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 ABSTRACT 

 The assessment of the influence of the work-hardening of 

material on the optimum die profile and drawing force  in rod 

drawing process is the main objective of the present paper. The 

upper bound solution, based on the assumption of perfect 

plasticity, has been extended to consider the work hardening of 

the material during the rod drawing process through curved 

dies. Analytical results of drawing forces for rod drawing 

process through four different types of streamlined die profiles 

are compared with the finite element simulation data using the 

finite element code DEFORM 2D. It is shown that as the work-

hardening exponent increases, the optimum die length 

increases, the required drawing force decreases and maximum 

possible reduction in area increases. Based on this proposed 

modeling technique, drawing process of real materials through 

various curved dies can be optimized.                         

   © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 URING rod drawing, raw material is pulled through a die in order to reduce its diameter. Pulling of rod 

material is done by applying of the tensile force to the rod at the exit side of the die. Optimization of die profile 

has been one of the most important tasks that have attracted the attention of many researchers. Richmond and 

Devenpeek [22] proposed ideal die geometry for strip drawing under the assumption of no work-hardening material 

and frictionless die. Avitzur [1-2] applied the upper bound theorem to the wire drawing through conical dies 

assuming perfect plasticity for the material. Using slip line analysis, Devenpeck and Richmond [6] designed 

streamlined sigmoidal dies that would theoretically produce an extruded strip with no distortion. Chen and Ling [3] 

and Nagpal [16] developed velocity fields for axisymmetric extrusions through arbitrarily shaped dies. Chen et al. 

[4] and Liu and Chung [13] used finite element analysis to examine wire drawing through conical dies. Yang et al. 

[23] and Yang and Han [24] developed upper bound models with streamlined sigmoidal shaped dies. Chevalier [5] 

investigated the effect of geometric parameters and the friction condition on the quality of the final wire using finite 

element simulation. Zhao et al. [25] proposed two kinematically admissible velocity fields through elliptic dies.  Lu 
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and Lo [14] used slab method to account for friction and material property changes in the deformation zone. A 

comparative study between analytical models and FEM results presented by Luis et al. [15] in order to obtain the 

required drawing force s, stresses and strains which are involved in the wire drawing process. Ponalagusamy et 

al.[17] designed streamlined dies based on Bezier curves and polynomial equations and compared them with each 

other for perfectly plastic materials. Chen and Huang [7] used the finite element and the Taguchi methods to 

optimize the process parameters of the wire drawing process. Gordon et al. [8-9-10] developed an adaptable die 

design method for axisymmetric extrusion of perfectly plastic materials. They found that their proposed die profile is 

superior to the streamlined die shape of Yang and Han [24]. An attempt made by Panteghini and Genna [18] to 

consider the strain-hardening effects on optimization of wire drawing process through conical dies.  Rubio et al. [20] 

developed an analytical solution for sheet drawing process assuming a perfect plastic material under plane strain 

condition. Gonzalez et al. [11] used the slab method and the finite element method to prediction the drawing force 

necessary to carry out a rod drawing process of a rigid-plastic material. Rubio et al. [21] extended their solution of 

plate drawing, which presented in Rubio et al. [20], to consider the material work hardening but it was relatively 

simple. An upper bound solution to estimate the drawing stress in plate drawing processes has been developed by 

Panteghini [19]. Zhang et al. [26] studied the rod drawing through a twin parabolic die by upper bound method, 

assuming perfect plasticity for the rod material.  

Most of research work reviewed above performed on the optimization of die geometry by the upper bound 

method under the assumption of a perfect plastic material. However, to design optimal die shapes in general depends 

on the predictions of actual metal flow characteristics within the die under the given process conditions and real 

materials. The main objective of the present paper is the assessment of the influence of the work-hardening behavior 

of material on the optimum die of prescribed profile. A velocity field and upper bound solution, based on the 

assumption of perfect plasticity, have been extended to consider the work hardening of the material. The effective 

strain and the flow stress have been calculated for each particle on the shear surfaces and in the deformation region. 

Several different shapes of the die have been performed and performance comparison is made among them.  

