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 ABSTRACT 

 Present work is concerned with the analysis of transient wave phenomena 

in a piezo-thermoelastic medium with diffusion, fiber reinforcement and 

two-temperature, when an elastic wave is made incident obliquely at the 

traction free plane boundary of the considered medium. The formulation 

is applied under the purview of generalized theory of thermoelasticity 

with one relaxation time. The problem is solved analytically and it is 

found that there exists four coupled quasi waves: qP (quasi-P ), qMD 

(quasi mass diffusion), qT (quasi thermal) and qSV (quasi-SV ) waves 

propagating with different speeds in a two-dimensional model of the 

solid. The amplitude ratios, phase velocities and energy ratios for the 

reflected waves are derived and the numerical computations have been 

carried out with the help of MATLAB programming. Effect of presence 

of diffusion is analyzed theoretically, numerically and graphically. The 

number of reflected waves reduce to three in the absence of diffusion as 

qMD wave will disappear in that case which is physically admissible. 

Influence of piezoelectric effect, two temperature and anisotropy is 

discussed on different characteristics of reflected waves such as phase 

velocity and reflection coefficients. It has been verified that there is no 

dissipation of energy at the boundary surface during reflection. Thus, the 

energy conservation law holds at the surface. Finally, all the reflection 

coefficients are represented graphically through 3D plots to estimate and 

highlight the effects of frequency and angle of incidence. 

 © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 N solid mechanics, the medium is regarded as continuous and one of the most important branches of continuum 

mechanics is the classical theory of elasticity which is concerned with the systematic study of the response of 

elastic bodies to the action of forces which deform it. After that, the theory of elasticity was extended to include 
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thermal effects. This new theory was called ‘Thermoelasticity’. Biot [1] developed the coupled theory of 

thermoelasticity to overcome the paradox inherent in the uncoupled theory that elastic changes have no effect on 

temperature. But the parabolic type of heat conduction equation, as was used initially in the study of thermoelastic 

behaviour was found to yield some unrealistic situation in the sense that the velocity of heat signals was infinite. 

Generalized thermoelastic theories have been developed with the objective of removing this defect of coupled 

theory. The extended thermoelasticity theory introducing one relaxation time in the thermoelastic process was 

proposed by Lord and Shulman [2] who obtained a wave-type heat equation by predicating a new law of heat 

conduction. This new law contains the heat flux vector as well as its time derivative and a new constant in Fourier’s 

law of heat conduction. The introduced new constant acts as a relaxation time i.e. the time lag needed to establish 

steady state heat flow in the medium. Ignaczak and Ostoja-Starzewski [3] focused on the mathematical aspects of 

the generalized thermoelasticity theories. Several notable works regarding the study of the phenomena of wave 

propagation for the better elucidation of the thermal properties of different media under the purview of  different 

theories of generalized thermoelasticity with various conditions have been performed by Lata [4,5] and Lata and 

Kaur [6]. Recently, Lata and Kaur [7] investigated behaviour of different field variables in two dimensional 

transversely isotropic magneto thermoelastic solid with rotation due to time-harmonic source. The problem was 

formulated using generalized thermoelasticity theory with one relaxation time and solved with the help of Fourier 

transformation technique.  Piezoelectric materials are commonly used for smart structure applications due to their 

direct and converse piezoelectric effects, which allow them to be utilized as both actuators and sensors. The internal 

generation of an electrical charge from an applied mechanical force is known as direct piezoelectric effect. The 

internal generation of a mechanical strain resulting from an applied electric field is known as converse piezoelectric 

effect. The piezo-thermoelastic material response entails an interaction of three major fields, namely, mechanical, 

thermoelastic and electric field in the macro-physical world. The thermo-piezoelectric material has one important 

application to detect the responses of a structure by measurement of the electric charge, sensing or to reduce 

excessive responses by applying additional electric forces or thermal forces. Among the early investigations in this 

area, Mindlin [8] studied the electromechanical couplings of linear piezo-thermoelastic medium. Nowacki [9-11] 

investigated the physical laws for the thermo-piezoelectric materials. Thereafter, Chandrasekharaiah [12,13]  used 

generalized Mindlin’s theory in order to study the finite speed of propagation of thermal disturbances. The wave 

propagation problems in piezoelectric media are also used in applications, such as aerospace engineering, 

mechanical engineering, civil engineering and bio-engineering. Reflection and transmission of acoustic energy at 

boundary surface plays an important role in the areas like signal processing, transduction and frequency control. A 

number of problems, which are related to the phenomena of reflection and refraction of plane waves for 

piezoelectric materials, can be found in the literature (Sharma et al. [14], Kuang and Yuan [15], Yuan and Jiang 

[16]). The reflection and transmission of plane waves from a fluid-piezothermoelastic solid interface was studied by 

Vashishth and Sukhija [17]. Othman and Ahmed [18] applied three different thermoelastic theories namely, coupled 

theory, Lord-Shulman theory and Green-Lindsay with two relaxation times, to study the deformation of a 

generalized piezo-thermoelastic rotating medium under the influence of gravity and magnetic field. A reinforced 

concrete member is designed for all conditions of stress that may occur in accordance with the principle of 

mechanics. Fiber reinforced composites are bound together as a single unit so that there can be no relative 

displacement between them i.e. they act together as a single anisotropic unit. The artificial structures on the surface 

of the earth are excited during an earthquake, which give rise to violent vibrations in some cases. Engineers and 

architects are in search of such reinforced elastic materials for the structures that resist the oscillatory vibrations. 

Pipkin [19] and Rogers [20] did inspiring work in this field. The idea of continuous self-reinforcement at every point 

of an elastic solid was introduced by Belfield et al. [21]. A lot of research work has been done in fiber reinforced 

thermoelastic medium, during last few years. Notable among them are Singh and Tomar [22] and Abbas et al. [23] 

and Said and Othman [24].  Analysis of transient wave phenomena in a fiber reinforced generalized rotating 

thermoelastic medium with two temperature was discussed by Deswal et al. [25]. Recently, Lata and Kaur [26] 

investigated thermomechanical interactions in homogeneous transversely isotropic magneto thermoelastic medium 

with fractional order heat transfer and hall current, whose bounding surface is subjected to normal force with weak, 

normal and strong conductivity.The theory of heat conduction of a deformable body, formulated by Chen and Gurtin 

[27] and Chen et al. [28,29] depends on two different temperatures: the conductive temperature   and the 

thermodynamic temperature θ. During the past few decades, it is realized that the models of two-temperature 

thermoelasticity may be of more relevance to real situations, as it is more logical to assume a second law in which 

the entropy contribution due to heat conduction is governed by one temperature, that of the heat supply by another. 

