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 ABSTRACT 

 In this paper the nano conical shell model is developed based on 

modified strain gradient theory. The governing equations of the 

nano truncated conical shell are derived using the FSDT, and the 

size parameters through modified strain gradient theory have been 

taken into account. Hamilton’s principle is used to obtain the 

governing equations, and the shell’s equations of motion are 

derived with partial differentials along with the classical and non-

classical boundary conditions. Galerkin’s method and the 

Generalized Differential Quadrature (GDQ) approach are applied 

to obtain the linear free vibrations of the carbon nano cone (CNC). 

The CNC is studied with simply supported boundary condition. 

The results of the new model are compared with those of the 

classical and couple stress theories, which point to the conclusion 

that the classical and couple stress models are special cases of 

modified strain gradient theory. Results also reveal that rigidity of 

the nano truncated conical shell in the strain gradient theory is 

greater than that in the modified couple stress and classical theories 

respectively, which leads to an increase in dimensionless natural 

frequency ratio. Moreover, the study investigates the effect of the 

size parameters on nano shell vibration for different lengths and 

vertex angles.          © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: GDQ method; Galerkin’s method; Strain gradient 

theory; Carbon nano cone (CNC). 

1    INTRODUCTION 

 HE use of thin walled conical shells is of much importance in a number of different branches of engineering. 

In aerospace engineering, such structures are used for aircraft and satellites. In ocean engineering, they are used 

for submarines, torpedoes, ballistic missiles, and offshore drilling rigs, while in civil engineering conical shells are 

used in containment vessels in tanks. Therefore, the vibration characteristics of conical shells must be studied for 
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safety and stability reasons. Intense dependency of material elastic constants on structural dimension at the 

micro/nano-scale has been indicated by experimental research. The stiffness and resistance of the material increases 

by size effect, which is size reduction as a result of a scale down in structure dimensions. Although the focus of the 

study of nano shells is on nano dimensions, a precise anticipation of structural behavior is not feasible by classical 

theory. Since considering the small-scale size effects are not possible by the classical theory of continuum, we 

should apply higher order continuum theories. These theories include nonlocal elasticity theories, the modified 

couple stress theory (MCST) and the strain gradient theory (SGT). Lam et al. [24] developed the modified strain 

gradient theory. This theory provides a more comprehensive reflection of the size effects on microstructures.  It 

encompasses three material length scale parameters corresponding to the dilatation gradient vector, the deviatory 

stretch gradient tensor and the curvature tensor. Field of non-classical shell has witnessed the accomplishment of 

numerous studies. In this paper, the first-order shear deformable model for the nano-conical shell is developed for 

the first time using the strain gradient theory. Firouz-Abadi et al. [1] have studied the free vibration of the cone shell 

investigated on the basis of non-local theory. Stability of the nano scale cone under external pressure and 

compressive axial force have been investigated by Firouz-Abadi et al. [2] based on non-local theory. Fotouhi et al 

.[3] also investigated the free vibration of the nano-cone shell in an elastic substrate based on non-local theory. 

Elastic foundation was simulated using Winkler and Pasternak models and motion equations based on the modal 

analysis technique and using the Galerkin’ method is obtained and solved. The results of this study emphasize the 

effects of geometry and scale parameter on the natural frequency of the nano-shell cone. Tadi Beni et al.[4] 

examined the torsional vibrations of the nano-cone shell based on the modified couple-stress theory. In this study, 

the results of the dimensionless frequency of the cone shell are compared with the couple-stress theory and the 

classical theory. It is clear that the rigidity of nano-shells in couple-stress model is more than classical theory. 

