hollow circular cross-section. Some Graphs and conclusions are given in sections 5 

and 6 respectively.     

2    STATE-SPACE FORMULATION  

Consider a functionally graded cylindrical panel with non-homogeneous mechanical properties in exponential form 

that is bounded with piezoelectric layers (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Piezo-FGM cross-section. 

2.1 FGM layer [39] 

Displacements can be determined as: 

 

u r sin y       (1) 

 
r cos x      (2) 

  
Using the assumption that the section rotation is a linear function of the axial coordinate, we can assume that the 

cylinder is fixed at 0z   and take 

 

z   (3) 
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where the parameter   is the angle of twist per unit length. Collecting these results together, the displacements for 

the torsion problem can thus be written as: 

 
u yz 

 
xz   

 ,x y   
(4) 

2.1.1 Stress-stress function formulation for isotropic non-homogeneous material [39] 

0x y z xye e e e   
 

1

2
xze y

x




 
  

   

1

2
yze x

y




 
  

 
 

(5) 

 

The corresponding stresses follow from Hooke’s law: 

 

0x y z xy      
 

xz y
x


  

 
  

   

yz x
y


  

 
  

 
 

(6) 

 

For the state that body forces is zero, the equilibrium equations reduce to:  

 

0
yzxz

x y

 
 

 
 (7) 

 

xz
y








        yz
x





 


 (8) 

 

We can generate the compatibility relation among the two nonzero stress components by differentiating and 

combining relations (6)2,3 to eliminate the displacement terms. Substituting relation (8) into that result gives the 

governing relation in terms of the stress function 

 

1 1
2

x x y y

 


 

     
    

      
         (9) 

 

where the shear modulus   must now be left inside the derivative operations because the material is 

inhomogeneous. The components of the unit normal vector can be expressed as: 

 

x

dy dx
n

ds dn
    ,   y

dx dy
n

ds dn
           (10) 

 

To complete the stress formulation must apply the boundary conditions on the problem. If the lateral surface of 

the cylinder s is to be free of traction, and thus 
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0n
x x x yx y zx zT n n n         

0n
y xy x y y zy zT n n n       

0n
z xz x yz y z zT n n n                 

(11) 

 

The first two relations are identically satisfied because 0x y xy zn      ,and by using Eq. (8) in Eq.(11)3, 

have 

 

0xz x yz yn n      

0
dx dy

x ds y ds

  
 

 
 

0
d

ds


         

(12) 

 

with regard to the stress function, the value of   may be arbitrarily chosen only on one boundary, and commonly 

this value is taken as zero on the outer boundary, but in this paper it is much different and refer in the next part 

(since have 3 layers together). Next consider the boundary conditions on the ends of the cylinder, on this boundary, 

components of the unit normal become 0, 1x y zn n n     so 

 
n

x xzT    

n
y yzT    

0n
zT          

(13) 

 

Moment should be a pure torque T about the z-axis. This condition is specified by 

 

 n n
y x

R R

T xT yT dxdy x y dxdy
x y

   
     

  
∬ ∬        (14) 

 

Using results from Green’s theorem 

 

  x
s

R R R R

x dxdy x dxdy dxdy x n ds dxdy
x x


   

 
   

  ∮∬ ∬ ∬ ∬        (15) 

 

  y
s

R R R R

y dxdy y dxdy dxdy y n ds dxdy
y y


   

 
   

  ∮∬ ∬ ∬ ∬        (16) 

 

Because   is not zero on S, the boundary integrals in (15) and (16) will not vanish and relations (15) and (16) is 

 

1

2 2

N

k k

kR

T dxdy A 



 ∬        (17) 

 

T
J


      (18) 

 

N is number of holes that   is not zero. For multiply connected sections, the constant values of the stress 

function on each of boundaries are determined by requiring that the displacement w be single-valued. Considering 

the multiply connected ,the displacement will be single-valued if 
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 
1

, 0
s
dw x y ∮         

2

, 0
s

dw x y ∮         , 0
ks
dw x y ∮  (19) 

 

   
1 1 1 1

1
, ( )xz yz

s s s s

w w
dw x y dx dy dx dy xdy ydx

x y
  



  
      

  
∮ ∮ ∮ ∮                (20) 

 

Now xz yzdx dy ds    , where   is the resultant shear stress. Using Green’s theorem 

 

 
1 1 1

12 2    
s A A

x y
xdy ydx dxdy dxdy A

x y

  
     

  
∮ ∬ ∬                (21) 

 

where 1A  is the area enclosed by 1S . Combining these results, the single-valued condition (19) implies that 

 

1
12

s

ds
A





∮                (22) 

 

2
22

s

ds
A





∮                (23) 

 

The value of   on the inner boundary S must therefore be chosen so that (22) and (23) are satisfied. 

