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 ABSTRACT 

 The three analytical, finite element and experimental methods are 

applied to study the nonlinear buckling of cracked columns.  The 

original aim of this research is to investigate the validity of the 

common analytical method in an analogy with the experimental 

method and the finite element method of MATLAB programming-

based. The literature review shows that papers applied this 

analytical method without considering its drawbacks to determine 

the post-buckling results. Results in the linear part of the analytical 

method are in close accordance with the two others, while a clear 

difference in the nonlinear part of the analytical method is observed 

with the actual results obtained from the experimental tests and 

numerical results of the finite element method. An in-depth 

discussion is represented to find out the main reasons of this 

difference.  The conversion matrix technique in the finite element 

method and dividing the column into two segments in the 

analytical method are used to include the crack parameters in 

relations according to the continuity conditions in the crack tip. An 

investigation is performed to study the effect of the crack depth and 

position on the critical buckling load and the post-buckling path.     

            © 2022 IAU, Arak Branch. All rights reserved. 

 Keywords : Analytical method; Cracked column; Experimental 
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1    INTRODUCTION 

ANY different methods are used to evaluate the crack effect in structures. Accuracy, capability, flexibility, 

and solution cost are the main parameters to select or to reject a method for the analysis. The analytical 

method in the subject of the cracked structure is implemented based on the energy release rate parameter in which 

the crack is modeled using Dirac’s delta function or the rotational spring [1-9]. Another reliable method in the 

analysis of the cracked structures is the numerical method. FEM, XFEM and Meshless methods are generally 

considered in the category of the numerical method. Alijani et al. [10, 11] used FEM to investigate the nonlinear 
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deflection, natural frequency, and stress intensity factor of the cracked beam. A comparison between FEM and 

XFEM in the modeling of the cracked structures can be seen in [12]. Moreover, various research works in the 

framework of XFEM and Meshfree methods can be found for the analysis of cracked structures in [14-15]. 

Empirical tests are a convenient way to validate the results of analytical and numerical methods. Some experimental 

investigations on the cracked structures can be seen in [15-18]. On the other side, many research works have been 

specifically published to investigate linear and nonlinear buckling analysis of cracked columns using analytical, 

numerical and experimental methods. The initial crack in columns has a destructive effect on the strength and 

stability. Accordingly, the investigation of the buckling and post-buckling behavior of cracked columns has a 

considerable significance. Anifantis and Dimarogonas [19] and [20] used the analytical method to study the post-

buckling behavior of perfect and imperfect columns with a transverse crack surface considering the local flexibility.  

Ke et al. [21] also applied the analytical method in post-buckling and vibration analysis of the cracked functionally 

graded Timoshenko beams. 3D finite element method was employed to study the effect of the crack surfaces contact 

on the post-buckling behavior of the cracked column in [22]. Akbas and et al. [23-25]  utilized the finite element 

method to evaluate the post-buckling behavior of cracked columns made of isotropic, composite and functionally 

graded materials. Yang and Bradford presented a solution based on the method of the minimum total potential to 

investigate the buckling and post-buckling behavior of weakened columns under thermal loading [26]. Many 

research works about post-buckling analysis of cracked columns have been published [27-30] in which different 

subjects including delamination, shear effect, cracked plates, and FG materials were discussed. Moreover, the 

buckling behavior of intact columns can be seen in many research works, e.g. [31-40].  

The main discussion in this research is to verify the analytical method in the post-buckling analysis of intact and 

cracked columns represented in [19, 20, 31, 33, 34, 38]. Therefore, a comprehensive investigation is performed to 

recognize the technical ability of the common analytical method in the nonlinear buckling analysis. The two 

experimental and FE methods are used to validate the analytical method. Unexpected results of the analytical 

method caused a meaningful comparison with the two other methods is made. A check on the mathematical relations 

and the solution process is carried out to identify reasons of the difference in the analytical method. Because of the 

close accordance of the empirical results with FEM results, it is applied as a reliable method to study the effect of 

the crack on the critical buckling load and post-buckling results.  

2    CRACK MODELLING 

Fig. 1(a) illustrates a uniform Euler-Bernoulli column including an edge crack under the compressive axial load. The 

crack shown in Fig. 1(a) is modeled by a massless rotational spring. Fig. 1(b) shows the rotational spring whose 

flexibility is denoted by ψ that is inversely related to the stiffness of rotational spring, dsk . 

