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 ABSTRACT 

 Since the temperature or stress distribution in some advanced machines 

such as modern aerospace shuttles and craft develops in two or three 

directions, the need for a new type of FGMs is felt whose properties vary 

in two or three directions. On the other hand, dynamic buckling behavior 

of structures is a complicated phenomenon which should be investigated 

through the response of equations of motion. In this paper, dynamic 

response of beams composed of bi-directional functionally graded 

materials (BDFGMs) rested on visco-Pasternak foundation under 

periodic axial force is investigated. Material properties of BDFGMs 

beam vary continuously in both the thickness and longitudinal directions 

based on the two types of analytical functions (e.g. exponential and 

power law distributions). Hamilton's principle is employed to derive the 

equations of motion of BDFGMs beam according to the Euler-Bernoulli 

and Timoshenko beam theories. Then, the generalized differential 

quadrature (GDQ) method in conjunction with the Bolotin method is 

used to solve the differential equations of motion under different 

boundary conditions. It is observed that a good agreement between the 

present work and the literature result. Various parametric investigations 

are performed for the effects of the gradient index, length-to-thickness 

ratio and viscoelastic foundation coefficients on the dynamic stability 

region of BDFGMs beam. The results show that the influence of gradient 

index of material properties along the thickness direction is greater than 

gradient index along the longitudinal direction on the dynamic stability 

of BDFGMs beam for both exponential and power law distributions. 

                                          © 2021 IAU, Arak Branch. All rights reserved. 

 Keywords : Dynamic stability; BDFGM; Visco-Pasternak foundation; 

Periodic axial force. 

1    INTRODUCTION 

 YNAMIC buckling behavior of structures is a complicated phenomenon which should be investigated 

______ 
*
Corresponding author. Tel.: +98 3155912450; Fax.: +98 3155912424. 

E-mail address: a.ghorban.arani@gmail.com (A.A. Ghorbanpour Arani) 

D 



270                                A.A. Ghorbanpour Arani et.al. 

 
 

© 2021 IAU, Arak Branch 

through the response of equations of motion. Selection of proper criterion is the most important factor in description 

of a dynamically buckled structure. On the other hand, when the structure is slender and lightweight, the need to 

study on the dynamic buckling problem would be necessary. At the first time, Bolotin [1] introduced dynamic 

stability in elastic systems. Also, Simitses [2, 3] presented a wealth review on the concept of dynamic buckling and 

its applications to solid structures. In recent years, different works are done in the field of dynamic stability and 

buckling of columns [4], beams [5-20], plates [21-23], shells [24-26] and etc. Iwatsubo et al. [4] solved the 

governing equations of motion for columns using Mathieu equations in conjunction with the Galerkin method and 

then, he determined the influences of internal and external damping on the regions of instability of the columns. 

Abbas and Thomas [5], Aristizabal-Ochoa [6], Briseghella et al. [7] and Ozturk and Sabuncu [8] employed finite 

element method (FEM) to investigate the dynamic stability of beams. The stability parameter of simply supported 

and clamped beams were calculated by Shastry and Rao [9] for different locations of two symmetrically placed 

intermediate supports. Li [10] developed a unified approach to analyze static and dynamic behavior of functionally 

graded material (FGM) beams of Euler-Bernoulli, Timoshenko and Rayleigh types. Ke and Wang [11] presented 

dynamic stability of microbeams made of FGMs based on the modified couple stress theory (MCST) and 

Timoshenko beam theory. They assumed that the material properties of FGM vary in the thickness direction of beam 

based on the Mori–Tanaka homogenization technique. Mohanty et al. [12] studied the static and dynamic behavior 

of FG ordinary beam and FG sandwich beam for pined-pined end condition. Based on the exponential and power 

law models which consider the variation of material properties through the thickness, they utilized first order shear 

deformation theory (FSDT) to model beam and used FEM for the analysis. Fu et al. [13] obtained the nonlinear 

governing equation for the FGM beam with two clamped ends and surface-bonded piezoelectric actuators by the 