Youssef [30] developed a new theory of two-temperature generalized thermoelasticity by using the theory of heat 

conduction in deformable bodies and obtained the uniqueness theorem. Some one dimensional problems in 

generalized two-temperature piezo-thermoelastic medium have been solved by Youssef and Bassiouny [31] and 
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Islam and Kanoria [32]. Kaur and Lata [33] studied the plane wave propagation with combined effect of hall current 

and two temperature in generalized magneto thermoelastic medium. Freshly, Lata and Kaur [34] depicted the 

thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and 

without energy dissipation. The effect of two temperature and relaxation time are presented graphically on the 

resulting quantities.  Thermodiffusion in elastic solids is due to the coupling of fields of temperature, mass diffusion 

and that of strain, in addition to heat and mass exchange with the environment. Nowacki [35-37] developed the 

theory of thermoelastic diffusion and studied dynamical problems of diffusion in solids. Sherief et al. [38] developed 

the theory of generalized thermoelastic diffusion that predicts finite speeds of propagation for thermoelastic and 

diffusive waves. Kuang [39] discussed the variational principles for generalized thermodiffusion theory in 

pyroelectricity. Kumar and Chawla [40] obtained the general steady-state solution and Green’s function for an 

orthotropic piezothermoelastic diffusive medium. The propagation of harmonic plane waves in a homogeneous 

anisotropic piezo-thermoelastic diffusive medium was discussed by Kumar and Sharma [41].  Kaur and Lata [42] 

investigated Rayleigh wave propagation in a transversely isotropic magneto-thermoelastic medium with fractional 

order three-phase-lag heat transfer. In recent times, Kansal [43] proposed the fundamental solution of partial 

differential equations in the generalized theory of thermoelastic diffusion materials with double porosity. 

The study of reflection and refraction phenomena in piezoelectric materials has gained considerable attention due 

to their important role in hydrophone technology, aerospace engineering, civil engineering and in general ultrasonic 

transducer application. Till now, no analysis has been done on wave propagation in a fiber reinforced piezo-

thermoelastic medium with diffusion and two-temperature. Hence, to address this issue, we have solved a two-

dimensional problem in such type of medium. The generalized theory of thermoelasticity with one relaxation time 

has been employed for addressing the mathematical analysis. The efforts of this research are focused on 

systematically studying the various characteristics of reflected waves in the medium when a set of coupled waves 

strikes obliquely at boundary surface of the assumed model and their variations with angle of incidence are 

presented graphically. Further the effects of considered parameters are analyzed in generalized thermoelastic 

medium. Finally, we present a discussion of the results and make some concluding remarks. The results are 

validated by comparing them with those cited in literature as special cases. 

2    NOMENCLATURE 

u dynamic displacement vector, m  

ij  components of stress tensor, 1 2kgm s   

ije  components of strain tensor, 

kke  dilatation, 

ij  Kronecker delta, 

, T   elastic constants, 1 2kgm s   

 , , L T     fiber reinforcement parameters, 
1 2kgm s 

 

  density of the medium, 3kgm   

Ec  specific heat at constant strain, 
1 1Jkg K 

 

ijK  thermal conductivity tensor, 1 1 1Jm K s    

  conductive temperature, K  

0T T    thermodynamical temperature, K 

T absolute temperature, K 

0T  temperature of the medium in its natural state assumed to be 
0

1
T


 , K 

ija  two-temperature parameters, 2m  

0c C C  , 

C non-equilibrium concentration, 
3kgm 
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C0            mass concentration at natural state, 3kgm   

ij  thermoelastic coupling tensor, 1 2 1kgm s K    

ij  thermodiffusive coupling tensor, 2 2m s   

ij  coefficients of linear thermal expansion, 1K   

ijv  coefficients of linear diffusion expansion, 3 1m kg   

a measure of thermodiffusion effect, 2 2 1m s K   

b measure of diffusion effect, 5 1 2m kg s   

ijD  thermodiffusion tensor, 3kgsm   

0  thermal relaxation time, s  

0
 

dffusion relaxation time, s 

D electric displacement vector, 2Cm   

E electric field intensity vector, 2 1kgms C   

  electric potential, 2 2 1kgm s C    

ib  piezoelectric coefficients, 1kg Cm  

ij  dielectric permittivity coefficients, 1 3 2kg m s   

ip  pyroelectric coefficients, 1 2CK m   

ijk  piezoelectric constants, 2Cm   

0  electric potential in the natural state, 2 2 1kgm s C   

3    GOVERNING EQUATIONS   

Following Vashishth and Sukhija [17], Belfield et al. [21] and Kumar and Sharma [41], the constitutive equations 

and the field equations for a homogeneous, transversely isotropic, fiber reinforced piezo-thermoelastic half space 

with diffusion and two-temperature in the context of Lord and Shulman model, are given as follows: 

(i) Constitutive relations 

 

    2 2ij kk ij T ij k m km ij i j kk L T i k kj j k kie e a a e a a e a a e a a e               

,k m km i j ij ij kij ka a e a a c E                       
(1) 

 

where 
, ,

2

i j j i

ij

u u
e


  and   2 2 2

1 2 3 1 2 3, , , 1a a a a a a a    . 

(ii) Equation of motion 

 

, ,ji j iu                 (2) 

  

(iii)  Equation of heat conduction 

 

  , 0 0 ,1 , ,ij ij E ij i j k kK c T u p ac
t

     
 

     
 

               (3) 

 

(iv) Equation of mass diffusion 

 

   0

, , , , 1 ,ij ij ij ij i jij ij i iijD bc D u a b c
t

   
 

     
 

              (4) 
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(v) Gauss equation 

 

 
, 0,i iD   

,i ijk jk ij j i iD e E p b c                  
(5) 

 

where 
,i iE   . 