 

 
(a) 

 

(b) 

Fig.1 

Geometrical representation. a) Euler-Bernoulli column including edge crack; b) Crack modelling via rotational spring. 
 

Yokoyama and Chen [4] proposed a formula between the stress concentration factor and the spring stiffness in 

problems that the bending moment is applied to the structure as [4]: 
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The stiffness factor of the corresponding spring, dsk , is computed as follows: 

 

 2 2

0

2 11 a
I

ds

b K
da

k E M

  
  

 
       (2) 

 

Fig. 2 shows the effective parameters of the analysis around the crack area in which the continuity conditions at 

the crack point are defined according to Eq. (3),[11]. 

 

 

 

 

 

 

 

 

Fig.2 

Displacements, slops, bending moments and shear forces in 

both sides of rotational spring. 

 

 

   1 0 2 0w x w x      

   '' ''

1 0 2 0w x w x   

   ''' '''

1 0 2 0w x w x  

     ' ' ''

1 0 2 0 1 0 w x w x w x   

(3) 

 

In which 
ds

EI

k
   . As shown in Fig. 2, the crack modelling leads to divide the column into two separated 

segments and the rotational spring. The relations of the displacement, slope, bending moment, and shear force for 

the Euler-Bernoulli column under compressive force P are given as [41]: 
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3    ANALYTICAL SOLUTION OF POST-BUCKLING OF CRACKED COLUMN 

The nonlinear buckling equation for an intact column is [33] 

 

'''' 2 0
2

P bh
w w w w

EI
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In which 
2 /k P EI  is called the critical buckling load parameter. The general solution of Eq. (5) for two 

segments of column is as follows: 
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     2 5 6 7 8sin cosw x A A x A kx A kx     (6b) 

 

Here, parameters iA  are considered as constant coefficients.  

3.1 Linear buckling solution 

A linear differential equation of the buckling analysis can be obtained by neglecting the nonlinear term of Eq. (5), 

which can be used to determine the critical buckling load of the cracked column. Gurel and Kisa [41] applied a 

technique to solve the linear differential equation of the cracked column which yields following equations for two 

SS-SS and C-C boundary conditions, respectively.  
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In which 0 /X L   and the critical buckling load parameter, ck , can be computed using the root finding 

algorithm such as Newton-Raphson technique. It is clear that if 0   is considered, the corresponding critical 

buckling load parameter is determined for the intact column.  

3.2 Post-buckling solution 

A post-buckling analysis can be performed by computing the undefined coefficients, iA , mentioned in Eq. (6). 

These coefficients are computed by considering the boundary conditions, continuity relations at the crack point, and 

the nonlinear differential equation. Two SS-SS and C-C boundary conditions are considered in the derivation of 

relations. Table 1 shows end constraints of two boundary conditions. 
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Four equations for each type of boundary conditions in combination with four continuity conditions of the crack 

point Eq. (3) give an algebraic equation system as follows:  

For SS-SS end conditions 
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For C-C end conditions 
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where LS , LC , 0xS  and 0xC  can be found in Eq.(A.3) of Appendix A. 

The determination of nonzero values of coefficients, iA , requires that the determinant of the coefficients matrix 

is set equal to zero. So, a non-trivial solution is found when the coefficients are expressed in terms of one 

coefficient, like 2A , by neglecting an arbitrary row of the equation system. In other words, the unknown coefficient 

2A  in terms of the incremental axial compressive force P is determined by the integral form of the nonlinear 

buckling equation as follows: 
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Eq. (10) is an integral form of Eq. (5) by considering '''' 2
cw k w  while w  is nonzero. Eqs. (A.1) and (A.2) in 

Appendix A represent relations in which coefficients iA are expressed in terms of 2A , for SS-SS and C-C boundary 

conditions, respectively. By inserting the first derivative of displacement equation into Eq. (10), the final form of 

governing equation is given 
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which gives 2A  in terms of the incremental load P. Therefore, the maximum lateral displacement for each load level 

and also the nonlinear load-displacement curve are determined by replacing iA ’s in Eq.(6) as follows: 
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4    FEM FOR POST-BUCKLING ANALYSIS OF CRACKED COLUMN 