2    UPPER BOUND ANALYSIS  

Fig. 1 shows a schematic diagram of the rod drawing through a die of curved profile shape. As shown in this figure, 

the material starts as a round section rod of radius oR and is drawn into a cylindrical rod of radius fR . Angle is the 

angle of the line connecting the initial point of the curved die to the final point of the die and tan ( ) /o fR R L   , 

where L is die length. The die surface, which is labeled as ( )r in Fig. 1, is given in the spherical coordinate system. 

For the conical die shape, this function has a single constant value, i.e. ( )r  .  

 

 

 

 

 

 

 

 

 
Fig.1 

Schematic diagram of rod drawing process through a 

curved die using spherical coordinate system and 

deformation regions. 

 

To analyze the process, the material under deformation is divided into three regions, as shown in Fig. 1. A 

spherical coordinate system ( , , )r   is used to describe the position of the two shear surfaces 1S and 2S as well as the 

velocity in region II.  The surface 1S is located at distance or from the origin and the surface 2S is located at 

distance fr from the origin. The position of the coordinate system origin, point O, is defined by the intersection of a 

line that goes through the start and end points of the die profile, with the die axis. In region I, the incoming material 
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is assumed to flow horizontally as rigid body with velocity ov . In region III, the material is assumed to flow 

horizontally as rigid body with velocity fv . Region II is the deformation region, where the velocity is complex.  

2.1 Velocity field in deformation region 

The velocity field in region II in spherical coordinates is similar to the one assumed by Gordon et al. [8] for rod 

extrusion through a curved die as: 
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where fv  is velocity of drawn rod. 

The strain rates in spherical coordinates are defined as: 
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(3) 

 

where ij (with i j ) is a shear strain rate component.  

Based on the velocity field, the strain rate fields for region II can be obtained by Eq. (3).  Since real metals 

exhibit work-hardening, some modifications are necessary to adapt the theoretical results based on the assumption of 

perfectly plastic characteristic to the actual process. In this section, we present an extension allowing the 

consideration of this effect. With the strain rate field and the velocity field, the effective strain can be given as is 

described in the next section. 

2.2 Effective strain  

As shown in Fig. 1, each particle of the material undergoes different strains in all three regions. The material 

undergoes a shear strain at the inlet shear boundary, then it undergoes a strain due to deformation in region II, and 

respectively it undergoes a shear strain at outlet shear boundary. According to the position of the particle, the total 

effective strain is obtained for the material and it is substituted in work-hardening model.  

In order to obtain total strain, it must be found the strain in each region. The equivalent strain distribution in the 

rod is determined by integrating the incremental strain along a streamline, shown in Fig. 1. 

The engineering shear strain,
1
( )s  at the inlet shear boundary is 
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where  is the angular position of a particle on the shear boundary 1S as shown in Fig. 1 and ov  is velocity of initial 

rod. Assuming proportional distances from die axis of symmetry, the relationship between the angular position  on 

the shear boundary 1S and the angular position of the particle on a streamline can be generally expressed in the 

following form, Gordon et al. [8], 
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The engineering shear strain
1
( )s  is transformed into effective strain as: 
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The strain imposed in the deformation region is  
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where dl is the differential length along the streamline  
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After substituting 
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where   is the effective strain rate and 
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By placing Eq. (10) into Eq. (9), we have 
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The shear strain at the outlet shear boundary 2S  is 
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where  is the angular position of the particle on the boundary 2S . This strain is transformed into the effective strain 

as: 
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According to the position, the total strain is obtained for the material. The effective strain of the particle on the 

shear surface 1S can be given by 
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In deformation domain II the material is in an intermediate state of deformation, the effective strain of the 

material in the deformation domain, which goes along a streamline, is  
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The effective strain of the points on the boundary 2S , the material is completely deformed and we have 
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2.3 Power terms 

The internal consumption power, written as: 
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where is the effective flow stress which it is equal to 0 for a perfectly plastic material. 

