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ABSTRACT
The paper is concerned with the study of magneto-
thermoelastic interactions in three dimensional thermoelastic
medium under the purview of three-phase-lag model of
generalized thermoelasticity. The medium under consideration
is assumed to be homogeneous orthotropic medium. The
fundamental equations of the three-dimensional problem of
generalized thermoelasticity are obtained as a vector-matrix
differential equation form by employing normal mode analysis
which is then solved by eigenvalue approach. Stresses and
displacements are presented graphically for different
thermoelastic models.
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1 INTRODUCTION

ENERALIZED thermoelasticity theory is developed to overcome the paradox of infinite speed of thermal

wave inherent in the classical coupled thermoelasticity theory. Lord and Shulman [1] formulated the
generalized thermoelasticity theory by introducing one relaxation time which is known as LS model. Green and
Lindsay [2] introduced GL theory by incorporating two relaxation times. Later Green and Naghdi [3, 4, 5]
developed three models for generalized thermoelasticity of homogeneous isotropic materials, which are labeled as
G-N models I, II, III. Detailed information regarding these theories is available in [6, 7, 8]. Tzou [9] introduced two-
phase lags to both the heat flux vector and the temperature gradient and considered as constitutive equation to
describe the lagging behavior in the heat conduction in solids. Roy Choudhuri [10] has established a generalized
mathematical model of a coupled thermoelasticity theory that includes three-phase-lags in the heat flux vector, the
temperature gradient and in the thermal displacement gradient. The interplay of the Maxwell electromagnetic filed
with the motion of deformable solids is largely being undertaken by many investigators [11-14] owing to the
possibility of its application to geophysical problems and certain topics in optics and acoustics. El-Karamany and
Ezzat [15] considered thermal shock problem in generalized thermoelasticity under four theories. Sherief et al. [16]
discussed stochastic thermal shock in generalized thermoelasticity and Ezzat and Youssef [17] investigated three
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dimensional thermal shock problem of generalized thermoelastic half-space. Kalkal and Deswal [18] considered the
effects of phase lags on three dimensional wave propagation with temperature dependent properties. El-Karamany
and Ezzat [19] discussed three-phase-lag linear micro polar thermoelasticity theory. Ezzat et al. [20] proposed
fractional order theory in thermoelastic solid with three-phase-lag heat transfer. Said and Othman [21] discussed the
Effects of gravitational and hydrostatic initial stress on a two-temperature fiber-reinforced thermoelastic medium for
three-phase-lag model. Lofty [22] studied two temperature generalized magneto-thermoelastic interactions in an
elastic medium under three theories. Sarkar and Lahiri [23] considered electro magneto-thermoelastic interactions in
an orthotropic slab with two thermal relaxation times. Das and Bhakta [24] proposed eigen function expansion
method to the solution of simultancous equations and its application in mechanics. Ezzat [25] considered the
relaxation effects of the volume properties of electrically conducting viscoelastic material. Ezzat [26] discussed
fundamental solution in generalized magneto-thermoelasticity with two relaxation times for perfect conductor
cylindrical region. Ezzat et al. [27] studied electro-thermoelasticity theory with memory-dependent heat transfer.

The present article deals with a three dimensional electro-magneto-thermoelastic coupled problem for
homogeneous orthotropic thermally and electrically conducting solid whose surface is subjected to time dependent
thermal shock. The normal mode analysis and eigenvalue approach is used to solve the problem. Numerical results
for the displacements and thermal stress distribution are presented graphically for dual-phase lag (DPL) model,
Green-Naghdi type-III model (GN-III) and three-phase-lag model (TPL).

2 FORMULATION OF THE PROBLEM

The homogeneous orthotropic medium is supposed to be initially unstrained and unstressed. The basic equations of
linear magneto-thermoelasticity with three-phase-lag model are as follows:
The equations of motion

<y

Oy.j +(

xB) = pii, (1)

i

Maxwell’s equations (in absence of the displacement current and charge density)

curl H=J, curl E :—%—f,div B =0, B =,uel—7 2)

The modified Ohm’s law is

jzd{ﬁ+(%x§ﬂ 3)

where H =the total magnetic field vector= (H H L H, ) , B= magnetic inductance vector = (BX ,B,,B. ) ,
E =electric field vector = (EX E,LE, ), M, = magnetic permeability of the medium, o = electric conductivity of
the medium, p = constant mass density, o, =component of stress tensor, i,j =x,y,z,u = displacement vector
= (u RURY ) If we take H = (HX H, ,O) , we get from Egs. (2) and (3), after neglecting second order differentiation
of H and H )