Hamilton’s principle. Also, they studied the thermo-piezoelectric buckling, nonlinear free vibration and dynamic 

stability for this system, subjected to one-dimensional steady heat conduction in the thickness direction. Static and 

dynamic stability of a FG micro-beam based on MCST subjected to nonlinear electrostatic pressure and thermal 

changes regarding convection and radiation were investigated by Zamanzadeh et al. [14]. They obtained the static 

pull-in voltages in presence of temperature changes using step-by-step linearization method (SSLM) and the 

dynamic pull-in voltages by adapting Runge–Kutta approach. Ke et al. [15] presented dynamic stability analysis of 

FG nanocomposite beams reinforced by FG single-walled carbon nanotubes (SWCNTs) based on Timoshenko beam 

theory. They employed the rule of mixture to estimate the material properties of FG carbon nanotube-reinforced 

composites. Ghorbanpour Arani et al. [16] investigated dynamic stability of double-walled boron nitride nanotube 

conveying viscous fluid using Timoshenko beam theory based on nonlocal piezo elasticity theory. They applied the 

mechanical harmonic excitation and thermal loadings on double-walled boron nitride nanotube with zero electrical 

boundary condition and derived the governing equations with regard to von Kármán geometric nonlinearity. The 

nonlinear dynamic buckling and imperfection sensitivity of the FGM Timoshenko beam under sudden uniform 

temperature rise were presented by Ghiasian et al. [17]. They employed the Budiansky–Roth criterion to distinguish 

the unbounded motion type of dynamic buckling and observed that no dynamic buckling occurs based on it for 

beams with stable post-buckling equilibrium path. Xu et al. [18] developed the random factor method for the 

stochastic dynamic characteristics analysis of beams that are made of FGM with random constituent material 

properties. They assumed that the effective material properties of FGM beams vary continuously through the 

thickness or axial directions according to the power law distribution. Shegokara and Lal [19] studied the dynamic 

instability response of un-damped elastically supported piezoelectric FG beams subjected to in-plane static and 

dynamic periodic thermo-mechanical loadings with uncertain system properties. They derived the nonlinear 

governing equations based on higher order shear deformation beam theory (HSDT) with von-Karman strain 

kinematics. Recently, Saffari et al. [20] investigated dynamic stability of FG nanobeam under axial and thermal 

loadings using nonlocal Timoshenko beam theory. Also, they considered surface stress effects according to Gurtin-

Murdoch continuum theory. In 1984 during a space vehicle project, some Japanese material scientists presented the 

concept of FGMs. FGMs are made of two (or more) different materials which their properties such as mechanical 

strength, thermal conductivity and electrical conductivity vary continuously in a desired direction from point to 

point. It is the one of the most important advantages of FGMs against the classical laminated composites. 

Nowadays, the use of FGMs [27-32], composites [33-35] and sandwich structures [36-42] in many applications of 

engineering are developed such as aircrafts, space vehicles, defense industries, electronics and biomedical sectors 

due to their superior mechanical and thermal properties. It is seen from the literature survey that there are many 

worthwhile works in the case of conventional FG structures whose material properties vary in only one direction. 

Since the temperature or stress distribution in some advanced machines such as modern aerospace shuttles and craft 

develops in two or three directions, the need for a new type of FGMs is felt whose properties vary in two or three 

directions. Therefore, the number of researches about structures consist of BDFGMs is still very limited. On the 
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other hand, there are no significant researches about the dynamic stability of beams composed of bi-directional 

functionally graded materials (BDFGMs) in above works.  

In this article, the dynamic stability of BDFGMs beam rested on visco-Pasternak foundation under periodic axial 

force is studied. Material properties of BDFGMs beam vary continuously in both axial and thickness directions 

according to the exponential and power law distributions. By considering the Euler-Bernoulli and Timoshenko beam 

theories, the equations of motion of present system are obtained based on the Hamilton's principle and solved 

numerically by the generalized differential quadrature (GDQ) method and the Bolotin method under different 

boundary conditions. 

2    BI-DIRECTIONAL DUNCTIONALLY GRADED MATERIAL (BDFGM) 

As shown in Fig. 1, consider a BDFGM beam with length L, width b and thickness h which is rested on visco-

Pasternak foundation includes springs (
w

K ), dampers (
d

C ) and shear layer (
G

K ). Also, the beam is exposed to a 

periodic axial force F(t). It should be noted that the origin of the coordinate system is chosen at the midpoint of the 

beam. 

 

 

 

 

 

Fig.1 

Geometry of a BDFGM beam rested on visco-Pasternak 

foundation subjected to a periodic axial force F(t). 