Internal power of regions I and III, are zero and the general equation to calculate the internal power of 

deformation in region II is calculated as: 
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According to the position of each particle, the total strain is obtained for the material and it is substituted in 

stress-strain relationship in order to modify upper bound method with considering work-hardening. The dissipated 

shear power on the shear boundary and its relation is 
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where V is amount of velocity discontinuity on the shear boundary. Thus, the dissipated shear power on the 

boundary 1S is 
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where 1V  is amount of velocity discontinuity on the shear boundary 1S . For velocity discontinuity surface 2S , there 

is. In addition, the dissipated shear power on the boundary 2S is 

 

2

2
2

0

2
sin

3
S fW r V d


            

 

(21) 

 

where 2V  is amount of velocity discontinuity on the shear boundary 2S . The dissipated friction power at the 

contact surface of the rod and the die, can be given by 
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where m is the constant friction factor between the rod material and the die. After simplification, the dissipated 

friction power on the frictional surface 3S , is  
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2.4 The required drawing force  

Based on the model, the total required external power for a rod drawing process can be obtained by summing the 

internal power and the power dissipated on all frictional and shear surfaces, then 
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Therefore, the total upper bound solution for drawing force  is given by 
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All the integrals in the above equations do not have analytical solution and have been solved by Simpson’s 

method using MATLAB software. For a given process conditions, the program first calculates the velocity 

components, the strain rate components, effective strains and then evaluates the upper bound on drawing force , Eq. 

(25), by numerical integration using the five-point Gauss–Legendre quadrature algorithm. Then, the value of 

drawing force  is minimized with respect to the length of the die profile function. 

3    DIE-PROFILE FUNCTION  

The shape of the die profile, determines the change of the rod radius in the deformation zone. In the above-

developed theory, any possible die shape can be employed, if the die profile is expressed as equation ( )r . Several 

different streamlined die shapes are employed in the present investigation as they give less power consumption and 

good surface finish than conventional conical dies (Gunasekera, Gegel, Malas, Doraivelu, and Barker [12]. The first 

application of streamlined dies occurred in work by Richmond and Devenpeck [22] to drawing and extrusion of 

strips. These dies have zero slopes at the die entrance, tanor
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application of the zero slopes at the die entrance and exit, forces the shear power losses over shear surfaces, 1S and 

2S , to be zero. Geometry of the streamlined dies can be considered as many smooth curves. Four polynomial die 

profiles are assumed for the die profile. The mathematical representations of these die shapes in cylindrical 

coordinate system ( , )R x are listed in Table 1. Cylindrical coordinate system is used to allow ease of visualization, 

with R being the radial distance from the axis of symmetry and x the axial distance along the axis of symmetry. 
 

Table 1  

The die profile functions in cylindrical coordinate system. 

Die shape Die profile function in cylindrical coordinate system ( , )R x  

Second order polynomial (Zhang, Chen, Zhou and 

Zhao [26]) 

2 2
0 0( ) 2[( ) ]fR x R R R L x   ; 

2 2
0( ) 2[( ) ]( )f fR x R R R L x L     

Third-order polynomial (Chen and Huang [7]) 3 2
0 0( ) ( )[2( ) 3( ) ]fR x R R R x L x L   

 

Fourth-order polynomial (Yang and Han [24]) 2 2 2
f
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Fifth-order polynomial (Richmond and Devenpeck 

[22]) 

5 4 3
0 0( ) ( )[6( ) 15( ) 10( ) ]fR x R R R x L x L x L      

 

The equation describes the die shape in spherical coordinate system can be expressed by placing the following 

equation into the function of the die profile in cylindrical coordinate system as: 
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4    FINITE ELEMENT ANALYSIS  

The obvious way to test the validity of the analytical solution developed in the previous sections would be to 

compare its results with experimental results covering a suitable range of the parameters of interest. Unfortunately, 

to the best of our knowledge, experimental values of the drawing force are unavailable in literature for rod drawing 

processes through cured dies. Therefore, one is forced to resort to numerical simulations.  

Drawing process is simulated via FEA using DEFORM-2D, a commercial finite element code. Considering the 

symmetry in geometry, two-dimensional axisymmetric models are used for FEM analyses.  

Consider that a rod of initial diameter 10 mm is reduced to final diameter 8 mm, i.e. 10 8  drawing process, 

by using the four different dies as given in Table 1. For all dies, the die length L is assumed to be 10 mm. The 

element type of the mesh is CAX4R and consists of a 4-node bilinear. These characteristics are appropriate for this 

element to be used in this type of analysis, where large deformations and nonlinearity contact are assumed. The rod 

was meshed into 5000 elements. The die is represented by rigid surface elements. The interface between the rod and 

the die surfaces is represented by interface elements. A constant friction factor 0.05 was used to quantify the friction 

between the drawing die and rod in the FEM model. The rod velocity was set to1.0. Default remeshing values were 

also used. The material has work-hardening behavior and the stress-strain relation is defined by Luis, Leon, and Luri 

[15] 

 
0.117442( )cu MPa          

(27) 

 

The drawing process has been simulated for different die shapes given in Table 1, by the finite element method. 