_OH, _OE, _aEy 4

“Ta Ty & “)
OH, OE._ OE

_/«le Yy — x z (5)

ot oz Ox
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Egs. (4) and (5) can be linearized by setting H, =H,+h, and H, 6 =H,+h, where h and h denote change in
the basic magnetic field H , (called the perturbed field) and then neglecting product terms with 4 _and#h, .
After linearization, Egs. (4) and (5) with the help of (2) become

ov ou ow

hY —Ho(g—a'Fa—ZJ (6)
ou oOv oOw

b=t G- ™

O =Cn +6125+013 :BlT
ou ov ow
g, _Clza_x"'czzg"'czsa_z :Bz
ou ov ow
O.. 013_+023_+633__ﬁ3T
Ox oy oz o
ov ow ®)
yz Cus oz +g
ow  Ou
O, =Css §+a—z

ou oOv
O-xy =Cq a+a—x

where ¢, are elastic constants of the orthotropic material and £, 3,, f; are thermal moduli along x,y and z axis

respectively.
From Egs. (1), (6), (7) and (8), after neglecting higher order of small quantities, we get
o D T @+(C +c )i+(c +c )ﬂ—ﬂ ZEazw S G Gy Fu_ aZWJ
Mo oy ezt VP oy VU aver 70 "\axor ax? ot ooy vt dvor ©)
or
_IB]a
¢ o ¢ ﬂﬂ* o +(cp, +e )ﬂ+(0 +c )ﬂ—,u 2[62W —ﬂ+ﬂ—& Ou 62W]
Coax? oyt Mazr VP T%argy VP Maypar T axar ax? oax? oyt oyt dyez
or (10)
_ﬂzg
c @+C yl+c @+(c +C.)ﬂ+(c i )ﬂ_‘_u 2[621,1/_ o . ou + o B o +62Wj
Taxr Moy Par VP Vaer P Woyer 0\ @& axdz oz dyor oz ozl (11
or .
_ﬁzg_pw

where T is the temperature above reference temperature.
Equation of three-phase-lag model in orthotropic medium is
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27 2 27 2 2
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ot ) ox ot ) oy ot ) oz ot ) ox ot ) oy
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(12)

where T, is the reference temperature, K, (i =1,2,3)is the thermal conductivity tensor, K, (i =1,2,3)are the
material constant characteristic of the theory, 7,,7, and 7, are the phase lags for heat flux vector, temperature

gradient and thermal displacement gradient respectively.
Maxwell’s electromagnetic stress tensor &, is given by

G, = H,h, +H b ~(H K5, ]

g

3 BOUNDARY CONDITIONS

We consider the case where the surface of the three dimensional orthotropic medium is subjected to a time
dependent thermal shock and the surface is traction free. Then we consider the case where the surface of medium is
rigidly fixed and a thermal shock is applied on it.

In order to determine the parameters, we need to consider the following boundary conditions atz =0

3.1 Case 1

Thermal boundary condition that the surface of the medium is subjected to a time dependent thermal shock
T(x,y,0,t) =F(t)H (a —|x |)H (b —|y |)

where H denotes Heaviside function.
Mechanical boundary condition that the surface to the medium is traction free

o, (x,y,0,0)+5, (x,y,0,t)=0, (x,y,0,t)+5, (x,y,0,t)=0,, (x,y,0,t )+, (x,y,0,6)=0

3.2 Case 2

Thermal boundary condition that the surface of the medium subjected to a time dependent thermal shock
T(x,y,0,t) =F(t)H (a —|x |)H (b —|y |)
Mechanical boundary condition that the surface of the medium is rigidly fixed

u(x,y,O,t)=v (x,y,O,t):w (x,y,O,t)=0

4 SOLUTION OF THE PROBLEM

We take the solutions of the Egs. (9)-(12) in the following form:

(u,v W ,T)(x,y,z,t):(u_,v_,vﬁ,f)(z )exp[i (kx +1ly —at)] (13)
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where k£ and / are wave number along x and y axis respectively and @ is angular frequency.

2—

CSSZZ_IIZ+[ik(C13 +055) H (k_l ]_+|: (k +l )+pa)2 _Cllkz_cé6lz:|1/7

(14)
s HE (62 +12)+ (c,y +eg )k |7 =ik BT =0
2
6442 +[zl(cz3+c44) i H; (k—l):'—+[,ue k +I) (clz+c66)kl}u_ as)
—[ i H (82 +12)+(epnl? ek *) = po® |7 =il BT =0
( +2 Hz)dz—ﬁ+[( + )k+ (k—l)] i’ [( +ey, )il =i p,H (k- l)]dv
Cy3 T LM, i) Cpy+Css )ik +ipu H e Coy TCy JU —LH 1T, 2 16