The discretization of the column in the FEM analysis is performed using the one-dimensional element in which the 

nodal displacements are interpolated by cubical Hermite functions. The secant and tangent stiffness matrices are 

derived by including constitutive and kinematic relations into to the energy formula. The mathematical modeling of 

the cracked element is the key part of the analysis in the cracked column. The cracked element in FEM is discretized 

to three sub-elements as shown in Fig.3. Those are connected to each other through continuity conditions mentioned 

in Eq.(3). So, the stiffness matrices of cracked element are enriched by using crack characteristics and continuity 

conditions 

 

 

 

 

 

 

Fig.3 

Cracked element. 
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The conversion matrix technique [2] is applied based on the transformation of the middle nodes displacements 

(nodes 2 and 3) to the main nodes of 1 and 4. For this reason, two converting matrices, LC  and RC  are constructed 

to obtain enriched stiffness matrices. 

The process of the determination of enriched total stiffness matrices of the cracked column used in the presented 

MATLAB programming is as follows: 

a) Discretization of column using 1D-element 

b) Detection of the element including the crack 

c) Computation of the tangent ( Tk ) and secant ( Sk ) matrices for intact elements [42] 

d) Using the conversion technique for the cracked element represented in Appendix B. 

e) Computation of the enriched tangent ( TCk ) and secant ( SCk ) stiffness matrices for the cracked element 

f) Computation of the total tangent ( TK ) and secant ( Sk ) stiffness matrices for the column 

Moreover, the algorithm of the post-buckling analysis used in the MATLAB programming can be decomposed 

according to the following steps: 

Initials values:    (load level) ,   0u :  initial known state  

Iteration loop: 0,1  , i   until convergence 
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In which   S i iR u u K  and   and   are the perturbation factor and the eigenvector associated to the 

minimum eigenvalue, respectively.  

The tangent stiffness matrix and the internal force vector R  are firstly determined in terms of the already known 

displacement vector. The determinant of tangent stiffness matrix is computed based on the decomposition process of 

this matrix in each load step. Then the perturbation at the critical point is applied to find the neighboring point for a 

successful switch to the post-buckling path.  

5    RESULTS AND DISCUSSION 

The results of the nonlinear buckling analysis in perfect and cracked columns are reported based on three 

experimental, analytical and numerical methods. 63-cm-long columns made of steel ( 200E GPa and 0.3  ) 

with a uniform rectangular cross section of b h in which 2b  cm  and 0 5h .  cm  are subjected to axial 

compressive force as shown in Fig. 1.  

Fig.4 explains the convergence of the presented FEM algorithm for two C-C and SS-SS boundary conditions, 

respectively. It can be observed from both convergence plots that the number of 81 elements is enough to achieve 

reliable results in the post-buckling problem. Accordingly, the number of 81 elements is selected as the appropriate 

number in next FEM analyses.  It can be clarified quantitatively that the load difference between 81 and 161 

elements is about 3% in 0 04maxw .  m  for both Figs. 6(a) and 6(b).  
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(a) 

 
(b) 

Fig.4 

Convergence of FE method for two boundary conditions and 0.5
a

h
  , 0 0.5

X

L
 ; a) C-C, b) SS-SS. 

 

Considerable difference between formulations and nonlinear results of two analytical and FEM leads to the use 

of the empirical study to validate. Experimental samples with mentioned geometric and material properties are 

shown in Fig. 5(a) in which the initial cracks were made in two depths  0.3
a

h
  and , 0.5

a

h
  by using the wire 

cutting machine. Results of the experimental test are reported based on the buckling test machine as shown in Fig. 

5(b). 

 

 
(a) 

 
(b) 

Fig.5 

a) Experimental samples; b) Buckling test machine. 

 

Fig. 6 shows a comparison between the results of three analytical, FEM and experimental methods. As shown in 

Fig. 6, FEM and experimental results have a close accordance, while a substantial disagreement with the analytical 

method is observed in the post-buckling path. However, results of the three methods in the pre-buckling path are 

remarkably close to each other. The main reason of the error in the nonlinear part of the analytical method is the use 

of a predefined function Eq. (6) mentioned in [20, 31, 33, 34], to solve the governing differential equation, which is 

a significant restriction in tracing the post-buckling path. In the other hand, in the nonlinear finite element method, 

an iterative incremental solution is implemented to determine the deflection at each load level. Therefore, the secant 

and tangent stiffness matrices are updated at each stage of loading, which leads to the determination of more realistic 

and precise post-buckling path. Fig. 6 shows that the post-buckling path in the analytical solution rises dramatically 

after the bifurcation point, while FEM presents a smooth trend. Results of the analytical method represented in Fig. 