Fig. 2 plots the deformed meshes and the variation of the drawing force during the drawing process for die shapes 

listed in Table 1, for the case of 10 8  drawing process. It is seen that for all die shapes, the drawing force 

initially increases monotonously until the die is completely filled by the drawn rod. Thereafter, the drawing force 

remains relatively stable. 
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(a) Second order polynomial 

 
(b) Third-order polynomial 

  

 
(c) Fourth-order polynomial 

 
 (d) Fifth-order polynomial 

Fig.2 

Deformed meshes and variation of the drawing force during drawing for the a) Second order polynomial, b) Third-order 

polynomial, c) Fourth-order polynomial, d) Fifth-order polynomial. 

5    RESULTS AND DISCUSSION   

The effectiveness of the proposed results is demonstrated by comparison with the finite element simulation data. 

In Table 2, the required drawing force for the case of 10 8  drawing process, friction factor 0.05 and die length 

10 mm, obtained by upper bound and FEM are compared. The results show a good agreement between the upper 

bound data and the FE results. Table 2, also shows that the theoretically predicted drawing force s are higher than 

FE results, shown in Fig. 3, due to the nature of the upper bound theory. It is seen that third-order polynomial die 

shape has the lowest drawing force, while the largest drawing force has been observed for the fifth-order polynomial 

die shape. For the third-order polynomial die profile, variation of the drawing force is studied with respect to the 

friction factor and the work-hardening properties of the drawn material. 

 
Table 2  

Comparison between the calculated and FE results of drawing forces. 

 

Die shape 

Forward tension 

Calculated, (kN) FEM, (kN) 

Second order polynomial 11.63 11.3 

Third-order polynomial 11.5 11.1 

Fourth-order polynomial 11.61 11.2 

Fifth-order polynomial 11.8 11.5 

 

The graphs of the drawing force for the third-order polynomial die profile, with only the length as the variable to 

be optimized, at the case of 10 8  drawing process are shown in Fig. 4. Here the variation of the drawing force 

with die length for two values of the friction factors is given. As shown in this figure, the drawing force decreases 

with increase in die length up to a certain optimal length and then it increases with increase in die length. As it is 

expected, for a given value of friction factor, the drawing force is minimized in an optimum die length. For the case 

of 10 8  drawing process and friction factor 0.05, the optimal die length is 8.2 mm and the corresponding die 
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length for friction factor 0.1 is 6 mm. It is observed that when the friction factor is increased, the optimal die length 

decreases. This happens to offset the tendency for increase in the frictional power with the die length. This figure 

also shows that an increase in the friction factor tends to increase the drawing force.  
Optimum die shapes for the case of 10 8  drawing process for m=0.05 and m=0.1 are shown in Fig. 4. In 

this figure, vertical axis shows the radial distance from the axis of symmetry and horizontal axis is the axial distance 

along the die axis. The differences among the die shapes can be easily noticed.  

 

 

 

 

 

 

 

 

 

 

Fig.3 

Variations of the drawing force with die length for m=0.05, 

m=0.1for the case of 10 8  drawing process. 

 

  

 

 

 

 

 

 

 

 

 

Fig.4 

Optimum shapes of the dies for the case of 10 8   

drawing process for m=0.05 and m=0.1. 

 

Fig. 5 shows the variation of the drawing force with the die length, for the third-order polynomial die profile, for 

both perfect plastic and work hardening models for the material at the case of 10 8  drawing process and 

friction factor 0.05. This figure illustrates that the amount of drawing force in the work-hardening model is greater 

than the perfect plastic model of rod material. It is observed that the optimum die length increases as work hardening 

of material considers in the solution. These trends are similar to those observed for other optimal curved dies or 

other materials. 

 

 

 

 

 

 

 

 

 

Fig.5 

Comparison between variation of drawing force with the 

die length at the case of 10 8  drawing process for 

friction factor 0.05 assuming perfect and hardening 

materials. 