(vi) Relation between thermodynamical and conductive temperature 

 

, .ij ija                 (6) 

 

Comma notation denotes partial derivatives with respect to spatial co-ordinates and dot notation represents 

derivative with respect to time. 

The thermal conductivity tensor, thermal and diffusion elastic coupling tensor and thermodiffusion tensor satisfy 

the following symmetric relations: 

i. ( ),ij i ij ij jiK K K K    

ii. ( ),ij i ij ij ji        

iii. ( )ij i ij ij ji      , 

iv. ' ( )ij i ij ij jiD D D D  respectively and  i  is not summed. 

4    FORMULATION OF THE PROBLEM  

We consider the problem of a fiber-reinforced piezo-thermoelastic diffusive half space with two-temperature in the 

context of Lord and Shulman theory. The rectangular cartesian co-ordinates are introduced having origin on the 

surface z = 0 and z-axis pointing vertically downwards into the medium, so that the half space occupies the region 

0z  . We choose the fiber reinforcement direction as  0, 0,1a   i.e. along z-axis. The poling axis of the 

piezoelectric material is also assumed to coincide with z-axis. The traction free surface z = 0 is subjected to 

isothermal boundary conditions. Our analysis is restricted to a two dimensional problem in xz-plane so that all the 

considered functions will depend on time t and the co-ordinates x and z. 

Thus  , 0,u wu ,  1 3, 0,E EE  and 0
y





, so that the constitutive relations and field equations reduce to 

the following form: 

 

11 12 33 3 3 ,zz

u w
A A c

x z z


    

  
    

  
             (7) 

 

13 15 ,zx xz

u w
A

z x x


  

   
    

   
             (8) 

 

14 11 31 1 1 ,xx

u w
A A c

x z z


    

  
    

  
             (9) 

  
2 2 2 2 2

14 15 13 16 1 12 2 2
,

u w u c u
A A A A

x z x z x xx z t

 
  

      
     

       
             (10) 

 
2 2 2 2 2 2

13 15 12 33 15 3 32 2 2 2 2
,

w u w c w
A A A

x z z zx z z x t

  
    

       
      

       
             (11) 
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2 2

1 3 0 0 1 3 32 2
1 ,E

u w
K K c T ac p

t t x z zx z

  
    

           
          

          
             (12) 

 
3 3 2 3 3 3 2 3

' '

1 1 3 3 3 1 3 33 2 2 2 2 3 2 3

u w u w
D a b D a b

x x z x x z z x z z z

   
   
          

         
             

  

2 2
0 ' '

1 32 2
1 ,

c c
c b D D

t t x z


     
     
      

            

(13) 

 

1 15 11 ,
u w

D
z x x




   
   

   
             (14) 

 

3 31 33 33 3 3 ,
u w

D p b c
x z z


  

  
    

  
             (15) 

 
2 2 2 2 2

15 33 16 11 33 3 32 2 2 2
0,

w w u c
A p b

x z z zx z x z

  
 

      
      

      
             (16) 

 
2 2

11 332 2
,a a

x z

 
 

 
  

 
             (17) 

 

where 

  

   1 33 112 2 ,T             

   3 33 112 3 4 2 ,L T                 

   1 33 112 2 ,Tv v         

   3 33 112 3 4 2 ,L T v v                

11 12 13 14 15 11 13 16 31 15, 2 4 2 , , 2 , , ,L T L TA A A A A A A A                                   

 

 

To make the field equations simplified, we introduce the following dimensionless transformations 

 

       0 2 0

1 0 1 0, , , , , , , , , , , ,x z u w c x z u w t c t     
           

    33

2

0 0 0 1

1 1 1
, , , , , ,c c D D

T C c


     

 
         

   2 2

11 33 1 11 332

1

1
, , , ,ij ij a a c a a

c
  


              

 

 

where
1

Ec

K


   and 

2 12

1

A
c


 . 

In terms of the above non-dimensional quantities, the governing Eqs. (7)-(17) in xz-plane reduce to (dropping the 

dashes for convenience) 

 

11 12 13 14 ,zz

w u
B B B B c

z x z


 

  
    
  

             (18) 

 

15 16 ,zx

u w
B B

z x x




   
   

   
             

(19) 
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17 11 18 19 10 ,xx

u w
B B B B B c

x z z


 

  
    

  
             (20) 

 
2 2 2 2 2

17 20 15 21 19 102 2 2
,

u w u c u
B B B B B B

x z x z x xx z t

       
     

       
             (21) 

 
2 2 2 2 2 2

15 20 16 12 13 142 2 2 2 2
,

w u w c w
B B B B B B

x z z zx z x z t

         
      

       
             (22) 

 
2 2

1 0 2 3 4 52 2
1 ,

u w
c

t t x z zx z

  
      

        
        

        
             (23) 

 
3 3 2 3 3 3 2 3

7 8 9 10 11 12 13 143 2 2 2 2 3 2 3

u w u w

x x z x x z z x z z z

   
       

       
      

          
 

2 2
0

15 62 2
1 ,

c c c

t t x z
  

    
    

    
             

(24) 

 

1 1 2 ,
u w

D d d
z x x

   
   

   
             (25) 

 

3 3 4 5 6 7 ,
u w

D d d d d d c
x z z




  
    

  
             (26) 

 
2 2 2 2 2

1 2 3 4 5 6 72 2 2 2
0,

w w u c
h h h h h h h

x z z zx z x z

        
      

      
             (27) 

 
2 2

11 332 2
.a a

x z

 
 

 
  

 
             (28) 

 

where 
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    

 

 



K.Jain et. al.                                919 
 

© 2020 IAU, Arak Branch 

5    PLANE WAVE SOLUTION AND REFLECTION PHENOMENA  

Solution of the problem is now sought in the form of the harmonic travelling waves: 

 

      , , , , , , , , , , exp cos sin ,u w c u w c k z x t                          (29) 

 

where k is the wave number,   is angular frequency connected by the relation kv  , v being the phase velocity 

and  sin , cos   denotes the projection of wave normal of incident wave onto the xz-plane. Barred quantities are 

independent of x, z and t. 