6(c) are obtained by solving Eqs. (7a) and (7b) in which values of  cK   for SS-SS and C-C boundary conditions are 

calculated 4.9445 and 9.8894, respectively. The deflection pattern is depicted by the determination of relevant 

coefficients iA according to Eqs.(C.1) and (C.2) mentioned in Appendix C. 
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(a) 

 
(b) 

 
(c) 

 

 

 

 

 

Fig.6 

Validation of the analytical and FE methods through 

experimental results. a) intact column; b) cracked column 

with 0.3
a

h
 , 0

0.5
X

L
 ; c) cracked column with 0.5

a

h
 , 

0 0.5
X

L
  in SS-SS boundary conditions. 

 

Figs. 7(a) and 7(b) depict the critical buckling load and the post-buckling behavior of intact and cracked columns 

in different crack depths for S-S and C-C boundary conditions, respectively. It is clear from Fig. 7(a) that increasing 

the cracked depth ratio from 0.3 to 0.5 decreases the critical buckling load from 1060 N to 1020 N  (about 3.8%). In 

the similar analysis for C-C boundary condition as shown in Fig. 7(b), the load bearing capacity of the column 

decreases due to the initial crack in which about 5% reduction is observed for the cracked column with 0.5
a

h
 in 

comparison with the intact column from 4280 N to 4080 N. 

 

 
(a) 

 
(b) 

Fig.7 

Post-buckling analysis using FEM in different crack depths and 0 0.5
X

L
 . a) S-S; b) C-C boundary conditions. 

 

Fig. 8 illustrates the influence of the crack position on the critical buckling load. Fig. 8(a) for SS-SS boundary 

condition shows that the minimum critical buckling load is achieved where the crack sits at the middle of the 
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column. It is also seen from Fig. 8(b) that the maximum critical buckling load for C-C boundary condition belongs 

to cracked columns that the crack sits at 0 0.25
X

L
 and 0.75. 

 

 
(a) 

 
(b) 

Fig.8 

Critical buckling load of the isotropic column with 0.5
a

h
  at different crack positions. a) SS-SS; b) C-C. 

6    CONCLUSION 

The nonlinear buckling analysis of the cracked column was performed by using the three analytical, FE and 

experimental methods. An in-depth discussion was carried out to investigate results of the common analytical 

method in analogy with those of experimental and FE methods. A close agreement was shown between results of the 

empirical tests and FEM, while an obvious difference was seen between the analytical and actual results. A review 

on the analytical method shows that using a predefined function in the derivation of relations and an iterative 

solution without updating the structure stiffness are two original reasons in the disagreement of results of the 

nonlinear part. Since the modification of these two cases in the analytical method is too costly, other reliable 

methods like FEM are seriously proposed to solve such nonlinear problems. The destructive effect of the crack on 

the load bearing capacity and the post-buckling path of the cracked column was roughly similar for two SS-SS and 

C-C boundary conditions. 
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APPENDIX B 

The conversion matrices are derived through the energy approach as follows: 

 

crack L R springU U U U    (B.1) 

 

Δ Δ Δ Δcrack L R springU U U U       (B.2) 

 

where the components of  crackU  are 

 

Δ ΔT

L L TL LU  u k u  

Δ ΔT

R R TR RU  u k u  

Δ ΔT

spring dsU k    

(B.3) 

 

The separated form of displacements is 

 

L Lu C u  

R Ru C u  

spring C u  

(B.4) 

 

So, Eq. (B.2) yields the tangent stiffness matrix of the cracked element as follows: 

 

   Δ Δ Δ ΔT T T T T T

crack L TL L R TR R spring ds springU k     u C k u C u u C k u C u u C C u  (B.5) 
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.T crack TL TR spring  K K K K  (B.6) 

 

In which  

 
T

TL L TL LK C k C  

T

TR R TR RK C k C  

T

spring spring ds springkK C C  

(B.7) 
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