 

2
k

k
s

ds
A





∮                (24) 

 

where k is related to each surface that   is not zero(inner and outer boundary of shaft to state that is bounded by two 

layers). 

2.2 Piezoelectric layers  

In this part only one piezoelectric layer investigated, torsional problem provide form displacement and potential 

hypothesis [33,34,7] 

 

                              ,     ,u yz xz w x y x y                         (25) 

 

where Eq.(25) are the displacements in x, y  and z directions.    ,x y  is the torsional function and   is electric 

potential function. The strain-displacement and electric field-electric potential relationships give [10,11,12,13,17] 

 

0                      x y z xy xz yzy x
x y

 
       

   
         

    
               (26) 

 

                                                              0       x y zE E E
x y

 
 
 

    
 

               (27) 

 

  , , x y zE E E  are the components of electric field in Cartesian coordinate and because of   is a function of 

 ,x y , 0zE  and the partial differentiation is assumed in the radial direction( ,x yE E )That, , ,x y z    are the 

longitudinal strains, ,  , xy xz yz  
 

are the shearing strains,   , , x y zE E E  are the components of electric field.  

mechanical equilibrium and gauss equation in two dimension are [33,34,7] 
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0              0
yz yxz x

DD

x y x y

   
   

   
     in R             (28) 

 

,xz yz   are the shearing stresses,   ,x yD D  are the components of electric displacement. Here we have [10,11].  

 

0x y z xy           and   0zD   (29) 

 

where, , ,x y z   , are the normal stresses, and in Eq.(28) we have no body forces and body. If the no layer is not 

on the piezo layer have [7] 

 

0,                      0xz x yz y x x y yn n D n D n          on S (30) 

 

Assuming that the considered shaft is made of monoclinic piezoelectric material have [12,13,17] 

 

55 45 15 25xz xz yz x ys s g D g D            (31) 

 

45 44 14 24yz xz yz x ys s g D g D            (32) 

 

15 14 11 12x xz yz x yE g g D D
x


   


      


      (33) 

 

25 24 12 22y xz yz x yE g g D D
y


   


      


      (34) 

 

55 45 44, ,s s s  are the flexibility coefficients, 15 25 24  , , ,g g g  are the piezoelectric impermeability  coefficients and 

11 12 22, ,    are the dielectic impermeability coefficients. 

2.2.1 Prandtl’s stress function and electric displacement potential function formulation 

Let  ,x y   and  ,F F x y  be such functions whose second order mixed partial derivatives are the same 

according to young’s theorem, but they are otherwise arbitrary functions. The general solution of Eq.  (28) by these 

functions is presented as [7,40]: 

 
2 2 2 2

0                0 
yz yxz x

DD F F

x y x y x y x y x y x y

  
   

     
       

           
   

                                     
 

xz yz x y

F F
D D

y x y x

 
     

   
     

   
    

(35) 

 

 ,x y   is called the Prandtl’s stress function and  ,F F x y  is electric displacement potential function. 

From Eq. (28) we have [7] 

 

0          0
 

dy dx F dy F dx

y ds x ds y ds x ds

 
   
   

   
   

     on S    (36) 

 

     0          0
d dF

ds ds


      on  S    (37) 



                                                                                                                                                     M.R.Eslami et.al.                  154 
 

© 2022 IAU, Arak Branch 

 

It means that 

 

i constant     on    0iS i p          (38) 

 

iF F constant   on    0iS i p          (39) 

 

with regard to the stress function and electric displacement potential function, the value of   and F may be 

arbitrarily chosen only on one boundary, and commonly this values is taken as zero on the outer boundary, but in 

this paper it is much different and refer in the next part. 