Zeighampour et al.[5] investigated shear deformable conical shell formulation in the framework of couple stress 

theory using the first-order shear deformable shell model, in order to obtain the governing equations, Hamilton’s 

principle is used and the equations of shell motion with partial differentials are derived along with classical and non-

classical boundary conditions. Finally, the free vibration of the single-walled carbon nano cone (SWCNC) is 

scrutinized through examples. The SWCNC is modeled as simply supported, and the Galerkin’ method is used to 

solve the vibration problem. Analysis of the thin conical shell was investigated by Zeighampour and Y. Tadi Beni 

[6] based on the modified couple stress theory using the classic shear deformable shell model, the equations of 

motion with partial differentials and classical and non-classical boundary conditions are derived using Hamilton’s 

principle. This non-classical formulation can incorporate size effects in nano/micro scales. The free vibrations of the 

single-walled carbon nano cone (SWCNC) are examined as a special case. The SWCNC is modeled as simply 

supported, and the Galerkin’ method is used to solve the vibrational problem. Results of the new formulation are 

compared to the classical theory. Sofiyev [7] investigated the FGM truncated conical shells in a nonlinear dynamics 

study,  taking into account the theory of large deformations and the nonlinear kinetic model of van Karman-Donald, 

using the principle of super positions and Galerkin and Hamilton’s method and Harmonic balance method, the 

problem of non-linear vibration of the FG truncated conical shell surrounded by an elastic medium is solved.Finally, 

the effect of shell structure on the nonlinear frequency parameter and the ratio of nonlinear frequency variations to 

linear frequency was studied.  

In another study, Sofiyev and Kuruoglu [8] examined the natural frequencies of orthotropic multilayer shells 

under different boundary conditions on the elastic substrate. Sofiyev and Kuruoglu [9] also investigated the 

nonlinear buckling of cone shells from elastic foundation. Sofiyev [10] in a study investigated the free vibration with 

a large domain of cone shells from composite orthotropic materials. The bifurcation and vibration responses of a 

composite truncated conical shell with embedded single-walled carbon nano tubes (SWCNTs) subjected to an 

external pressure and axial compression simultaneously was investigated by M. Mehri et al.[11]. The equations of 

motion are established using Green-Lagrange type nonlinear kinematics within the framework of Novozhilov 

nonlinear shell theory. Linear membrane pre buckling analysis is conducted to extract the pre buckling 

deformations. A semi-analytical solution on the basis of the trigonometric expansion through the circumferential 

direction along with the harmonic differential quadrature (HDQ) discretization in the meridional direction is 

developed. A series of comparison studies are carried out to assure the accuracy and the convergence of the HDQ 

method. The research indicates that the superb accuracy and efficiency of solutions with few grid points are 

attributed to the higher-order harmonic approximation function in the HDQ method. Ansari et al.[12] investigated 

the free vibration of carbon nano cones (CNCs) under different types of boundary conditions. The Donnell shell 

theory and nonlocal elasticity are used to derive the governing equations of motion. The analytical Galerkin’ method 

together with beam mode shapes as weighting functions are employed to solve the problem. Making use of the beam 

modal functions enables us to examine the role of boundary condition in the vibrational behavior of CNCs. 

Kamarian et al.[13]  investigated the free vibration analysis of Carbon Nano tube-Reinforced Composite (CNTRC) 
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conical shells is performed considering the agglomeration effect of Carbon Nano tubes (CNTs). The material 

properties of the nano composite conical shell are estimated employing the Eshelby-Mori-Tanaka approach based on 

an equivalent fiber assumption. The equations of motion are derived based on the First-order Shear Deformation 

Theory (FSDT). The Generalized Differential Quadrature (GDQ) technique is originally implemented to solve the 

governing equations of the problem and to obtain the natural frequencies of the structures, since it has proven to be 

an efficient and accurate numerical tool. A parametric study is herein developed to investigate the influence of some 

characteristic parameters on the vibrational behavior of the CNTRC conical shell, e.g. The CNTs volume fraction 

and agglomeration, or the boundary conditions and geometrical parameters like the thickness to radius ratio. The 

non-linear vibration of truncated conical shells made of functionally graded materials (FGMs) was investigated by 

Sofiyev et al. [14] by using the large deformation theory and von Karman–Donnell-type of kinematic non-linearity. 