 

Fig. 6 shows the effect of work-hardening exponent on the drawing force. It has been demonstrated that material 

work-hardening exponent has remarkable effect on the required drawing force such that by increasing the work-

hardening exponent the drawing force decreases. The reason for this phenomenon is that increasing the work-

hardenability of a material is equivalent to increasing the sensitivity of its flow stress with respect to the imposed 

strain. Hence, in such conditions, the rod material would be more susceptible to increase in its flow stress by 
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developing a small strain. Thus, redundancy becomes the dominant factor in comparison to frictional effect in 

increasing drawing force, causing the optimum cone angle of each slab to be reduced to minimize the redundancy 

effect.  

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of the drawing force with the work-hardening 

exponent for 10 8  die length 10 mm and friction 

factor 0.05. 

 

Variation of the optimum die length with work-hardening exponent is represented in Fig. 7 at the case 

of 10 8  drawing process and friction factor 0.05. This figure illustrates that the optimum die length increases 

by increasing of the work-hardening exponent.  

An upper limit to the reduction of area achievable is imposed in a cold drawing process by tensile failure of the 

drawn product, that is, rupture occurs when the stress in the drawn rod equals or exceeds the maximum tensile stress 

of the drawn rod. In practice, when a rod is drawn with a reduction in area close to the limiting reduction, the drawn 

stress is very nearly equal to the maximum tensile stress, so the accuracy of this precept is vitally important. The 

maximum possible reduction can be obtained as a function of the die length, for several values of the friction factor, 

equating the drawing stress obtained by the proposed analytical solution of Eq. (8) to the flow stress of the material 

at the exit of the die, i.e. point P in Fig. 1. 

 

 

 

 

 

 

 

 

Fig.7 

Variation of the optimum die length with the strain-

hardening exponent for the case of 10 8  and friction 

factor 0.05. 

 

 

The maximum values of the reduction in area are plotted in Fig. 8. In this figure, reduction in area for the third-

order polynomial die profile obtained from the upper bound solution is compared with each other. Fig. 8 shows the 

maximum possible reduction for different work-hardening exponents. Points under these curves (corresponding to 

the drawing stress smaller than the flow stress of the point P) represent possible reductions while those in the 

neighborhood of the maxima (but still under the curves) correspond to the maximum possible reduction. This figure 

also shows that maximum value of the reduction decreases when friction factor increases. 

  

 

 

 

 

 

 

 

 

 

Fig.8 

Variation of the maximum reduction value with the work-

hardening exponent for the third-order polynomial die 

profile for friction factors 0.05 and 0.1. 
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6    CONCLUSIONS 

In this paper, an analytical solution is proposed for prediction of drawing force in rod drawing process through 

curved dies based on upper bound analysis. The developed solution is a function of the material work-hardening 

exponent value. Through the analysis, following conclusions are obtained: 

1. The results afforded by the proposed analytical solution agree with the data from finite element simulations 

results. 

2. The third-order polynomial die profile is superior in comparison to other polynomial die profiles. 

3. The amount of drawing force increases when the work-hardening behavior of rod material considers in the 

solution with respect to the perfectly plastic material. 

4. By increasing the work-hardening exponent, the amount of drawing force decreases. 

5. The proposed model can be used to design, analyze, and optimize various rod-drawing processes of real 

materials. 

REFERENCES 

[1] Avitzur B., 1963, Analysis of wire drawing and extrusion through conical dies of small cone angle, ASME Journal of 

Engineering for Industry 85: 89-96. 

[2] Avitzur B., 1964, Analysis of wire drawing and extrusion through conical dies of large cone angle, ASME Journal of 

Engineering for Industry 86: 305-316. 

[3] Chen C.T., Ling F.F., 1968, Upper bound solutions to axisymmetric extrusion problems, International Journal of 

Mechanical Sciences 10: 863-879. 

[4] Chen C.C., Oh S.I., Kobayashi S., 1977, Ductile fracture in axisymmetric extrusion and drawing-Part I: Deformation 

mechanics of extrusion and drawing metal, ASME Journal of Engineering for Industry 101: 369-377. 

[5] Chevalier L., 1992, Prediction of defects in metal forming: application to wire drawing, Journal of Materials 

Processing Technology 32: 145-153. 

[6] Devenpeck M.L., Richmond O., 1965, Strip drawing experiments with a sigmoidal die profile, ASME Journal of 

Engineering for Industry 87: 425-428. 