 

0 0      and   0 0F F     on 0 S  (40) 

 

The combination of Eqs. (26) and (27) with Eqs. (31)-(34) and Eq.(35) gives 
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y
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


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  
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x y

 

 

  
  

  
  
  

  

24 14

25 15

F F
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x y

F F
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x y

  
  

 
  
  
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 (41) 
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 
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 

 
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  
  
  

  

22 12

12 11

F F

x y

F F

x y

 

 

  
  

 
  
  

  

 (42) 

 

The torsional function  ,x y   and the electric potential function  ,x y   are single valued functions 

so we have 

 

 
1

, 0
s
d x y ∮             

1

, 0
s
d x y ∮  (43) 

 

The upper integrals can be written as: 

 

1
1
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s
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1
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   
   

        
            

        
∮             (45) 

 

If cross-section has more than one hole, Eqs.(44) and (45) must satisfied for each hole 
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∮             (46) 
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∮             (47) 
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From Eqs.(41) and (42) with differentiating (41)1 with respect x and (41)2 with respect y  and combination the 

results, also with differentiating (42)1 with respect x and (42)2 with respect y and combination the results, we have 

compatibility relations 

 

44 45 24 14 45 55 25 15( ) 2
F F F F

s s g g s s g g
x x y x y y x y x y

             
          

          
  in  R          (48) 

 

 24 25 22 12 14 15 12 11 0
F F F F

g g g g
x x y x y y x y x y

   
   

            
           

            
  in  R          (49) 

2.2.2 Torsional rigidity 

The torsional rigidity of the piezoelectric beam is obtained from below equation [7] 

 

yz xz

R R

T x y x y dxdy
x y

 
  

  
     

  
∬ ∬  (50) 

 

By the using green’s theorem and boundary conditions for multiply connected cross-sections, it can be written 

 

 
R R R

x dxdy x dxdy dxdy
x x


 

 
  

 ∬ ∬ ∬ x
s

R

x n ds dxdy ∮ ∬  (51) 

 

 
R R R

y dxdy y dxdy dxdy
y y


 

 
  

 ∬ ∬ ∬ y
s

R

y n ds dxdy ∮ ∬  (52) 

 

1

2 (

N

i i
R

k

T dxdy A  



 ∬  (53) 

 

and torsional rigidity  defined as [41,7] 

 

1

2( )

N

i i
R

k

T
J dxdy A 




  ∬  (54) 

 

with multiplying Eq.(48) with   and Eq.(49) with F and using the green’s theorem and summing the results by 

getting integral have 

 

44 45 45 55

1
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2
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N
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k
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x x x y y x y y
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F F F F F F F F
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x x x y y x y y
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 

   
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
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    

       

        
    

        

        
     

        

∬ ∬

 (55) 

 

By the combination the Eq.(54) with Eq.(55),we have new formula for the torsional rigidity for simply connected 
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44 45 45 55

24 14 25 15
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F F F F F F F F
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       
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    

        

        
    

        

∬

 (56) 

 

The torque of electric displacement field is defined as [33,34,7] 

 

( )D y x

R R

F F
T xD yD x y dxdy

x y


 
    

 ∬ ∬  (57) 

 

 
R R R

F
x dxdy xF dxdy Fdxdy

x x

 
  

 ∬ ∬ ∬ x
s

R

xFn ds Fdxdy∮ ∬  (58) 

 

 
R R R

F
y dxdy yF dxdy Fdxdy

y y

 
  

 ∬ ∬ ∬ y
s

R

yFn ds Fdxdy∮ ∬  (59) 

 

1

2 ( )

N

D i i

kR

T Fdxdy F A



 ∬  (60) 

 

The electrical torsional rigidity DJ  defined as [33,34,7] 

 

1

2( )

N

D
D i i

kR

T
J Fdxdy F A




  ∬  (61) 

 

with multiplying Eq.(48) with F and Eq.(49) with   and using the green’s theorem and getting integral we have 
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
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    
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     

        

∬ ∬
 (62) 

 

By the combination the Eq.(61) with Eq.(62),we have new formula for the electrical torsional rigidity for simply 

connected 
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   

       

        
    

        

∬
 (63) 

 

Electrical boundary conditions if piezo layer be actuator is as follow [2] 

 

V   at 0 r r  (64) 

If piezo layer be sensor is as follow: 
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  Influence of actuator layer at 0 r r  (65) 

 

In addition, the electric potential, , at inner surface of the piezo is also zero [2]. 