2.1 Power law distribution 

In this paper, it is assumed the beam is made of four different materials, and thus, the effective material properties in 

points Pm1, Pm2, Pc1 and Pc2, are specified in Fig. 1. Also, Young’s modulus E, shear modulus G, and mass density 

  (except for Poisson’s ratio  ) vary in both the thickness and longitudinal directions for BDFGM beam. 

Therefore, the effective material properties of BDFGM beam can be obtained by applying the rule of mixture as 

follows [43]: 

 

  1 1 2 2 1 1 2 2, ,c c c c m m m mP x z V P V P V P V P     (1) 

 

where V is the volume fraction of materials. Based on the power law distribution, the volume fractions can be 

defined as: 
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where 
x

n and 
z

n  are the gradient indexes which dictate the material variation profile through in x and z directions, 

respectively. Substituting Eq. (2) into Eq. (1), the effective material properties can be found by: 
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2.2 Exponential distribution 

Now, consider that the effective material properties of BDFGMs beam obey an exponential distribution through the 

thickness and length of the beam as following form [44]: 
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It should be noted that by setting 0
x y

n n  , the beam becomes homogeneous in both exponential and power 

law distributions. 

3    GOVERNING EQUATIONS OF MOTION   

Based on Timoshenko beam theory, the displacement field of BDFGMs beam can be given by: 
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In which, u and w represent the axial and transverse displacements of the point on the x-axis, respectively, and   

is the rotation of the cross section about the y- axis. 

The kinematic relations for Timoshenko beam can be expressed as follows: 
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where 
xx  is normal strain and 

xz is the shear strain. Thus, the stress-strain relations according to the Hook’s law 

can be written as: 
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where xx  and xz  are the normal and shear stresses, respectively. Also, 
1 ( , )

( , )
2 1

E x z
G x z





. In addition, k is 

shear correction factor and equal to 
5 5

6 6








 for Timoshenko beam. 

Based on the Hamilton’s principle, which states that the motion of an elastic structure during the time interval 

1 2t t t   is such that the time integral of the total dynamics potential is extremum: 

 

 
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t
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t
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In which, U, T and Wext are the strain energy, kinetic energy and work done by external forces, respectively. The 

virtual strain energy can be calculated as: 
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    ,ij ij xx xx xz xzU d d      
 

       
(9) 

 

where   is the volume of beam. Substituting Eqs. (6) and (7) into Eq. (9) yields: 
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where subscript TBT refers to Timoshenko beam theory. Also, N, M and Q represent the axial force, bending 

moment and shear force, respectively. Generally, this term can be obtained from: 
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The kinetic energy for a beam can be written as: 
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By substituting Eq. (5) into Eq. (12), for Timoshenko beam, the virtual kinetic energy can be expressed as 

follows: 
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where 

 

  
2 2

2

0,1,2

2 2

, 1, , .

h b

h b

I x z z z dydz

 

    (14) 

 

The external work variation done by visco-Pasternak foundation [45] and periodic axial forces [46] can be given 

by: 
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where 
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In which,   and   are static and dynamic load factors, respectively, and   is parametric resonance. By 

Substituting Eqs. (10), (13) and (15) into Eq. (8) and putting the coefficients of u , w  and   to zero, the 

equations of motion can be determined as follows: 
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Moreover, the appropriate boundary conditions given by Eq. (8) can be written as: 
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Substituting Eq. (7) into Eq. (11), the normal force-strain, the bending moment-strain and the shear force-strain 

relations based on Timoshenko beam theory can be given by: 
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The equations of motion of BDFGMs beam in terms of the displacements can be derived by substituting for N, 

M and Q from Eq. (19) into Eq. (17) as follows: 
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Also, the appropriate boundary conditions in terms of the displacements can be given by: 
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In order to derive the equations of motion based on the Euler–Bernoulli beam theory, the displacement field at 

any point of the beam can be defined as: 
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The only nonzero strain and stress are: 
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For this case, the strain energy and kinetic energy can be written as: 
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where subscript EBT refers to Euler–Bernoulli beam theory. Using the Euler–Bernoulli beam theory, the equations 

of motion and boundary conditions of BDFGMs beam can be obtained by substituting Eqs. (15), (25) and (26) into 

Eq. (8) and setting the coefficients of u  and w  to zero as follows: 