[7] Chen D.C., Huang J.Y., 2007, Design of brass alloy drawing process using Taguchi method, Materials Science and 

Engineering 464: 135-140. 

[8] Gordon W. A., Van Tyne C. J., Moon Y. H., 2007a, Axisymmetric extrusion through adaptable dies-Part 1: Flexible 

velocity fields and power terms, International Journal of Mechanical Sciences 49: 86-95. 

[9] Gordon W. A., Van Tyne C. J., Moon Y. H., 2007b, Axisymmetric extrusion through adaptable dies- Part 2: 

Comparison of velocity fields, International Journal of Mechanical Sciences 49: 96-103. 

[10] Gordon W.A., Van Tyne C. J., Moon Y. H., 2007c, Axisymmetric extrusion through adaptable dies-Part 3: Minimum 

pressure streamlined die shapes, International Journal of Mechanical Sciences 49: 104-115. 

[11] Gonzalez R.H.A., Calvet J.V., Bubnovich V.I., 2008, A new analytical solution for prediction of forward tension in the 

drawing process, Journal of Materials Processing Technology 198: 93-98. 

[12] Gunasekera J.S., Gegel H.L., Malas J.C., Doraivelu S.M., Barker D., 1984, CAD/CAM of streamlined extrusion dies, 

Journal of Applied Metalworking 4: 43-49. 

[13] Liu T.S., Chung N.L., 1990, Extrusion analysis and workability prediction using finite element method, Computers and 

Structures 36: 369-377. 

[14] Lu Y.H., Lo S.W., 1999, An advanced model of designing controlled strain rate dies for axisymmetric extrusion, 

Journal of Materials and Engineering Performance 8: 51-60.  

[15] Luis C.J., Leon J., Luri R., 2005, Comparison between finite element method and analytical methods for studying wire 

drawing processes, Journal of Materials Processing Technology 164-165:12181225. 

[16] Nagpal V., 1974, General kinematically admissible velocity fields for some axisymmetric metal forming problems, 

ASME Journal of Engineering for Industry 96: 1197-1201. 

[17] Ponalagusamy R., Narayanasamy R., Srinivasan P., 2005, Design and development of streamlined extrusion dies: A 

Bezier curve approach, Journal of Materials Processing Technology 161: 375-380. 

[18] Panteghini A., Genna F., 2010, An engineering analytical approach to the design of cold wire drawing processes for 

strain-hardening materials, International Journal of Materials Forming 3: 279-289 

[19] Panteghini A., 2014, An analytical solution for the estimation of the drawing force in three dimensional plate drawing 

processes, International Journal of Mechanical Sciences 84: 147-157. 

[20] Rubio Alvir E.M., Sebastian P.M.A., Sanz L.A., 2003, Mechanical solutions for drawing processes under plane strain 

conditions by the upper bound method, Journal of Materials Processing Technology 143-144: 539-545. 



550                                  M.M. Mahdavi and H. Haghighat
  
 

 

© 2020 IAU, Arak Branch 

[21] Rubio Alvir E.M., Mariin M., Domingo R., Sebastian P.M.A., 2009, Analysis of plate drawing processes by the upper 

bound method using theoretical work-hardening materials, International Journal of Advanced Manufacturing 

Technology 40: 261-269. 

[22] Richmond O., Devenpeck M. L., 1962, A die profile for maximum efficiency in strip drawing, Proceedings of the 

Fourth US National Congress of Applied Mechanics ASME1962, New York. 

[23] Yang D.Y., Han C.H., Lee B.C., 1985, The use of generalized deformation boundaries for the analysis of axisymmetric 

extrusion through curved dies, International Journal of Mechanical Sciences 27: 653-663. 

[24] Yang D.Y., Han C.H., 1987, A new formulation of generalized velocity field for axisymmetric forward extrusion 

through arbitrarily curved dies, ASME Journal of Engineering for Industry 109: 161-168. 

[25] Zhao D.W., Zhao H.J., Wang G.D., 1995, Curvilinear integral of the velocity field of drawing and extrusion through 

elliptic die profile, Transaction of Nonferrous Metals Society of China 5: 79-83. 

[26] Zhang S.H., Chen X.D., Zhou J., Zhao D.W., 2016, Upper bound analysis of wire drawing through a twin parabolic die, 

Meccanica 51: 2099-2110. 

 