 

 

 

 

 

 

 

 

Fig.2 

Geometry of Piezo-FGM. 

3    CONTINUITY CONDITIONS    

If we have 3 layers on together Eqs.(12) and (30)1 are much different(middle layer be FGM). conditions must ensure 

that (a) the shear stresses normal to the interface are the same in each region; and (b) the axial displacements are 

compatible on the interface. Here also a additional condition is examined. The first of these can be expressed as 

[1,42] 

 

 
xz x yz y xz x yz y

Inner Piezo FGM
n n n n             (66) 

 

 
xz x yz y xz x yz y

FGM Outer Piezo
n n n n             (67) 
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d d
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 



   
   

   
 (68) 

 

 

1
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d d
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 



   
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   
 (69) 

 

On the external and internal boundaries we have 

 

0xz x yz yn n    (70) 

 

0
dx dy

x ds y ds

  
 

 
 (71) 

 

0
d

ds


  (72) 

 
0   (73) 

 

The second condition is satisfied [42] 

 

 

1
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 


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 (74) 
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 



 
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 
 (75) 
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        
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 (77) 

 

If the material piezoelectric be Transversely Isotropic have 
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 (80) 

 

and now an additional condition would be required (in this state assumed  material piezoelectric be Transversely 

Isotropic)[42] 
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 
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4    EXAMPLE  

Fig.3 shows the considered FGM hollow circular cross-section which is bounded by 2 concentric hollow piezo 

layers. 
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Fig.3 

Hollow circular cross-section piezo-FGM under the Torsion. 
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By substitution Prandtl’s stress function and electric displacement potential function into Eq.(48) and Eq.(49) 

have 
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(96) 

     2 2 2 2 2 22
3 4 2 5 6 12 2xz k exp k R x y y k exp k R x y y

y


  


       
  (97) 

     2 2 2 2 2 22
3 4 2 5 6 12 2yz k exp k R x y x k exp k R x y x

x


  


       


 

(98) 
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(99) 

Eqs.(46) and (47),(24) are satisfied. 
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In this example torsional  function and electric potential are zero. Continuously Conditions 
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Also relations (74),(75) and (81),(82) are satisfied. 

5    RESULTS AND DISCUSSION   

Consider a FGM hollow circular cross-section which is bounded by 2 concentric hollow piezo layers, where 

0 0.68 R m  , 1  0.64 R m  , 2  0.44 R m  , 3  0.40 R m . The shear modulus of FGM  is a exponential function which 

is 25 GPa and 21 Gpa at inner and outer surfaces  respectively. Properties of piezoelectric materials is base on the 

Table 1. Outer piezo layer and inner piezo layer are PZT-5H and PZT-4 respectively. The piezo-FGM panel is under 

the 43 10 .N m  Torque.  

 
Table 1 
Material properties of piezoelectric.  

Property 12 2
44 10 )( /s m N

 

12 2
55 10 )( /s m N

 

3 2
15 10 )( /g m C

 

3 2
24 10 )( /g m C

 

  6
11 10 /m F    6

22 10   /m F  

PZT-5H 43.5 43.5 29 29 66.4 66.4 

PZT-4 17.9 17.9 40 40   76.87   76.87 

 

Figs. 4,5,6 and 8,9,10 shows shear stress and  electric displacement for outer piezo layer respectively, Figs. 7 and 

11 shows shear stress contours for Fig. 6 and electric displacement contours for Fig. 10 respectively. Figs. 12,13,14 

shows shear stress for FGM layer, Fig. 15 shows shear stress contours for Fig. 14. Figs. 16,17,18 and 20,21,22 

shows shears stress and  electric displacement for inner piezo layer respectively, Figs. 19 and 23 shows shear stress 

contours for Fig. 18 and electric displacement contours for Fig. 22 respectively. Dotted lines indicate positive values 

of  shear stress. Electric potential function and torsional function due to symmetry are zero. Fig. 24 shows electric 

potential and torsional function form for elliptical cross-section and Fig. 25 shows electric potential and torsional 

function contours for Fig. 24, solid lines correspond to negative values of w, indicating that points move in of the 

section in the negative z direction, while dotted lines indicate positive values of displacement, along each of the 

coordinate axes the torsional function is zero. Figs. 26,27,28 Shows the effect of the piezoelectric layers on the 

mechanical behavior of FGM depends on its thickness and with the increases the piezoelectric layers thickness 

decrease the stresses in the FGM layer,and if thickness of piezo be small(for example thickness of piezo be 1/100 