Injecting Eq. (29) into Eqs. (21)-(24) and Eqs. (27)-(28), we get the following set of six homogeneous equations 

in , , , , ,u w c    

 

 2

11 12 13 14 15 16 0,F v F u F w F F v F vc                    (30) 

 

 2

21 11 23 24 25 26 0,F u F v F w F F v F vc                    (31) 

 
2 2

31 32 33 34 35 36 0,F vu F vw F v F v F F v c                     (32) 

 

 3

41 42 43 44 45 46 0,F u F w F F v F v F v c                    (33) 

 

61 62 63 64 65 0,F u F w F F v F vc                   (34) 

 

 2 2

51 0.v F v                 (35) 

 

The condition for the existence of non-trivial solution of the system of equations provides us 

 
8 6 4 2 0,v Av Bv Cv D                  (36) 

 

where A, B, C and D are defined in Appendix A. 

Using the transformation 2v   in Eq. (36), we obtain 

 
4 3 2 0.A B C D                     (37) 

 

The auxiliary equation corresponding to Eq. (37) is biquadratic in 2v   with complex coefficients. The 

complex coefficient implies that four roots of this equation are complex and hence the four waves in the medium are 

attenuating waves. The complex phase velocity  1, 2, 3, 4iv i   of each wave can be resolved into propagation 

velocity  1, 2, 3, 4iV i   and attenuation coefficient  1 1, 2, 3, 4iQ i  . For a coupled wave with complex velocity 

i iR iIv v v  , define  2 2 /i iR iI iRV v v v   and 1 2 /i iI iRQ v v    as its phase velocity and attenuation coefficient 

respectively, where the letters R and I in the subscript denote the real and imaginary parts. The same direction of 

propagation and attenuation of these waves makes them homogeneous waves. 

We assume that a set of coupled quasi waves  0P  of amplitude 0A  propagating with the phase velcoity 1V  

becomes incident obliquely at the surface, making an angle 
0  with the normal. In order to satisfy the boundary 

conditions, we predicate that this incident 
0P  wave gives rise to four reflected coupled quasi plane waves, namely, 

qP (quasi-P), qM D (quasi mass diffusion), qT (quasi thermal) and qSV (quasi-SV) waves denoted by 1, 2, 3, 4P  

making angles 1, 2, 3, 4  respectively, with the normal as shown in Fig. 1. 
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Fig.1 

Schematic diagram of the problem showing incident and 

reflected waves. 

 

The full structure of the wave field consisting of the incident and reflected waves, can be written as: 

 

     * * * * * * * * * *

1 1 1 1 1 0 0

1, 2, 3, 4

, , , , , 1, , , , , 1, , , , , ,i i i i i i i

i

w u c a b c d e A P a b c d e A P    



                (38) 

 

where   1 0 0 1exp cos sinoP k z x t        , is the phase factor of the incident wave at angle 
0  with 

0A  as 

amplitude constant,   exp cos sini i i i iP k z x t       ,  1, 2, 3, 4i   are the phase factors of the reflected 

waves corresponding to amplitude constants 
iA  at angles 

i  and * * * *, , ,i i i ia b c d and *

ie  are the coupling parameters 

as mentioned below: 

 

   3 2 *

22 23 24 25*

21

i i i i

i

i

H V H V H V H b
a

H V

  
   ,  

5 3

* 21 22 23

4 2

24 25 26

,i i i

i

i i

I V I V I V
b

I V I V I

 
 

 
   

   2 * * 2 *

51 41 42 43 44* *

2 2

45

, ,
i i i i i i i

i i

i i

V F b G V a G V G V G b
c d

V G V

   
      

 * 2 * 2 *

31 32 34 37 36*

33

.
i i i i i i i

i

i

F V a F V F V F b F V d
e

F V

   
         

 

6    AMPLITUDE RATIOS AND ENERGY RATIOS  

In order to determine the amplitude ratios and energy ratios of reflected waves, we will impose appropriate 

boundary conditions at the surface z = 0 of the considered half space. The boundary conditions are described as 

follows: 

1. Mechanical boundary conditions that the surface of the half-space is traction free 0zz zx   , 

2. Thermal boundary condition that the surface of the half-space is isothermal 0  , 

3. Mass concentration boundary condition that the surface of the half-space is free from mass concentration

 c = 0. 

The above boundary conditions are identically satisfied if and only if 1 1 2 2 3 3 4 4k V k V k V k V   and 

1 1 2 2 3 3 4 4sin sin sin sink k k k      , which can further be written as (extended Snell’s law) 

31 2 4

1 2 3 4

sinsin sin sin

V V V V

  
   . 

Now, owing to boundary conditions with the help of aforementioned extended Snell’s law and incorporating 

expressions of field variables from Eq. (38) into Eqs. (18) and (19), one can obtain the following system of 

simultaneous equations 

 

 , 1, 2, 3, 4 .ij j iA Z Y i j               (39) 
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Here, 
1, 2, 3, 4Z  are the reflection coefficients (ratio of amplitudes of respective reflected waves to the amplitude of 

incident wave) of reflected 
1, 2, 3, 4P  waves given by 

1, 2, 3, 4

0

A

A
 and the entries 

ijA ’s and 
iY ’s are defined below: 

 
* * * *

1 11 12 13 14sin cos cos ,j j j j j j j j j j jA B k a k B k e B c B d            

* *

2 15 15 16cos sin sin ,j j j j j j j j jA B k a B k B k e           

* *

3 4, ,j j j jA b A d   

* * * *

1 11 1 0 1 1 0 12 1 0 1 13 1 14 1sin cos cos ,Y B k a k B k e B c B d            

* *

2 15 1 0 1 15 1 0 16 1 0 1cos sin sin ,Y B k a B k B k e         

* *

3 1 4 1, .Y b Y d             

 

 

Once all the reflected waves are determined, they should be validated to ensure that the energy of incident wave 

is equal to the energy sum of reflected waves, i.e., the sum of energy flux component along the normal direction of 

the boundary should be conserved. At the surface z = 0, the distribution of energy among different reflected waves 

across a surface element of unit area is considered. The general expression of the wave energy flow is defined as 