+|:pa) (Cssk +eyl )] 183

P

. T
(Ki7,-K,ito )‘; +T B0 +sz0ﬂlwu+le0ﬂza)v+[Kfllwk K gil’ o1, (KK + K1)+ pC0" [T=0 (17)

l1-iwz, . l-iwr,
) 2 .
o'z, . o’t’
l-iowr, -

where 7, =

l—za)rq—

T ,u,v and w must be bounded at infinity so as to satisfy the regularity condition at infinity. So we assume that
T ,u,v and w as well as their derivatives vanish at infinity.
Egs. (14)-(17) can now be written in the form of a vector matrix differential equation as follows:

av >

=AV 18
dz (18)
_ _ _ — T
where V' Jfﬁf,d—u,dl,dﬂ,d—T
dz dz dz dz
0 7
The matrix 4 is A S
P 0
where
A, 4, 0 A4, 0 0 4, 0 00 0O 1 0 0 0
ﬁ:Am 4, 0A64,Q=0 p 0,6:0000,f=0100
0 0 4, 0 A, Ay 0 Ay 00 00 001 0
Ay A, 0 4, 0 0 4, O 00 00 0 0 0 1
[c“k2+c6612—pwz—yL,H(f(k2+12)] (Cio +Coo )l + g, H (K> +17)
A = » As, = >
Css Css
ik B, ipH; (k _l)_ik (Cw +css) (Cl2 +066)k1 —HH; (kz +12)
A54 > A57 = > A61 = >
Css Css Cug
ek +enl? )+ Hy (k7 +17) = po’ LB i H (K —1)—(cy +ey, )il
62 c > 64 c > 67 — c >
44 44 44
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:(055k2+c4412)_pa)2 :_[iyeH(f(k—l)+ik(c|3+055)J ) :iyeH(f(k—l)—(czﬁcM)il
" Cy +20,H o cn +2uHy T c +20,Hy
. 2 . 2
A, = B; Ay, = ik T, 5, o = iloT,f, ,

(c33+2,ugH02)’ (K;rz —ia)rle)’ (K;rz—ia)rlK3)

(K ziok® +K il *o-z, (KK + K1)+ pC,0" | 0T, .

4 (K;rz—ir]a)K3) :(K;rz—irla)K3)

84 = > gy

5 SOLUTION OF THE VECTOR MATRIX DIFFERENTIAL EQUATION

As for the solution of the Eq. (18), we follow the method of eigenvalue approach as in Das and Bhakta [24],The

characteristic equation of the matrix 4 takes the form
A*~BA°+B,A*~B,A’-B, =0 (19)
where

B =AAg + A A + A Ass + A + A, + A + Ay,

B, =-AyAy, —AgAs;Ary — A Ay —ApA Ay + Ay A Ay, + A ArAg, — A Ay Ag, — A A A + A Ao,
A Ay +AgA, +AGAGA —AnAg — A Ag A —AgAg A + A Ag +Ag Ag +Ag A +Ag A,
+A84A67A76 +A84A57A75’

B, =—-A, A A, —Ag Ay A —Ag Ay A Asg —Ag Ay A Agg + Ag A A Asg + Ay A Ay + Agi A A Ao
_A82A64A73 _A82A51A64 +A82A54A61 _A82A51A67A78 +A82A57A61A78 _A82A57A64A75 +A82A54A75A67
+A75A52A64A87 7A75A62A54A87 +A78A87A51A62 7A78A52A61A67 +A76A61A54A87 7A76A87A51A64

+A51A62A73 7A52A61A73 +A84A62A73 +A84A51A62 +A51A84A73 +A84A51A67A76 7A84A52A61 7A52A67A75A84
_A84A57A61A76 +A84A57A75A62’

B4 :A73 {A51 (A62A84 _A64A82)_A52 (A61A84 _A64A81 )+A54 (A61A82 _A62A81 )}

The roots of the characteristic Eq. (19) which are also the eigenvalues of the matrix A are of the form
A=A, A=%4, A=%4, A=%4, (20)

The right and left eigenvectors X and ¥ of the matrix 4 corresponding to the eigenvalue A can be taken as
follows:

— T
X =[xl,xz,x3,x4,x5,x6,x7,x8] (21)
Y :[y15y25y35y4>y5’y6’y7’y8] (22)
where

x, == (A57A78 +A54)+&2 (AMA62 +AyA; —ApAg + A A Ay — A A Ay — A A A +A57A62A78)
+A, Ay Ay — A A Ay,

x, =-A* (A67A78 +A64)+ﬂ.2 (A64A73 +A AgA — Ay A Ay — A Ag A + A A A, + A Ay, —A61A54)
—AAgAg + A AGAs,,

Xy = _/1[/14’473 v (A51A7x +A62A78 _AmAm _A54A75)+(A51A62A7x _A51A64A76 +A61A54A76 _A52A61A78 +A52A54A75 _A54A62A75):|’
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X4 = —2°+ A" (ASI tAg +Ag + A5 A +A67A76)7ﬂ’2 (A5 dg + A5 Ay — A Ag + A Ay + A A Ay
_A52A75A67 +A57A62A75 _A57A61A76)+(A51A62A73 _A61A52A73 )a