FGM)it effect can be neglected. From the compare Figs. 4,5,6 with 8,9,10 or 16,17,18 with 20,21,22 respectively 

have this result that Increasing the shear stress  causes to increase the electric displacement. In Figs. 12-14, if 

material was homogeneous instead of non-homogeneous, increase the maximum value of stress, so from the study 

we have, functionally graded materials causes to decrease the maximum value of stresses in comparison with the 

homogeneous material. base on the Membrane Analogy for homogeneous state the maximum shear stress appears 

always to occur on the boundary where the largest slope of the membrane occurs [2], as we came to the conclusion 

that where the maximum shear stress, electric displacement is the maximum, as from compare Figs. 6,7 with 10,11 

or 18,19 with 22,23. This result is confirmed. As mentioned maximum shear stress occurs at the outer boundary for 

all homogeneous cylinders with any cross-section geometry (like Figs. 4-6 and 16-18) but in non-homogeneous, 

maximum shear stress can occur at the anywhere in cross-section. Influence of electrical torsional torque is very low 
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in compare torsional torque. For circular cross-sections relations 64,65 have no apply (because electric potential 

function is zero). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Shear stress for outer piezo layer. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Shear stress for outer piezo layer. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Shear stress for outer piezo layer. 
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Fig.7 

Shear stress contours for Fig. 6. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Electric displacement for outer piezo layer. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Electric displacement for outer piezo layer. 

  

 

 

 

 

 

 

 

Fig.10 

Electric displacement for outer piezo layer. 
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Fig.11 

Electric displacement contours for Fig. 10.  

  

 

 

 

 

 

 

 

 

 

Fig.12 

Shear stress for FGM  layer. 

  

 

 

 

 

 

 

 

Fig.13 

Shear stress for FGM  layer. 

  

 

 

 

 

 

 

 

 

Fig.14 

Shear stress for FGM  layer. 
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Fig.15 

Shear stress contours for Fig.14. 

  

 

 

 

 

 

 

 

Fig.16 

Shear stress for inner piezo layer. 

  

 

 

 

 

 

 

 

 

 

 

Fig.17 

Shear stress for inner piezo layer.  

  

 

 

 

 

 

 

 

Fig.18 

Shear stress for inner piezo layer. 
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Fig.19 

Shear stress contours for Fig. 18. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.20 

Electric displacement for inner piezo layer. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.21 

Electric displacement for inner piezo layer. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.22 

Electric displacement for inner piezo layer. 
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Fig.23 

Electric displacement contours for Fig. 22. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.24 

Electric potential and torsional function  form  for elliptical 

cross-section.  

  

 

 

 

 

 

 

 

 

 

Fig.25 

Electric potential and torsional function contours  for Fig. 24. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.26 

Influence of piezoelectric  layers  thickness  on mechanical 

behavior of FGM.  
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Fig.27 

Influence of piezoelectric  layers  thickness  on mechanical 

behavior of FGM.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.28 

Influence of piezoelectric  layers  thickness  on mechanical 

behavior of FGM.  

6    CONCLUSION 

In this paper  elasticity solution for an FGM cylindrical shaft with piezoelectric layers in the  framework of the 

linear theory elasticity and piezoelectricity under the torsion  by using Prandtl’s formulation is presented. The 

numerical results have revealed that the material inhomogeneity and piezoelectric layers have an important effect on 

the elastic fields in the cylindrical panel. The paper generalizes the known elastic solution of torsional problem 

developed by Prandtl to homogeneous piezoelectric and  elastic, isotropic non-homogeneous shafts. the continuity 

and compatibility conditions are satisfied. This method is Exact analytical  solution for solid circular cross-section 

but this method is approximate solution for thin-walled cross-sections.one  example with solution illustrate the 

applications of  presented  formulations. 
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