(Following Kuang and Yuan [15]): 

 

*

3 33 ,

0

.zz zx zP w u D K
T


                   (40) 

 

Now we calculate *P  for the incident and each of reflected waves and hence obtain the energy ratios giving the 

time rate of average energy transmission for the reflected waves to that of the incident wave. The expressions for 

these energy ratios  1, 2, 3, 4iE i   for reflected waves are given by 

 
*

*

0

,
i

i

P
E

P
              (41) 

 

where   

 

 
2* * * * 233

1 2 5

0

cosi i i i i i i i i i i

K
P A A a A e k c Z

T
  
 

    
 

  and  
2* * * *33

0 1 1 2 1 5 1 1 0 1

0

cos ,
K

P Y Y a Y e k c
T

                  

 

where 

 

    * * * *

5 3 4 5 6 7sin cos , 1, 2, 3, 4i i i i i i i iA k d a d d e d e d d i           

  * * * *

5 1 3 1 0 4 5 1 0 6 1 7 1sin cosY k d a d d e d e d d                   
 

 

and all other constants have been defined earlier. We note that these energy ratios also depend on the elastic 

properties of the medium, angle of incidence and amplitude ratios. The phenomena of conservation of the energy at 

the surface will be verified graphically in numerical results and discussion section. 

7    PARTICULAR CASES  

7.1 Neglecting diffusion effect 

By taking 0ij ij ia b D b      in the governing equations and removing mass diffusion equation, the medium 

will be free from diffusion effect and then we shall be left with the relevant reflection problem in a piezo-
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thermoelastic diffusive solid with two-temperature. In this case, the wave corresponding to diffusion i.e. QMD wave 

would not appear in the medium. Following the similar steps as in the general case, the velocities of these reflected 

waves will be obtained by the equation 

 
3 2' ' ' 0.A B C                     (42) 

 

The roots of Eq. (42) give three values of ' 2V   which correspond to three reflected coupled plane waves 

1, 2, 3P , namely, qP, qT and qSV waves propagating with velocities 
1, 2, 3V   respectively and ,A B   and C   are 

defined in Appendix B. 

In this case, the boundary condition c = 0 will disappear and taking into consideration the remaining boundary 

conditions, reflection coefficients can be calculated from following set of equations 

 

 , , 1, 2, 3ij j iA Z Y i j                 (43) 

 

where 
1, 2, 3Z   are reflection coefficients corresponding to 

1, 2, 3P  waves and other constants are defined in Appendix 

B. 

7.2 Neglecting two-temperature effect 

By setting 
11 33 0a a   in governing equations, the two temperatures   and   will coincide and the problem will 

be reduced in a fiber reinforced piezo-thermoelastic diffusive medium. With these appropriate changes, phase 

velocities, reflection coefficients and energy ratios will be obtained from expressions (37), (39) and (41) 

correspondingly in the considered medium. 

7.3 Neglecting piezoelectric effect 

If the piezoelectric effect is removed from the thermoelastic medium, then we shall be dealing a half-space problem 

in a fiber reinforced termodiffusive medium with two-temperature. This can be achieved by substituting 

33 31 15 11 33 3 3 0p b          and removing Gauss equation from the basic equations. Then the phase 

velocities of reflected waves are given by 

 
4 3 2 0,P Q R S                     (44) 

 

where 2V   gives phase velocities 1, 2, 3, 4V  of reflected quasi 1, 2,3, 4P  waves. The amplitude ratios of reflected 

waves are given by 

 

 , , 1, 2, 3, 4ij j iB Z C i j               (45) 

 

where 1, 2, 3, 4Z  are amplitude ratios of reflected quasi 1, 2, 3, 4P  waves. All other constants in above-mentioned two 

equations are defined in Appendix C. 

If we further remove diffusion effect, then our results match with those of Deswal et al. [25] (removing rotation 

effect and making changes in the proposed theory.) 

7.4 Isotropic case 

In order to study the problem of wave propagation and reflection phenomena for an isotropic, piezo-thermoelastic 

medium with diffusion and two-temperature, it is sufficient to set the value of elastic parameters as 

0L T        in the governing equations and treating ijk  as permutation tensor. If we also remove 
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piezoelectric effects in this case, then our results are in quite good agreement with those achieved by Bijarnia and 

Singh [44], by applying changes in the applied theory and boundary conditions. 

8    NUMERICAL RESULTS AND DISCUSSION  

With an aim to discuss the behaviour of wave propagation through a fiber reinforced transversely isotropic piezo-

thermoelastic diffusive medium with two-temperature in greater detail, a numerical analysis is carried out. The 

numerical work has been carried out with the help of computer programming using the software MATLAB. For the 

purpose of numerical computation, the material constants of problem are taken as (Followig Abbas et al. [23]): 

 
10 1 25.65 10 kgm s    , 10 1 22.46 10T kgm s    , 10 1 25.66 10L kgm s    , 10 1 21.28 10 kgm s     , 

10 1 2220.90 10 kgm s    ,  3 1 10.787 10Ec Jkg K    , 3 1 1

1 0.0921 10K Wm K   , 

3 1 1 1

3 0.0963 10K Jm K s    , 4 1

11 0.017 10 K    , 4 1

33 0.015 10 K    , 
0 0.02 s  , 

32660 kgm  , 
0 293T K , 2

11 0.02a m , 2

33 0.03a m  

 

 

Piezoelectric and diffusion parameters are taken as (Following Sharma et al. [14] and Kumar and Sharma [41]): 

 
4 2 2 11.2 10a m s K   , 6 5 1 20.9 10b m kg s   , ' 8 3

1 0.85 10D kgsm   , ' 8 3

3 0.8 10D kgsm   , 

4 3 1

11 1.98 10v m kg    , 4 3 1

33 1.9 10v m kg   , 0 0.2s  , 2

33 0.347Cm  , 2

31 0.160Cm   , 

 2

15 0.138Cm   , 11 2 1 3 2

11 8.26 10 C kg m s     , 11 2 1 3 2

33 9.03 10 C kg m s     ,  

6 1 2

3 2.94 10p CK m     , 2 2 1 1 3

0 3 010 , 0.5 , 10 .kgm s C b kg Cm C kgm        

 

 

with these numerical values of the parameters, the values of different characteristics of reflected waves are 

computed and plotted graphically for the frequency 10  rad s
-1

. From application point of view, we have divided 

the plots in seven categories. In first category (Figs. 2(a-d)) and second category (Figs. 3(a-d)), we have depicted the 

variations of reflection coefficients and  phase velocities respectively, by taking into account both the factors, 

namely, two-temperature parameter and piezoelectricity. Third category (Figs. 4(a-d)) and fourth category (Figs. 