Xs=Ax,, xy=Ax,, x,=Ax;, x;=Ax,
and

Vi =A = (A + Ay +Agy + A A + As A + A A )+ AP (A A A —AgpAg + AgAg Ay +Agn A,
+A Ay + Ay Ay —AsAgy Ay + A ArgAgy —AsAn A + A AGAs; +A A Agy —A A Ay )+ AA o5
(A52/167A84 —ApAy Ay —ApAsAgy +AGA Ay, + Ay A, A, —A82A67A54),

v, =A A, — A (A, A Ay + Ay Ag, + Ay Ay — A A Aoy — A Agy + As A Ag, — Ar Ay A + A A A
—AyAg A — A Ay Agy + A A Agy) + A(AAg Ay — Ay A Ay — A A Agy + Ay Ay Ag, +A A Ay,
—ApAs Ay, —Agp A Ay, + Ay A Asy),

Vs :A73[14A57 +A° (A52Al67 —A,Ay, —AA,, +A54A87)_(A52A67A84 —A,A Ay —AnAg Ay +AnA A,
+Ag, A Ag —ApAaAs)],

Vi= /15A54 -2 (_A78A57A84 +A78A54A87 +A62A54 +"454"473 _A52A64 _A76A57A64 ""’476"467"454)"'/1

(A78A52A67A84 — A A A Ay — A Ao Ag Ay + A Ao Ay A + A oA Ay —AA A qAsy —AoAgAn +AGA WA, ),
Vs = =2t (A62 A+ Ay + AgAq + A Ay )+/7’2(A62A73 +AgyAg + Ay Ay + Ay AgAs + A ApAsg
_A87A64A76 _A82A64 _A82A67A78)_A84A62A73 +A82A64A73’

Ve = At (A52 +A57A76)—/12 (A52A73 +A,Ag, Ay AG AL — A Ay — A Ay Ase + A A A —A87A54A76)
+A, A Agy — Ay A5 Aoy,

V.= 25A57 +A’ (A67A52 _A57A62 _A84A57 +A54A87 )_A(A52A67A64 _A52A64A87 _A62A57A84 +A62A54A87
+A82A57A64 _A82A67A54)7

Vg = At (A54 +A57A78)—12 (/;[5414173 +A Ay, —AgAsy T A5 AGA g —AAGA + A A A —A57A64A76)
+A54A62A 73 _AszA 64A73

62

For our further reference we shall use the following notations:

Xl :[X]/1=A1’ XZ:[XL:—/I,’

X7 = [X ]/1:/14 ? X8 = [X ]/1:—44

Xo=[X]_,, Xo=[X]_,» Xs=[X]_, . Xo=[x]

and

Y1=[Y]l:ﬂl,Y2=[YL:_/II,Y3=[Y] Y4:[Y] Y5=[Y] Y6:[Y]

Y7 :[Y ]/1:14 ’ YS = [Y ]/1:-/14

=2, 2==2y =1y’ 2=-1y

Assuming the regularity condition at infinity, the solution of the Eq. (18) can be written as:
vV =AX,exp (7212 )+A2X4e:xp (7/122 )+A3Xsexp (7/132 )+A4Xgexp (7/142 )

Now we get

4
’I(x:y;Z )t ) = ZAH[_/?': (A57A78 ""454)"'/1n2 (A54A62 +A54A73 _A52A64 +A54A67A76 _A52A67A78 _A57A64A76 +A57A62A78)

n=1

A5, Ay — A A, ] exp (_ﬂ’nz )

669

(23)

24

(25)
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4

V_(x ¥,z ’t) = ZAn [_/1: (A67A78 +A64)+/1;12(A64A73 +A5AGAg —AyAgA;s —AgAdgA, +A5A45A4, (26)
n=1

+A(>4A51 _A5|A54) _A73A5]A64 +A73A61A54] exp (_/1”2 )

4

W(x Y.zt ) = ZA”[—ﬂjA78 +2’3 (A51A78 +AgA . —Aydss —AsAss )_)“n(A51A62A7s —A5 Ay A s +Agd Az 7
n=l1

A A Az + A5 A A5 — A5 A Ays )] exp (_/?'NZ )

_ 4

T (x Y.zt ) = ZAn[_/Iné +i: (ASI +Ag+ A, +A54; +A67A76)_ﬂ’nz(A51A62 +A545—ApAdg +AnA, (28)
n=1

+AgAgAs — A dsAg + AgAdgds —AgAgAss) +AgAgAs —AgAgds ] exp (4,2 )