 
2

0 12 2

3

,EBTN u
I I

x t

w

xt

 
 

  




 (27a) 

 
42 2 2 3

0 1 22 2 2 2 22
( ) ,EBT

f

M w w u
F F t I I I

x x t t t

w

x x





   
   

   


 
 (27b) 

 

Clamped 
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0 ,, 0
w

u w
x




   (28a) 

 

Simple 

 

0 ,, 0EBTu w M    (28b) 

 

Free 

 

0 0,( ), EBT

EBT EBT

M w
N M

x
F

x
t

 
   

 
 (28c) 

 

Substituting Eq. (24) into Eq. (11), the normal force-strain and the bending moment-strain relations based on the 

Euler–Bernoulli beam theory can be expressed as following form: 

 

0 1

2

2
,EBT

u
N A A

x

w

x




 


  (29a) 

 
2

21 2 ,EBT

u
M A A

x

w

x





   (29b) 

 

By substituting Eq. (29) into Eq. (27), the equations of motion and boundary conditions in terms of the 

displacements can be obtained as: 

 
2 2

0 1

0 1 0 12

3 2

2 2

3

3 2
,

dA dAu u u
A A I I

dx x dxx t

w w w

x x t x

  
   



  

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 (30a) 
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    
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 (30b) 

 

Clamped 
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u w
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


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Free 
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4    SOLUTION METHOD  

In order to solve the governing differential Eqs. (30) and the associated boundary conditions (31), the GDQ method 

[47, 48] is employed to determine the dynamic stability characteristics of BDFGMs beam. According to these 

methods, the partial derivative of a function with respect to spatial variables at a given discrete point is evaluated as: 

 

   ( )

1

, , ( ), ( ), ( ) ,
i

r N
r

ij j i j i j ir x x
j

u w A u x w x x
x

 








  (32) 

 

where N is the number of total discrete grid points along the x- axis and ( )r

ijA  are the weighting coefficients 

associated with the rth order of derivative. Based on the Lagrangian polynomial interpolation, the weighting 

coefficients for the first derivative (i.e., r = 1) can be approximated by: 
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 


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

  
 

 



    for , 1,2,...,i j N  (33) 

 

Similarly, higher order of derivative can be calculated as: 

 

( 1) (1) ( )

1

, 1,2,...,
N

r r

ij ik kj

k

A A A for i j N



      (34) 

 

On the other hand, the differential quadrature solutions usually deliver more accurate results with nonuniformly 

spaced sampling. A well accepted kind of sampling points can be obtained by the Chebyshev–Gauss–Lobatto 

normalized distribution equation: 

 

1 1
1 cos 1,2,...,

2 1
i

i
x for i N

N


   
    

  
    (35) 

 

By inserting Eq. (32) into Eqs. (21, 22 and 30, 31) and implementing the GDQ method, a set of discretized 

governing equations and the boundary conditions can be found in the matrix form as follows: 

 

              0 ,PM X C X K P t K X        (36) 

 

In which M, C, K and 
PK  represent the mass, damping, stiffness and geometrical stiffness matrices, 

respectively. Also, X is the displacement vector ( , ,X u w ). In 1964, Bolotin [1] suggested a method in order to 

determine the dynamic instability region. He indicates that the first instability region is wider than other regions and 

the structural damping becomes neutralized in higher regions. Based on this method, the displacement vector can be 

expressed in the Fourier series with the period 2T as following form: 

 

1,3,5,...

sin cos ,
2 2

k k

k

k t k t
X a b





  
  

 
     (37) 

 

where ka  and kb  are unknown constants. By introducing Eq. (37) into Eq. (36) and setting the coefficients of each 

sine and cosine as well as the sum of the constant terms to zero, yield: 

 

         
2

0.
2 2 4

cr P cr PK P K P K C M
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
 

        (38) 
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Eq. (38) can be solved based on the eigenvalue problems, and the dynamic instability regions will obtain by 

plotting the variation of   with respect to  . 