The material properties of FGMs are assumed to vary continuously through the thickness of the shell. The 

fundamental relations, the non-linear motions and compatibility equations of the FGM truncated conical shell were 

derived, by using Superposition’ method, Galerkin’ method and Harmonic balance method. Tohidi et al. [15] 

investigated the forced vibration and nonlinear buckling of cylindrical shell nano shells under different underlying 

conditions. The vibratory behavior of cylindrical shells was investigated by Zeighampour et al.[16] based on the 

modified strain gradient theory. The governing equations are based on the vibration of Navier's procedure. Tadi Beni 

et al.[17] investigated the free vibrations of the shear modulator cylindrical shell have performed the shear 

deformation based on coupling-stress theory. Golami et al.[18] studied the vibration and buckling of the deformable 

circular cylindrical nano and micro circular shells based on the Mindelin strain theory with first-order theory. B. 

Zhang et al.[19] studied the free vibration analysis of four -unknown shear deformable functionally graded 

cylindrical micro shells based on the strain gradient elasticity theory . Bakhtiari et al.[20] investigated the 

formulation of nonlinear kinematics of shells in three different shell theories namely Donnell, Sanders and Nemeth 

including shear deformation for anisotropic materials.  

A finite element solution for the equilibrium equation of Sander’s improved first-approximation theory is 

developed and has been used to develop the nonlinear finite element amplitude equation of vibration of conical 

shells of Donnell, Sanders and Nemeth theories using generalized coordinates methods and Lagrange equations of 

motions. The amplitude equation of nonlinear vibration of conical shell has been solved for multiple cases of 

isotropic materials with neglecting the shear deformation. Tohidi et al.[[21] studied the dynamic stability of FG-

CNT-reinforced viscoelastic micro cylindrical shells resting on nonhomogeneous orthotropic viscoelastic medium 

subjected to harmonic temperature distribution and 2D magnetic field. Ghadiri et al.[22], studied the nonlinear 

bending vibration of a rotating Nano beam based on nonlocal Eringen’s theory using differential quadrature method. 

Malekzadeh et al.[23] investigated the nonlinear free flexural vibration of skew nano plates by considering the 

influences of free surface energy and size effect (small scale) simultaneously  based on classical plate theory (CPT) 

using Hamilton’s principle and Green’s strain tensor together with von Kármán. The solution algorithm is based on 

the transformation of the governing differential equation from the physical domain to a rectangular computational 

one, and discretization of the spatial derivatives by employing the differential quadrature method (DQM). 

2    PROBLEM DESCRIPTION  

Fig.1 shows the nano conical shell, where R(a), h and 2α are minimum radius, thickness and vertex angle, 

respectively. 
 

 

 

 

 

 

 

 

 

 

Fig.1 

Coordinates and displacements of nano cone shell. 

 

 



A.R. Sheykhi et.al.                                635 
 

© 2020 IAU, Arak Branch 

2.1 Displacement field in the nano cone shell 

Based on the first-order shear deformable shell model, displacement components of an arbitrary point can be written 

as follows (Reddy [25]): 
 

     
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, , , , , , , ,U x z t u x t z x t      (1) 
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In the above equations, 
0u  , 0v  and 

0w  stand for the displacement vector in the middle surface of the nano 

conical shell, and t represents time. In addition, ϕ and ψ are rotations around the x and θ axes so, the strain 

displacements for nano truncated conical shell are (Zeighampour [5]): 
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2.2 Governing motion equations 

In this section, the equations of motion are structured using the energy method and based on the Hamilton’ principle, 

which can be described as follows. 

 
2

1

( ) 0
t

t

T U W dt     (5) 

 

In above equation T represents the kinetic energy; U and V are the total potential energy and W is the external 
work. In this paper W is zero. In addition, δ specifies the variation operator. In accordance with strain gradient 

theory, potential strain energy is stored in structure; it can be obtained as follows (Lam et al. [24]; Zhang et al. [19]): 
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(1) (1)1
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In the above relation εij  ، γi ، ηijk
(1)

 and χij indicate the strain tensor, the dilatation gradient vector, the deviatory 

stretch gradient tensor and the symmetric rotation gradient tensor, respectively and are defined by the following 

relations 
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That ‘‘,’’, ui and δij specifies the partial derivative, displacement vector and the Kronecker delta respectively. The 

nonzero components of the dilatation gradient vector, the deviatory stretch gradient tensor and the symmetric 

rotation gradient tensor can be calculated. Besides, the classical stress tensor
ij

 and the higher-order stresses 

containing Pi, 
(1)

ijk
 and 

s

ij
m can be given by the following relations (Zhang et al. [19]) 
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In which l0, l1 and l2 are the material length scale parameters; λ and μ define the bulk and shear modulus which 

can be denoted in terms of Young’s modulus (E) and Poisson’s ratio (υ) as: 
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The kinetic energy of the nano cone can be calculated using the following equation: 
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By substituting Eqs. (7) to (14) into Eq. (6), and substituting Eqs. (6) and (17) into Eq (5), the equations of 

motion of the nano truncated cone can be expressed as: 
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(22) 