5(a-d)) exhibit the behaviour of reflection coefficients and phase velocities of reflected waves in transversely 

isotropic and isotropic medium. Fifth category (Figs. 6(a-d)) has been plotted to observe the variations of phase 

velocities when diffusion parameters are neglected from the medium considered. Sixth category (Figs. 7(a-d)) is 

meant to analyze the effects of incident angle and frequency on different reflection coefficients. This category 

elucidates three dimensional plots of reflection coefficients against angle of incidence  00 90     and 

frequency  1 10  . Seventh category (Fig. 8) is plotted to exhibit the profiles of energy ratios with verification 

of energy conservation law in general case. 

8.1 Category I 

In Figs. 2 (a-d), we have examined the variations of amplitude ratios against angle of incidence for three different 

cases: (i) general case, (ii) without two-temperature and (iii) without piezoelectric effect. Fig. 2(a) is plotted for 

amplitude ratio 1Z . It is clear from the figure that in the general case and in the absence of two-temperature 

parameter, the curves of amplitude ratio 1Z  begin with their minimum value and then go on increasing gradually 

attaining maximum value unity near grazing incidence. However, the opposite scenario is observed in the absence of 

piezoelectric effects. The numerical values of 
1Z  are enhanced a little in the presence of two-temperature while 

those are weakened in the presence of piezoelectricity. 

Effects of two-temperature and piezoelectricity are quite pertinent on amplitude ratio 2Z  and can be noticed 

from Fig. 2(b). In all the three cases, amplitude ratio 2Z  starts with its maximum value and then diminishes to zero 

following a decreasing trend. In the general case and in the absence of piezoelectricity, amplitude ratio 2Z  
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decreases smoothly while in the absence of two-temperature, it decreases sharply. It is observed that the presence of 

two-temperature parameter diminishes the amplitude ratio 
2Z  numerically. However, piezoelectricity exhibits 

mixed kind of effect. Piezoelectricity has an increasing effect upto 
0 40    and a decreasing effect after 

0 40   on amplitude ratio 
2Z . 

Fig. 2(c) depicts the variations of amplitude ratio 
3Z . From the figure, it can be noted that the modulus of 

amplitude ratio 
3Z  is maximum at 0° angle of incidence. It then decreases sharply and takes its minimum value zero 

near grazing incidence. It is also assessed that the amplitude ratio 
3Z  shows similar pattern in the entire range of 

incident angle for all the three cases. However, dissimilarity lies on the ground of magnitude. Presence of two-

temperature magnifies the values of amplitude ratio 
3Z . The same observation holds for the piezoelectric effect. 

The variation of modulus values of amplitude ratio 
4Z  are illustrated in Fig. 2(d). Numerical values of 

4Z  first 

increase from its minima (zero value) to maxima near 
0 84   and then go on decreasing upto grazing incidence. 

The behaviour of amplitude ratio 4Z , for all the three cases, is alike with significant difference in their degree of 

sharpness. The effect of two-temperature is negligible for the amplitude ratio 4Z  whereas piezoelectricity has 

oscillatory effect on this amplitude ratio. The maximum impact zone of piezoelectricity is between 
0 45    and 

0 85   . 
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(d) 

Fig.2 

Variations of moduli of amplitude ratios of reflected waves to observe the effect of two-temperature and piezoelectricity. 

8.2 Category II 

To get acquainted with the effects of two-temperature and piezoelectricity on the phase velocities of reflected waves, 

we refer to Figs. 3 (a-d). Fig. 3(a) is plotted to display the variations of modulus of phase velocity V1 of reflected qP 

wave versus angle of incidence. Phase velocity 1V acts as an increasing function of angle of incidence in the whole 
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range of incident angle. This velocity begins with its minima near normal incidence and attains its maxima near 

grazing incidence in all the three cases. It can be noticed from the figure that numerical values of phase velocity 
1V  

are greater in the general case as compared to those in the absence of piezoelectric effect. Thus piezoelectricity 

causes an increasing effect on 
1V . The effect of two-temperature seem to be negligible on 

1V  as the curves of  
1V  

seem to coincide in the presence and absence of two-temperature. The small difference between absolute values of 

this velocity profile in the two cases exhibit the little impact of two-temperature. 

Fig. 3(b) is plotted with the purpose to show the change in phase velocity 
2V of reflected qMD wave with angle 

of incidence. Phase velocity 
2V  attains its maximum value near 

0 0   and then goes on decreasing uniformly 

with angle of incidence, in all the three considered cases. Here Piezoelectricity has no effect on phase velocity 
2V . 

However, two-temperature acts as an increasing agent for the velocity 
2V  of reflected qMD wave. 

Fig. 3(c) gives information about the profile of phase velocity 
3V which corresponds to reflected qT wave. As 

indicated in the figure, trends of phase velocity 
3V  are similar in nature in the entire range with significant 

difference in their magnitudes. The velocity decreases with increase in the angle of incidence. It is evident from the 

figure that two-temperature has an increasing effect on phase velocity
3V . The information is reversed for the 

piezoelectric effects. 

The effects of two-temperature and piezoelectricity on modulus values of phase velocity V4 have been shown in 

Fig. 3(d). First the velocity increases from its minima to maxima attaining maximum value near 
0 72   and then 

decreases from maxima to minima. The profile is similar in all the three cases, having dissimilarity on the basis of 

magnitude and degree of sharpness of curves. In the absence of piezoelectricity, it increases more rapidly as 

compared to the presence of piezoelectricity. Piezoelectricity acts to decrease the phase velocity 
4V while two-

temperature has negligible effect on the velocity profile. 
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Fig.3 

Variations of moduli of phase velocities of reflected waves to observe the effect of two-temperature and piezoelectricity. 
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8.3 Category III 

In order to exhibit the effect of anisotropy, the variations of amplitude ratios with angle of incidence of coupled 

longitudinal quasi wave for two different cases (transversely isotropic medium and isotropic medium) are expressed 

in Figs. 4(a-d). The solid line corresponds to transversely isotropic medium (general case) and dashed line is 

corresponding to isotropic medium. Figs. 4(a-b) describe profiles of amplitude ratios 
1Z and 

2Z respectively. Fig. 