5    NUMERICAL RESULTS AND DISCUSSION   

In this section, the influences of various parameters such as the gradient index of exponential and power law 

distributions, length-to-thickness ratio, different boundary conditions and viscoelastic foundation coefficients on the 

dynamic stability region of beam are discussed in details. Silicon (Si3N4), zirconia (ZrO2), stainless steel (SUS304) 

and titanium (Ti-6Al-4V) with the material properties at room temperature given in Ref. [49, 50] are employed as 

ceramic1, ceramic2, metal1 and metal2, respectively. Also, In order to obtain the results of this research, other 

parameters are selected as follows: 

 

2 ,L m / 0.04,h L  2,x zn n  0.3,  4 310 / ,wK N m
310 / ,GK N m 350 / ,dC Ns m 0.2    

 

In addition, CC boundary condition is considered for BDFGMs beam except for the cases to be mentioned. 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

Fig.2 

The convergence of grid points of the GDQ method for a) CF, b) SS, c) SC, d) CC boundary conditions. 
 

Fig. 2 indicates the convergence of grid points of the GDQ method used to evaluate the stability of the BDFGMs 

beam with arbitrary boundary conditions. The results show that the convergence occurs quickly for different 

boundary conditions and thus, N=11 selected to obtain the numerical results. This pattern of convergence of the 

numerical technique reflects its efficiency and reliability. 

By converging the grid points in N=11, validation and convergence of the derived formulation must be checked 

now. For this purpose, in Table 1, the fundamental frequency parameters of BDFGMs beam with SS boundary 

conditions are compared with Ref. [51] where a finite element formulation based on Timoshenko beam theory was 

utilized. As can be seen, very good agreement between the results of present paper with Ref. [51]. 
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Table 1 

Comparison of fundamental frequency parameter (  2 / /Al AlL h E   ) of BDFGMs beam with SS boundary conditions. 

nz Source 

nx 

0 
1

3
 

1

2
 

5

6
 1 

4

3
 

3

2
 2 

0 
Present 3.3032 3.7383 3.9127 4.1986 4.3171 4.5167 4.6012 4.8079 

Ref. [51] 3.3018 3.7429 3.9148 4.1968 4.3139 4.5118 4.5956 4.8005 

1

3
 

Present 3.2189 3.5518 3.6791 3.8759 3.9534 4.0792 4.1307 4.2526 

Ref. [51] 3.1542 3.5050 3.6305 3.8252 3.9022 4.0277 4.0792 4.2009 

1

2
 

Present 3.1997 3.4978 3.6099 3.7797 3.8455 3.9511 3.9939 4.0943 

Ref. [51] 3.1068 3.4258 3.5397 3.7087 3.7745 3.8805 3.9236 4.0245 

5

6
 

Present 3.1570 3.4080 3.4984 3.6308 3.6810 3.7601 3.7918 3.8655 

Ref. [51] 3.0504 3.3296 3.4206 3.5548 3.6059 3.6869 3.7194 3.7947 

1 
Present 3.1366 3.3720 3.4542 3.5730 3.6179 3.6881 3.7161 3.7811 

Ref. [51] 3.0359 3.2984 3.3819 3.5035 3.5495 3.6219 3.6508 3.7177 

 

Based on Timoshenko and Euler-Bernoulli beam theories, the dynamic stability regions of BDFGMs beam for 

various boundary conditions are demonstrated in Fig. 3. As it can be seen from this figure, CC and CF boundary 

conditions have the highest and lowest parametric resonance. Also, the dynamic instability region for CC boundary 

condition is higher than that for other boundary conditions. Such trend is expected due to the higher local flexural 

rigidity and stability of clamped edge in comparison to, in order, simply supported and free edges. In addition, the 

results obtained by Timoshenko and Euler-Bernoulli beam theories are very close to each other, especially for thin 

beam. In the other words, the obtained results by Timoshenko and Euler-Bernoulli beam theories have small 

difference. The Euler-Bernoulli beam theory have good accuracy for slender or thin beam ( / 0.1h l  ) and 

Timoshenko beam theory can be used for both thin and thick ( / 0.1h l  ) beam. The dynamic stability regions of 

BDFGMs beam for various static load factor are shown in Fig. 4. It can be observed that by increasing static load 

factor, the dynamic instability region shifts to the left and increase. This is expected as the increase of   means the 

increase of the time independent component of the axial force which reduces the effective stiffness of the beam. In 

addition, the parametric resonance obtained by Timoshenko beam theory is lower than Euler-Bernoulli beam theory 

but the area of dynamic instability regions of two theories are very close to each other. 