 

In above equations, I0; I1 and I2 are the moment inertia and are defined as: 
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

   (23) 

 

According to the strain gradient theory, the classical and high-tension derivations are as follows:  

 

ij ijN dz       ,   .ij ijM zdz     ,    i iY P dz     
,    .i iT P zdz    

 

ijk ijkY dz    , 
 

.zijk ijkT dz      
 , 

   ij ijY m dz   
,  

  
.ij ijT m zdz   

(24) 

 

The following relation also expresses the classical and non-classical boundary conditions: 

 

2 2 2

5 5 5

x xx xxx xxx xzz

x

Y YY Y Y Y
N

x x x x x x

 
  

     
   




0 0,

1 1
0

5 5

x x x zzx

x x x L

Y Y Y Y

x x x x

    

 

 
    

 




 (25a) 

 

or 
   

0 0 0,
0

x x x L
u

 
  (25b) 

 

 

2 2

5 5
x xxx x

Y x sin Y x sin Y x sin


   

 0 0

2 1 1
0

5 5 5
xzz x zzx x x ,x LY x sin Y x sin Y x sin

 
      




 (26a) 

 

or   

 



640                                    Investigation of Strain Gradient Theory for the Analysis …. 
 

© 2020 IAU, Arak Branch 

0

0 0, 0x x x L

u

x
  






 
 
 

 (26b) 

 

1
2

2 2 2

xxxx xz

x

Y cos YY cos Y
N

x sin x sin x x

 





 


   






8 4
2

15 15

xx x x x x x z
Y Y Y Y cos Y

x x x x sin x

    




 
    

 
 

0 0,

1 1 2
0

5 15 15

z z zz

x x x L

Y Y Y

x x x

  

 

  
   

  




 

(27a) 

or 

 

0 0 0, 0x x x Lv     (27b) 

 

1 8 4

2 15 15
xz xx x x

Y x sin Y x sin Y x sin
 

   

 0 0

0
2

5 15 15

zz z z

x x ,x L

Y Y Y
x sin x sin x sin         




 (28a) 

 

   or  

  

0

0 0, 0x x x L

v

x
  





 (28b) 

 


1 1 8 16

5 15 15 15

4 2 2

15 15 3

z x xzzz x xzz zxz xxz

xz

Y Y cos Y cosY Y cos

x x x sin x sin x sin

Y cos Y cos Y
N

x sin x sin x

    
  

  

 

 


    

 
    

2 2

2 2

2

5

1 1 1 2 2

2 2 3 3 3 15

xxx x x z z z zxzx
Y cos

x sin

Y cos Y Y cos Y Y YYcos

x sin x sin x sin x x x x

      




 

  


 
      

 
 

   
2 2

1

2

x x
Y Y

xsin x sin

 

 


 


0 0,

4 8
0

15 15

xzx xxz

x x x L

Y Y

x x  

 
  

 




 

(29a) 

                                                                                                                                                             

or  
 

 

0 00 ,
0

x x x L
w

 
  (29b) 

 
2

1 1 8 4

2 2 15 15
x x xxz xzx

x x cos
Y Y Y x sin Y x sin

sin sin
 




 
    





1

2 2
zzz xx

x x sin
Y Y

sin





   

 
2

15
z

x sin Y


    
0 0

1 1
0

15 5
z zzz x x ,x Lx sin Y x sin Y

 
     




 

(30a) 

 

or  

 

0

0 0, 0x x x L

w

x
  





 (30b) 

 


 

 

 

2

2 2

2 2

xx x xxx

xx z

Y cosY T T
M Y

x xsin sin




 