4(a) depicts that in both the cases, modulus values of Z1 increase in a similar fashion with the increase in angle of 

incidence, but at different rates. Amplitude ratio 1Z  rises at larger rate in the presence of anisotropy. Moreover, 

anisotropy acts to contract the numerical values of amplitude ratio Z1 in the range 
00 62     and enhances in the 

remaining range. From the plot 4(b), we observe that in both the media, amplitude ratio 
2Z  begins with its 

maximum values and then starts falling with different rates. In the transversely isotropic case, the amplitude ratio 

falls at larger rate. Presence of anisotropy magnifies amplitude ratio 
2Z  before 

0 68   and minifies after 

0 68   . 

Anisotropy has pronounced effect on the amplitude ratios 3Z and 4Z  also. Fig. 4(c) is characterizing that 

amplitude ratio 3Z  goes on decreasing with increment in the angle of incidence, in the presence and absence of 

anisotropy. The main difference is that it diminishes smoothly in the isotropic case while it diminishes sharply in the 

transversely isotropic case. The absence of anisotropy acts to lower down the curve of 3Z  before 
0 34    and 

elevates the curve after 
0 34   . Fig. 4(d) emphasizes that amplitude ratio 4Z  is zero near normal incidence and 

non zero near grazing incidence, in both the cases. However, anisotropy obeys mixed kind of effect on this 

amplitude ratio. 
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Fig.4 

Variations of moduli of amplitude ratios of reflected waves to observe the effect of anisotropy. 

8.4 Category IV 

Figs. 5 (a-d) take into account the effect of anisotropy on phase velocities of reflected waves in the following media: 
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i. Transversely isotropic medium 

ii. Isotropic medium 

In the considered medium, z axis is the axis of symmetry so that the material properties are same in all the 

directions within the plane perpendicular to the axis, therefore the medium is transversely isotropic and phase 

velocities of reflected waves will vary with the direction of propagation of incident wave. The medium is elastically 

isotropic when there are no preferred directions in the medium. In that case, phase velocities of reflected waves will 

be independent of incident angle. 

In all the figures of this set, the dashed curves are constant lines while the smooth ones vary with incident angle 

manifesting the effect of anisotropy, as solid curves correspond to the profiles of phase velocities in transversely 

isotropic medium while dashed curves are phase velocities in isotropic medium. From the plot 5(b), we observe that 

numerical values of phase velocity V2 of reflected qMD wave are larger in the case of transversely isotropic medium 

in comparison to the isotropic medium while an opposite scenario is observed for phase velocities 
1V , 

3V and 

4V of reflected qP, qT and qSV waves in Figs. 5(a), (c) and (d) respectively. Thus anisotropy gives rise to the values 

of phase velocity of reflected qMD wave while minifies to those of reflected qP, qT and qSV waves. 
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Fig.5 

Variations of moduli of phase velocities of reflected waves to observe the effect of anisotropy. 

8.5 Category V 

Figs. 6(a-d) are plotted to demonstrate the variations of phase velocities of reflected waves under two different 

models, namely, with and without diffusion. In Fig. 6(a), we have elucidated the pattern of variation of phase 

velocities 1V and 
'

1V corresponding to qP wave in the presence and absence of diffusion respectively. Phase 

velocity obeys an increasing pattern in the presence of diffusion while a decreasing pattern in the absence of 

diffusion with increase in the angle of incidence which may not be very much clear from the figure as difference in 

the numerical values of the two velocities is very large. The values of phase velocity are found to be small in 

magnitude in the absence of diffusion which clearly points out that the diffusion parameters have appreciably 

increased the magnitude of phase velocity of qP wave. 
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In Fig. 6(b), we have plotted the modulus of phase velocity corresponding to reflected qMD wave as a function 

of angle of incidence. In this figure, we have only one curve of phase velocity 
2V corresponding to the presence of 

diffusion, because in the absence of diffusion, the quasi mass diffusion wave (qMD) will disappear from the 

medium. Presence of diffusion displays significant effect on phase velocity 
3V of reflected qT wave. Fig. 6(c) 

notifies that the phase velocity goes on decreasing upto 
0 85   , in both the cases. After that, the curve 

3V becomes zero while the curve '

2V moves upward and becomes stationary. Diffusion causes an increasing effect 

on this phase velocity except in the range
086 90    . Fig. 6(d) points out that in both the cases, velocities of 

reflected qSV wave follow similar kind of trend against angle of incidence with difference in their rate of rise and 

fall. Moreover, diffusion parameters lower down this phase velocity in the range 
00 86    and elevate it 

after
0 86   . 
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Fig.6 

Variations of moduli of phase velocities of reflected waves in the presence and absence of diffusion. 

8.6 Category VI 

Figs. 7 (a-d) provide the three dimensional plots of amplitude ratios of reflected waves against frequency and 

incident angle as amplitude ratios depend upon angle of incidence as well as on the frequency of incident wave. The 

range of frequency and incident angle is taken as 1 10   and 00 90     respectively. Fig. 7(a) indicates that 

an increase in the values of frequency increases the amplitude ratio 1Z of reflected qP wave. Similarly the angle of 

incidence causes an increasing effect on the profile of amplitude ratio 1Z , no matter what the value of frequency is 

in the considered range. Further 1Z  remains in the neighbourhood of unity for all the considered values of 

frequency and angle of incidence. 