The stress components are obtained as:
S 4 2
O :{anikAn[_/ln (AgAn + A5, )+ 2 (A + Ay —Ad gy + AqdgArg —AgAgAr ~Ag Ay s + AgA oA )+ AgA Ay — Ay A oA ]

n=l

4

+c|zZﬂAn[_/1: (A67A78 +Aa4)+ﬂ':(A64A73 +A51A67A78 _A54A<>7A75 _A57A51A7s +A57A75A(>4 +A64A51 _AOIASA) _A73A5|Aa4 +A73A51A54]

=l
4
_an/lnAn[_/’LnsAn +/’L: (A51A78 +A62A78 _A54A75 _A54A75 )_A’n(ASIAéZAR _A51A54A75 +A51A54A75 _A52A51A7s +A52A<»1A75 _A54A62A75)]
n=1
4
_ﬂlen[_/l: +/‘L: (Asw +A62 +A73 +A57A75 +A<>7A7o)_/’ty;(A5|A(,z +A51A73 _AszAm +A<>2A73 +A5IA67A76 _A52A75A57 +A57A<>2A75 _A57A61A7e)
=l
+A5 Ay - AgAg Ay JYexp =4,z +i (kx +ly —ar )]
4
0. :{cllzikAn[_ﬂ': (A57A7s +A54)+inz (A54A62 +A54A73 _A52A64 +A54A67A76 _A52A57A7x _A57A64A76 +A57A62A78)+A52A64A73 _A54A62A73]
n=l
4
+023ZA”1'1[—),: (A67A78 7L’464)Jr}L:(AmAB +’451’467'473 7A54A67A75 7A57A61A78 +As7'475"1<>4 +A64A51 7A61A54) 7A73A51A64 +A73A61A54]
n=l
4
_633ZAM1”[_/1:A73 +2’n3 (A51A7s +A62A78 _AMA76 _A54A75)_/1n (A51A62A78A51A64A76 +A61A54A76 _A52A62A78 +A52A64A75 _A54A52A75)
n=l
4
_ﬁzzAn[_ﬂ: +/1: (ASI +Aez +A73 +A57A75 +A57A7s)_/1:(A51A52 +A51A73 _A52A61 +AszA73 +A51A57A7s _A52A75As7 +A57A52A75 _A57A61A76)
n=l
+A5 Ay —Ag gy Jhexp[ A,z +i (kx +ly —ot) |

4
O, :C44{ 721411}?! [7/1: (A67A78 +Aa4)+/1nz(‘464‘473 +A51A67A78 7A54A67A75 7A57A51A78 +A57A75A64
n=l

4
+A54A51 _A61A54) _A73A51A64 +A73A61A54] +2Anjl[—ijA78 +/13 (A51A78 +A62A78 _A64A76 _A54A75)

n=l1

A (A AgAsyy — A Ay + Ag A Asg — Ay A Asg + A5, A Ays — A5y A A5 )} exp I:_/lnz +i (kx +ly —aon ):I

614778

4
O, :Css{ ZikAn [_/1"5‘478 +/13 (A51A78 +A62A78 _A64A76 _A54A75 )_/In (ASIA62A78 _A51A64A76 +A61A54A76 _AszA A
n=l1

4
+A52A64A75 _A54A62A75)] _zj“nAn [_/l: (A57A78 +A54)+ﬂ'nz(A54A62 +A54A73 _A52A64 +A54A67A76 _A52A67A78

p

A A Ass + A A Asg) + AgA Ay, — A A AL T exp [—/1”2 +i (kx +ly —ax)]

0, =Celilf =2} (A Ay +As )+ A} (AyAgy + Ay Ay —Ap Ay + AL A A, —AGA Ay —AgA A, +AGA A L)
YA Ag A,y — Ay A Ay} +ik{ =2} (AgA g +Ag )+ A0 (Ag Ay +AgAgA s — Ay AgA s —AgAg A+ A A A,
+AgAs —AgAy,) —ApAg Ay, +AnAg A} exp| =4,z +i (kx +1y —at)]

The constants A, (n =1,2,3,4) can be obtained by using boundary conditions.
For case 1 we obtain the constants as follows:
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In which

D =M,[N,(PQ,-PQ,)-N,(PQO,-P.Q,)+N,(PQ,-P0O,)]
—-M,[N,(PQ,-PQ,)-N,(PQ,—P,0,)+N, (PO, —PQ,)]

+M [N, (PO, ~PQ,)~N,(PQ,~P0,)+N, (PO, ~P,0,)]

~M [N (PQ; —PQ,)~N,(PQ; —PQ,)+N,(PQ, - P,Q,)]

D, = F[N,(PQ,~P0,)~N,(PQ,~P0,)+N (PO, ~PQ,)]

D, = ~F[N,(PQ,~PQ,)~N,(PQ,~PO,)+N (PO, ~PQ,)]

D3 = E [Nl (P2Q4 _P4Q2)_N2 (P1Q4 _P4Q1 )+N4 (PlQZ _Ple ):'

D, = ~F[N,(PQ,~PQ,)~N,(PQ, ~PQO,)+N,(PQ, -P0,)]