    



2 16 2 8
2

5 15 5 15

x xxxx

xxz xzx

T TT
Y Y

x x x

 


    
 
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Y Y

x x x

   

  
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    
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zxz zzx
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Y Y

x x


 

 
    

 




 

(31a) 



A.R. Sheykhi et.al.                                641 
 

© 2020 IAU, Arak Branch 

or  
 

 

0 0,
0

x x x L


 
  (31b) 

 

     
2 2

5 5
x xxx xzz

x sin T x sin T x sin T   

 0 0

1 1 1
0

5 5 5
x x zzx x x ,x Lx sin T x sin T x sin T

  
      




 (32a) 

 

or   

 

0 0,
0

x x x L
x




 





 (32b) 

 


4 1 4

2
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x x z z xx x z

x

T T T T cos
M

x x x x sin

   







  
   

  

1 1 1 4
2

2 2 2 15

x x xx xxxz

xx zz

T T TT
Y Y

x x x x

  


     
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0 0

1 2 1
2 0

2 15 15

zz

x z

x x ,x L

T cos T T T
Y

x sin x x x

   





  

 
     

 




 

(33a) 

 

or  

 

0 0,
0

x x x L


 
  (33b) 

 

1 8 4

2 15 15
xz xx x x

T x sin T x sin T x sin
 

   

 0 0

1 2 1
0

5 15 15
zz z z x x ,x LT x sin T x sin T x sin

  
      




 (34a) 

 

or  

  

0 0, 0x x L
x


 





 (34b) 

 

In this section, linear free vibrations of the simply supported conical shell are considered as special cases for the 

evaluation of formulation. The essential boundary conditions are as follows (Zeighampour [5]): 

 
v0=0,   w0=0,   ψ=0,  at   x0 , x0+L (35) 

 

It could also be argued that, considering freedom from shear force and bending moment in the classic case and 

from stresses in the non-classical cases, the natural boundary conditions are expressed as (Zeighampour [5]): 

 

(25a)=0 , (28a)=0 , (30a)=0 , (31a)=0 and (34a)=0  at  x0 , x0+L   (36) 

3    SOLUTION METHOD  

3.1 GDQ method 

The GDQ method defines that the derivatives of a sufficiently smooth function with respect to a co-ordinate 

direction at a discrete grid point can be approximated by a weighted linear sum of functional values of all the 

discrete mesh points in that co-ordinate direction. It is based on the analyses of a higher order polynomial 

approximation in linear vector space to reach at the weighting coefficient required by the method. The mathematical 

expression of this basic theorem is expressed as follows: 
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     
1

,
i

N
m m

ik k

k

x xf x A f x


   (37) 

 

where 
m

ik
A are the weighting coefficients, and the non-diagonal matrix of the first-order derivative weighted 

coefficient is calculated as follows: 

 

 

   

(1)

1, 1,

( )
, 1, 2, ...., N

( )

( ) , ( )
x x

i

k

i k k

N N

i i k k

ik

i k

x
A i k and i k

x x x

x x x x x x
 

      

  


   




   

 (38) 

 

The second-order and higher-order of the non-diagonal matrices weighted coefficients are obtained as follows: 

 

   
 1

1 1( )
where. , 2 1

, 1, 2,...,

r

rr ik

ik ii ik x

i k

x
for and

A
A r A A r N

x x

i k N k i




    



 

 
 
   (39) 

 

The diagonal terms of the weighting matrix will be obtained as follows: 

 

 ( )

1,

1 1,
x

r

N
r

ii i

i

A A m N


  

      (40) 

 

The choice of precision points in convergence and the accuracy of this method is very effective. We choose to 

use the cosine grid point distribution in our computations: 

 

     1 cos 1 / 1 / 2i Ni Lx     (41) 

3.2 Displacement 

For free vibration of nano conical shell the displacements are assumed to be in the following forms: (Ghadiri and 

Shafiei [22]) 

 

     

     

     

     

     

0

0

( , , ) cos cos ,

( , , ) cos cos ,

( , , ) cos cos ,

( , , ) cos cos ,

( , , ) cos cos ,

o
u x t u x n t

v x t v x n t

w x t w x n t

x t x n t

x t x n t

  

  

  

    

    











 (42) 

 

After replacing the displacements (42) in the equations of motion (18) to (22) and boundary conditions, the 

equations of motion can be expressed as matrices: 

 

     2 0K M d   (43) 

 

That: 
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 
T

d u v w       (44) 

 
In the above equation, Ω represents the natural frequency of the nano cone. The natural frequency of the system 

is obtained through the solution of the eigenvalue problem in Eq. (43). 