 

 
(a) 

  

 
(b) 

Fig.3 

Effects of various boundary conditions on the dynamic stability of BDFGMs beam a) power law distribution, b) exponential 

distribution. 
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(a) 

  

 
(b) 

Fig.4 

Effects of static load factor on the dynamic stability of BDFGMs beam a) Power law distribution, b) Exponential distribution. 
 

Fig. 5 indicates the dynamic stability of BDFGMs beam for different gradient indexes through in x direction. 

According to this figure for both power law and exponential distributions, the parametric resonance increases with 

increasing of nx and will be approximately constant for 3xn  . Fig. 6 illustrates the dynamic stability of BDFGMs 

beam for different gradient indexes through in z direction. It can be found that by increasing nz, the instability region 

decreases and moves to the side of smaller parametric resonance. Moreover, the influence of nz is greater than nx on 

the dynamic stability of present system by comparing Fig. 5 and Fig. 6. 

 

 
(a) 

  

 
(b) 

Fig.5 

Effects of gradient index through in x direction (nx) on the dynamic stability of BDFGMs beam a) Power law distribution, b) 

Exponential distribution. 
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(a) 

  

 
(b) 

Fig.6 

Effects of gradient index through in z direction (nz) on the dynamic stability of BDFGMs beam a) Power law distribution, b) 

Exponential distribution. 

 

The dynamic stability regions of BDFGMs beam for different thickness-to-length ratio are depicted in Fig. 7. It 

is obvious that by increasing thickness-to-length ratio, the system becomes more stable and thus, parametric 

resonance increases and shifts to the right side of figure. 

 

 
(a) 

  

 
(b) 

Fig.7 

Effects of thickness-to-length ratio on the dynamic stability of BDFGMs beam a) Power law distribution, b) Exponential 

distribution. 
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Fig. 8 shows the effect of various foundation models on parametric resonance of BDFGMs beam. Four cases are 

considered to study the effect of foundation models, namely, case 1 (without foundation: 0,wK  0, 0G dK C  ), case 

2 (Winkler foundation: 
350 / , 0, 0w G dK MN m K C   ), case 3 (Pasternak foundation: 

350 / ,wK MN m 10 / , 0G dK MN m C  ) 

and case 4 (visco-Pasternak foundation: 
350 / ,wK MN m 310 / , 10 /G dK MN m C KNs m  ). By increasing Winkler and 

shear layer parameters, stiffness of system increases and thus, parametric resonance increases and the dynamic 

instability region shifts to the right. Moreover, variations of shear layer parameter have more influence than Winkler 

parameter on the displacement of dynamic stability regions. Also, it is evident that the dynamic instability region of 

BDFGMs beam reduces by increasing damping parameter. Generally, it can be observed that by adding the effects 

of elastic substrate to the system, parametric resonance increases and the dynamic instability region shifts to the 

right. As can be seen, the dynamic instability region of the Pasternak model due to consider the effects of normal 

stresses and the transverse shear deformation is higher than that of Winkler or visco-Pasternak one. Generally, 

putting BDFGMs beam in an elastic substrate leads to increase the stability and stiffness of system. 

 

 
(a) 

  

 
(b) 

Fig.8 

Effects of various foundation models on the dynamic stability of BDFGMs beam a) Power law distribution, b) Exponential 

distribution. 

6    CONCLUSIONS 

This paper studied the dynamic stability analysis of BDFGMs beams rested on visco-Pasternak foundation under 

periodic axial force. Two types of analytical functions include exponential and power law distributions considered to 

model the material properties of BDFGMs beam. The governing equations obtained by utilizing the Hamilton's 

principle according to the Euler-Bernoulli and Timoshenko beam theories and solved by GDQ method in 

conjunction with the Bolotin method. The results indicated that: 

 The parametric resonance obtained by Timoshenko beam theory is lower than Euler-Bernoulli beam theory 

but the area of dynamic instability regions of two theories are very close to each other. 

 The influence of gradient index of material properties along the thickness direction is greater than gradient 

index along the longitudinal direction on the dynamic stability of BDFGMs beam for both exponential and 

power law distributions. 
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 Considering exponential law model in order to determine the material properties of BDFGMs beam causes 

to obtain the larger parametric resonance in comparison with power law model. 

 Putting BDFGMs beam in an elastic substrate makes the system more stable and stiffer. 

 The dynamic instability region moves to the smaller parametric resonance by increasing static load factor. 
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