M, ==+ 1) (A5 + A + Ay + A A s + A A )= A2 (A A, + A A,y — A Ag +An Ay,

+A51A67A76 _A52A75A67 +A57A62A75 _A57A61A76) +A51A62A73 _A61A52A73

N, =ik (cw + yeHOZ)[—/l: (Agdr + A5, )+ 2 (A + Ag Ay — A Ay + A A —AgA A — A A Ar + AgA Ao )+ AgA A — A A A ss]
+il (cB +yBH§)[—/1: (AgAs +Ag )+ AL (AgAyy + AgAgAr —AgAgArs —AgAgAs + Ag Ay + AgAg —AgAs,) — A A A + A AG A ]
—(033 + MH;)/L, [A A5+ 2 (AgAr + A — A=Ay dos )= 4, (A5 A gArds Ay A + AgAsAr — A A Ao+ AgA G A —A A oAy)]
-pM,

P,=c, ik [-2]A g+ (AgA s+ AgA s —AgAs —AgAss )= A, (A5 AgA g —AgAgAs + Ag A Ay — Ao A A
+A A Ass — A ApAss)] -A, -7} (A57A78 +A54)+/1,f(A54A62 + A Ay — A Ay + A A A — A A g A,
—AAyAs ¥ A AnAs) +AGAgA, — Ay AgAL 1}

0, =csf —iﬂ[—l: (A67A78 +A64)+/1"2(A64A73 + A AGA —AyAg A —AgAg A, +AA A,
+AgAs —AgAs,) —A A Ay + A A AT +il[—/1,fA78 +lj (A51A7s +A,A —AuAq —A54A75)

A (AgAG A, —AgA A+ AgA Ay — A Ag A + A A A — A A AN}

F(xv.)=F () (a=x)H (b =[y)exp[~i (kx +1 —ex)]

For case 2 we obtain the constants as follows:

>

A= A= A= =

In which
A=M,[L,(RS,—R,S;)—Ly(R,S,—R,S,)+L,(R,S,—R,S,)]
~M,[L,(R,S,-R,S;)-L,(RS,-R,S,)+L,(RS;—R,S,)]
+M [ L, (R,S,—R,S,)—L,(RS,-R,S,)+L,(RS,-R,S,)]
M ,[L,(R,S;—R,S,)—L,(RS,—R.S,)+Ly(R,S,—R,S,)]

A = F[L, (RS, ~R,S;)—L;(R,S,—R,S,)+L,(R,S,—RS,)]
A, =-F[L/(RS,-RS,)-Ly(RS,~R,S)+L,(RS;-RS,)]
Ay=F[L(RS,~RS,)~L,(RS,~R,S,)+L,(RS,—-R,S,)]
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A, =-F[L(R,S;—RS,)~L, (RS, —R,S,)+L; (RS, ~-R,S,)]

L, =2 (Agdpy + Ay, )+ A2 (A gy + Ay Ay — A A gy + Ay A Asg — Ay A Ay — A A Asg + A A oA
+A Ay A, —AyAnA,,

R, =2} (Ag Aoy + Ay )+ A2 AgAs + Ay A As — Ay A sy —Ag Ay Ag + A A Ay + Ay A,

Ay Ag,) — A Ay Ay, + A A A,

S, = Al Ao+ 2} (A Ay + AgAsg = AggArg —AyAss )= 2 (A A As — Ay Ay A + Ag Ay A — A A Ay

n

+4 52A 64A 75 -4 54A 62A 75)

6 SPECIAL CASES

We discuss some special cases for different values of the parameters considered in the problem.
The above discussion converts for orthotropic medium without magnetic effect when we put

H,=0.

This problem reduces for isotropic medium with three-phase-lag model, if we take

*

€ =Cp=Cy =A+2pcy=cy=cp, =Aecy=p f=p=p=0K =K,=K, =K’K1* ZK; =K3* =K
The study reduces to the case of orthotropic elasticity if we neglect the thermal parameters i.e.

IHI :ﬁz :ﬁs :O’Kl =K, =K, :O'K; :K; :K; =0

7 PARTICULAR CASES

From the general Egs. (9)-(12), we now classify the problem into three classes for our further reference and for our
comparison of numerical computations of the results:
i If qu =0,7,#0, 7, =0, K, =K, =K, =0, then the problem reduces to the problem of Lord-Shulman

(LS) model.
ii. If 7, =7, =7, =0then the problem reduces to the problem of Green-Naghdi theory type-III (GN-III).

iii. If K, =K, =K, =0then the problem reduces to the problem of dual-phase-lag model (DPL).