3.3 Implementation of boundary condition 

By applying the substitution boundary condition in governing equations (SBCGE), divide the matrix equation into 

two parts: Internal points  iU  and boundary points bU . In the governing equations, we present the weighted 

coefficients of the interior points with  iiA  and the weighted coefficients of the boundary points with  ibA . 

 

         2

ii i ib b iA U A U U   (45) 

 

We also divide the other weighting coefficients into two parts  biA , which include the weighting coefficients of 

the interior points in the boundary condition, and  bbA , which relate to the weighting coefficients of the boundary 

points in the boundary condition. 

 

            

      

       

1

1*

* 2 * 2

0

0

bb b bi i b bb bi i

ii ib bb bi

i i

A U A U U A A U

A A A A A

A U U A I U 





    

    

         

 (46) 

4    NUMERICAL SOLUTION  

In this section, the geometrical and mechanical properties of the structure are expressed to obtain the numerical 

results and examine the effect of various parameters on the behavior of the system. The thickness and Ra/h of nano 

cone are considered 0.34 nm and 25 respectively. The structure is composed of isotropic aluminum with the Young’s 
modulus of E=70 GPa, Poisson’s ratio of υ=0.3 and ρ=2710 Kg/m

3.
        

4.1 Validation 

To validate the results of present study, the results of this study are compared with the other available literature. For 
this purpose, in the table one frequency parameter λ of truncated macro conical shell with different the semi vertex 

angles is compared. In this Comparison, The thickness and Ra/h of cone are considered 4 mm and 100 respectively. 
The structure is composed of isotropic aluminum with the Young’s modulus of E=70 GPa, Poisson’s ratio of υ=0.3 

and ρ=2710 Kg/m
3
.  

In the second table Compared of frequency parameter λ of nano truncated conical shell with different the semi 

vertex angles. In this Comparison The thickness and Ra/h of nano cone are considered 0.34 nm and 25 respectively. 
The structure is composed of isotropic aluminum with the Young’s modulus of E=70 GPa, Poisson’s ratio of υ=0.3 

and ρ=2710 Kg/m
3
. The results of this study have a good agreement. 

4.2 Parametric study 

In this paper, the free vibration of conical nano-shell with simply support using GDQ method is investigated for the 

first time by using first order shear theory and modified strain gradient theory which includes the main equations of 

motion and classical and non-classical boundary conditions. The results of the analysis are compared with the 

classical and coupled modified stress theories. Also, the effect of size on length and radius in dimensionless 

frequency is investigated. 



644                                    Investigation of Strain Gradient Theory for the Analysis …. 
 

© 2020 IAU, Arak Branch 

Table 1 

A comparison on the non-dimensional natural frequencies (
 21

a

v
R

E





  ) of isotropic truncated conical shell (Lsinα /R= 

0.25, R/h = 100, h = 4 mm, υ= 0.3, E = 70 GPa, ρ= 2710 Kg/m3). 

Modes     

5 4 3 2   

0.5537 0.6356 0.7285 0.7909 Mehri et al [11] 
30   

0.5520 0.6346 0.7279 0.7906 Present study 

0.6312 0.6668 0.6974 0.6878 Mehri et al[11] 
45   

0.6285 0.6651 0.6965 0.6873 Present study 

0.6088 0.6060 0.6004 0.5721 Mehri et al [11] 
60   

0.6045 0.6031 0.5985 0.5711 Present study 

 

In Fig. 2 it can be seen that the effect of variation of the dimensionless coefficient Ra/L on the ratio Ω in the 

different vertex angles. This comparison is done for m=1, n=2, l/h=1, L/Ra=5. The material length scale parameter 

for strain gradient theory is assumed l0=l1=l2=l. By increasing the ratio Ra/h in the gradient strain theory, decrease 
the dimensionless frequency Ω. The lowest values are for the 60 degree angle. 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Variations of dimensionless frequency Ω for dimensionless 

ratio Ra/h in different vertex angles. 
 