8 NUMERICAL RESULTS AND DISCUSSION

For numerical computations, we take the following values of the relevant parameters for cobalt material as follows:

¢, =3.071x10"Nm~, ¢, =1.650x10"' Nm~, ¢, =1.027x10"Nm ™, c,; =1.027x10" Nm~,

cy =3.071x10" Nm ™, ¢, =3.581x10"Nm~, c,, =1.510x10"Nm ™, B =7.04x10°Nm *deg ™',

B, =7.04x10°Nm “deg™, B, =6.90x10°Nm “deg™, K, =6Wm 'deg™, K, =6Wm 'deg™,
-1 -1

K3:69Wm'1deg", K]* :13.]Wm’1deg’1s’1‘, K; :15.4Wm’1deg’1s’1‘, K; :15.4Wm_1deg s,
p=714x10°Kgm™ C, =381.4JKg 'deg ™', T, =296K, 1, =2x107s, T, =1.5x107"s, T, =1x10"%s.

We consider F(t)=6,exp(—dt) where &, is a constant. Further for numerical purpose we take
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0,=10,d =0.La=b=1m,k =12, :1.2Hm_’,$0 :1.2Fm"1,H0 =10°Am .

In Figs. 1-12, displacements and stresses for traction free surface are presented. In Fig. 1, variation of u with
respect to z for three-phase-lag model is presented. It is observed that u decreases with the increase of magnetic
field. u is showing oscillatory behavior and converging towards zero with the increase of z.

4] Sr

og

\|

ost \ i

A
15 Fig.1

----- Ho=1.2:10° Variation of u with respect to z.

720 05 1 15 2 25 3 35 4

In Fig. 2 and 3, variation of v and w with respect to z for three-phase-lag model is presented. It is noticed that v

and w decrease with the increase of magnetic field. Displacements are showing oscillatory behavior and converging
towards zero with the increase of z.

L. VN ,'.’ ————— Hy=1x10%
2 4 Hg=1 1x10°
L Voo Hg=1.2x10% Fig.z
NS Hg=1.3x10% . . .
3 - . s . : Variation of v with respect to z.
o 0s 1 1.6 2 25 3 35 4

Fig.3
Variation of w with respect to z.

In Fig. 4, variation of o_ with respect to z for three-phase-lag model is presented. It is noticed that o decrease

with the increase of magnetic field. Stress is showing oscillatory behavior and converging towards zero with the
increase of z.
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Ho=1.1x10% |
Hy=1 2:105“
77777 Hy=1.3x10%
M|
y
. | Fig.4
Variation of o with respect to z.
A 05 1 15 2 25 3 35 4
z

increase of z.

In Fig. 5, variation of o with respect to z for three-phase-lag model is presented. It is noticed that o, increase
with the increase of magnetic field. Stress is showing oscillatory behavior and converging towards zero with the

: -
_____ - ‘3
H=1x10
i\ Hg=1.1x10°
P
8
/ Hg=1.2x10
[N o
6
1)

= L]
== Hg=1.3x10

Fig.5
[ 05 1I r :

L L
25

) Variation of o, with respect to z.

increase of z.

In Fig. 6, variation of o, with respect to z for three-phase-lag model is presented. It is noticed that o decrease
with the increase of magnetic field. Stress is showing oscillatory behavior and converging towards zero with the

-25
(]

05 1

Fig.6

Variation of o with respect to z.

In Figs. 7 and 8, variation of # and v with respect to z for GN-III and DPL model is presented. It is noticed that u
and v increase with the increase of magnetic field. Displacements for DPL model are greater than displacements for
GN-III model. Displacements are showing oscillatory behavior and converging towards zero with the increase of z.
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GN H =1x10%
GN Hy=ax10*

Fig.7
Comparison of u with respect to z for GN and DPL.

DPLH =1x10%
————— DPL.H =4x10%

2 25 3 35 4 45

G, Hg=1x10%
N G Hgmax10*
3 \

DPLH=1x10 | Fig.8
. ~om DPLHgmaxio Comparison of v with respect to z for GN and DPL.

In Fig. 9, variation of w with respect to z for GN-III and DPL model is presented. It is noticed that w increase
with the increase of magnetic field. Displacement for DPL model is greater than displacement for GN-III model.
Displacement is converging towards zero with the increase of z.

G Hy=dx10*

Fig.9
Comparison of w with respect to z for GN and DPL.

DPL Hy=1x10%
DPL Hy=4x10*

o 05 1 1.5 2 25 3 as 4 as

—r
GN Hy=1x10

In Fig.10, comparison of o_ with respect to z for GN-III and DPL model is presented. It is noticed that o

increase with the increase of magnetic field. Stress for DPL model is greater than stress for GN-III model. Stress is
oscillating and converging towards zero with the increase of z.

GM.H=1x10*

77777 GN.Hy=4x10* || Fig'lo
DPLHg=1x10% . .
..... oL H=ax10* Comparison of o, with respect to z for GN and DPL.
g os 1 s 2 25 3 s A 45 N
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In Fig. 11, comparison of o,

oscillating and converging towards zero with the increase of z.

with respect to z for GN-III and DPL model is presented. It is noticed that o,
increase with the increase of magnetic field. Stress for DPL model is greater than stress for GN-III model. Stress is

05

GN Hy=1x10*
15

GN Hy=ax10* || Fig-ll
DPL H,=1x10*

—— DF'L‘HU:m(‘H)'
25 35 .

45

Comparison of o with respect to z for GN and DPL.
In Fig. 12, comparison of o with respect to z for GN-III and DPL model is presented. It is noticed that o,
decrease with the increase of magnetic field. Stress for DPL model is greater than stress for GN-III model. Stress is
oscillating and converging towards zero with the increase of z.

GNH =1x10* ||

~- GN.Hg=4x10*

DPLHg=1x10*

-~ DPLH =4x10*
35 :

Fig.12

u is showing oscillatory behavior and converging towards zero with the increase of z.

Comparison of o, with respect to z for GN and DPL.
In Figs. 13-21, displacements and stresses for rigidly fixed surface are presented. In Fig. 13, variation of u with
respect to z for three-phase-lag model is presented. It is observed that u increases with the increase of magnetic field.

Fig.13

Comparison of u with respect to z.
converging towards zero with the increase of z.

In Fig.14 and 15, variation of v and w with respect to z for three-phase-lag model is presented. It is noticed that
© 2020 IAU, Arak Branch
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Fig.14
Comparison of v with respect to z.

- o
Hg=1.3x10
“o 05 1

3s a

Ho=1.1x10%
] Hg=1.1x1
413

et Figds
- Hy=1.3x10° Comparison of w with respect to z.

o 0s 1 25 3 35 4

In Fig. 16, variation of o_ with respect to z for TPL model is presented. It is noticed that o increase with the
increase of magnetic field.

Stress is oscillating and converging towards zero with the increase of z

Fig.16

Comparison of o_ with respect to z.

o 0.5 1

In Figs. 17 and 18, variation of # and v with respect to z for GN-III and DPL model is presented. It is noticed
that u and v increase with the increase of magnetic field. Displacements for DPL model are greater than

displacements for GN-III model. Displacements are showing oscillatory behavior and converging towards zero with
the increase of z.

GN,Hy=1x10%
———— GN,Hy=4x10*
DPL H,=1x10%

Fig.17
Comparison of u with respect to z for GN and DPL.

DPL Hy=dx10*
4 L I
o 05 1 15 2
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Fig.18
Comparison of v with respect to z for GN and DPL.

In Fig. 19, variation of w with respect to z for GN-III and DPL model is presented. It is noticed that w increase

with the increase of magnetic field. Displacement for DPL model is greater than displacement for GN-III model.
Displacement is converging towards zero with the increase of z.

G H=1x10

GN,H=dx10* Fig.19
T | etyhgbond Comparison of w with respect to z for GN and DPL.

25 3 35 a as

In Fig. 20, comparison of o _ with respect to z for GN-III and DPL model is presented. It is noticed that o

increase with the increase of magnetic field. Stress for DPL model is greater than stress for GN-III model. Stress is
oscillating and converging towards zero with the increase of z.

x10'

GN,Hg=1x10%
G H=ax1 0

Fig.20
Comparison of o with respect to z for GN and DPL.

DL, Hy=1x10%

DPL Hy=4x10

28 a EX) 4 4.8

In Fig. 21, comparison of o, with respect to z for GN-III and DPL model is presented. It is noticed that o,

decrease with the increase of magnetic field. Stress for DPL model is greater than stress for GN-IIT model. Stress is
oscillating and converging towards zero with the increase of z.

\ LT
e ]

Fig.21
Comparison of o, with respect to z for GN and DPL.

G Hg=ax10%
DPL Hg=1x10"
DPL H =ax10*

Ty

a 38 a 4.5
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9 CONCLUSIONS

The present article provides a detail analysis of propagation of thermoelastic disturbances in an orthotropic medium
in the presence of a time dependent thermal shock. With the view of theoretical analysis and numerical computation,
we can conclude the following phenomena:

(i) This problem with three-phase-lag model is more general as other problem with different thermoelastic

models can be derived as a special case from this.

(i) Displacements decrease with the increase of magnetic field for TPL model but displacements increase with

the increase of magnetic field for GN-III and DPL model.

(ii1) Displacements and stresses are showing oscillatory behavior and converging towards zero with the increase

of distance.

(iv) Displacements and stresses are showing similar nature for both traction free and rigidly fixed surface.
(v) Displacements and stresses for DPL model are greater than displacements and stresses for GN-III model.

The results presented in this article may be useful for researchers who are working on material science,
mathematical physics and thermodynamics with low temperatures as well as on the development of the hyperbolic
thermoelasticity theory.
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