         

In Fig. 3 the comparison ratio of material length scale parameter per minimum radius on dimensionless 

frequency in the different vertex angles is investigated. This comparison is done for m=1,n=3,Ra/h=20,L/h=1.It can 

be seen that by increasing the ratio of l / Ra decrease dimensionless frequency ratio results. The lowest values are for 

the 60 degree angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Effect of different L/Ra on dimensionless frequency Ω. 

 

In Fig. 4 it can be seen that the effect of variation of the dimensionless coefficient l/h on the ratio Ω in the 

different vertex angles. This comparison is done for m=1, n=1, Ra/h=25, L/Ra=1. The material length scale 

parameter for strain gradient theory is assume l0=l1=l2=l. By increasing ratio l/h in various vertex angles, the 

dimensionless Ω Increases almost linearly. The lowest values are for the 60 degree angle. 
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Fig.4 

Effect of different L/h on dimensionless frequency Ω. 

 

 

In Figs. 5, 6 and 7 it can be seen that the effect of variation of the dimensionless coefficient L/Ra on the 

dimensionless frequency Ω in the three theories of the classic, couple stress and strain gradient is compared. This 

comparison is done for m=1, n=5, Ra/h=25. The material length scale parameter for strain gradient theory is assume 

l0=l1=l2=l and for couple stress l2=l. For both above non classical theory h/l=1. By increasing the rate L/Ra decrease 

the ratio of Ω. These changes in the strain gradient theory occur at a higher dimensionless frequency Ω . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Effect of different L/Ra on dimensionless frequency Ω in 

three theory. 

  

 

 

 

 

 

 

 

 

 

 
Fig.6 

Effect of different L/Ra on dimensionless frequency Ω in 

three theory. 

  

 

 

 

 

 

 

 

 

 

 

 
Fig.7 

Effect of different L/Ra on dimensionless frequency Ω in 

three theory. 
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Below is the shape of the conical nano shell modes for the states n =1, m =1 and n =1, m =2 and n =1, m =3 

n is the half circumfrential wave number and m is the longitudinal wave number. 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Non-dimensional mode shapes for n=1, m=1. 

  

  
  

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Non-dimensional mode shapes for n=1, m=2. 
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Fig.10 

Non-dimensional mode shapes for n=1, m=3. 

 

5    CONCLUSIONS 

Free linear vibration analysis of nano truncated conical shell using the strain gradient theory was carried out. The 

simply support was considered .Using first-order shear shell and MSGT theories and Hamilton’s principle, the 

motion equations were derived. The DQM and Galerkin’ methods were employed to solve the problem. The 

influence of three theories on frequency was investigated. Also the Effect of different ratios l / h, l/Ra and Ra / h of 

different vertexes on dimensionless frequency ratio were investigated and finally   the variations of dimensionless 

frequency on different rate l/Ra for strain gradient theory and  modified couple stress and classical theories were 

investigated and compared together. Results also reveal that rigidity of the nano truncated conical shell in the strain 

gradient theory is greater than that in the modified couple stress and classical theories respectively, which leads to an 

increase in dimensionless natural frequency ratio.Following Results were obtained: 

 As can be seen by increasing dimensionless rate L/ Ra ‚ decrease the dimensionless frequency Ω and 

rigidity in the strain gradient theory is greater than MCST and classic theories. Thats means the rigidity of 

the nano truncated conical shell in the strain gradient theory is greater than that in the modified couple 

stress and classical theories respectively. 

 Increasing the l/h ratio in each vertex angle‚ increase dimensionless frequency linearly for m=1 and n=1. 

 By increasing the Ra/h in each vertex angle ‚ decreasing the dimensionless frequency rapidly. 

As can be seen by increasing L/ Ra, dimensionless frequency ratio decrease rapidly. The lowest values are for the 

60 degree angle.  
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