Fig. 7(b) reveals the fact that the profile of amplitude ratio 2Z  is similar for all the values of frequency. Figure 

indicates that frequency has a decreasing effect on the amplitude ratio 2Z  of reflected qMD wave. It means the 
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higher is the frequency, the lower are the values of 
2Z . In the same way, angle of incidence also causes a 

decreasing effect on 2Z . Similar observation is noticed for amplitude ratio 3Z  from Fig. 7(c). Both frequency 

and angle of incidence have remarkable effect on amplitude ratio 
4Z . Before 

0 80   , frequency has mixed kind 

of effect on amplitude ratio 
4Z  and after 

0 80   , 
4Z  enjoys decreasing effect of angular frequency. Numerical 

values of Z4 first increase from its minima (zero value) to maxima near 
0 80    and then go on decreasing upto 

grazing incidence. Thus angle of incidence obeys oscillatory effect on amplitude ratio 4Z . 
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Fig.7 

3D plot of amplitude ratios against frequency and angle of incidence. 

8.7 Category VII 

Fig. 8 depicts the variations of modulus of energy ratios of reflected waves with the angle of incidence of coupled 

longitudinal wave propagating with velocity V1. Value of energy ratio 1E  remains approximately equal to unity, 

irrespective of the variations of angle of incidence. The energy ratios 2E , 3E and 4E  corresponding to the 

waves with speeds V2, V3 and V4 are so small as compared to the energy ratio 1E  corresponding to the wave 

traveling with speeds V1, that we have drawn each of them by mounting up their original values by 10
6
, 10

8
 and 10

11
 

respectively. The energy ratios 2E  and 3E  behave like decreasing functions throughout the whole range of 
0 . 

The energy ratio 4E  is approximately zero upto 0 77   , increases with increasing angle of incidence till 

0 82    and then decreases in rest of the range. In the calculation of energy ratios, it has also been verified that the 

sum of energy ratios is equal to unity for each angle of incidence. In graphical representation also, 
4

1

1i

i

E


  at 

each angle of incidence, illuminating the fact that there is no loss of energy during reflection of waves. 
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Fig.8 

Variations of modulus of energy ratios against angle of 

incidence. 

9    CONCLUSIONS 

In the present model, we have explored the possibility of plane wave propagation in a fiber reinforced piezo-

thermoelastic diffusive medium with two-temperature. From the analysis of the illustrations, we can arrive at the 

following conclusions: 

    Piezoelectricity has a salient effect on all the reflection coefficients of reflected waves which can be readily 

seen from Figs. 2(a-d). 

   Two-temperature parameter has pronounced effect on all the reflection coefficients and phase velocities. 

Behaviour of all the amplitude ratios and phase velocities is similar having dissimilarity in numerical 

values in the presence and absence of two-temperature parameter. 

   Presence of piezoelectric effect is playing a vital role in all the physical quantities. Its presence diminishes 

the magnitudes of velocity 3V  and 4V  and increases the velocity 1V . However it shows negligible 

impact on phase velocity 2V . 

    Another important phenomena observed is that phase velocities of all the reflected waves are constant in 

the absence of anisotropy which is physically reasonable as material properties are independent of direction 

in an isotropic medium. 

   It is found that four waves vibrate with different phase velocities in a two-temperature fiber reinforced 

piezo-thermoelastic diffusive medium. The number of reflected waves reduces to three in the absence of 

diffusion as qMD wave will disappear in that case which is righteous from the physical standpoint. 

   All the reflection coefficients  1, 2, 3, 4iZ i  are remarkably influenced by angular frequency. Increase 

in the values of angular frequency acts to increase the reflection coefficient 1Z  while decrease reflection 

coefficients 2Z  and 3Z . It has both decreasing and increasing effects on reflection coefficient 4Z . 

    It is worth to observe that during whole range of incidence of set of coupled longitudinal wave of speed V1, 

sum of the modulus values of energy ratios is approximately unity, thus proving the law of conservation of 

energy. 

A significant number of both natural and man-made piezoelectric materials such as barium titanate, quartz, and 

PZT are available, which have myriads of applications such as manufacture of transducers, sensors, actuators, 

ultrasonic motors, resonators, microelectromechanical systems (MEMS), just to name a few. However, these 

piezoelectric materials have certain deficiencies, such as low piezoelectric constants, high-specific acoustic 

impedance, and shape control (due to their weight). To overcome these inhibitions and to obtain improvised 

effective thermal and electrical properties in comparison to those of piezoelectric and pyroelectric materials, fiber 

reinforced piezo-thermoelastic materials have come to be of widespread use now-a-days. Enhanced mechanical, 

thermal and electrical properties can be attained by systematically adapting the most advantageous properties of the 

constituents of composite materials. Although studies on reflection at boundaries of piezoelectric and thermoelastic 

materials have been performed previously, the integration of piezo-thermoelastic fiber reinforced composite 

materials with thermodissusive properties, in this work provides a better and more realistic explanation of the actual 

phenomena. The findings of this study have vast applications in scientific and engineering fields which include 
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geophysics, mining in oil industries, nondestructive evaluation and earthquake engineering, etc. These applications 

include developing new and efficient smart composites with enhanced stability and control, wireless 

communication, signal processing and creating intelligent structures, e.g. transducers, actuators, resonators, etc. 

using piezo-thermoelastic fiber reinforced composite materials which can be used to detect the responses of a 

structure by measuring the electric charge, reduce excessive responses by applying additional electric or thermal 

forces, etc. 
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25 27 36 37 26 31 31 45 32 36 41 46 31, ,G F F F F G F F G F F F F      , 

33 32 45 34 36 42 46 32 35 34 45, ,G F F G F F F F G F F    , 

36 37 45 46 34 36 44 37 36 47 37 43,G F F F F F F G F F F F      , 

11, 2, 3, 5, 6, 7 21, 2, 3, 5, 6, 7 31, 2, 3, 6, 7, ,F F F  and 41, 2, 4, 5, 6, 7F  are same as defined in Appendix A. 

* * *

1 11 13 14sin cosj j j j j j j jA B k a k B c B d       , 

*

2 15 15cos sinj j j j j jA B k a B k     ,  
* *

3 4,j j j jA b A d  , 

* * *

1 11 1 0 1 1 0 13 1 14 1sin cosY B k a k B c B d        , 
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*

2 15 1 0 1 15 1 0cos sinY B k a B k     ,  * *

3 1 4 1,Y b Y d    , 

   3 2 *

22 23 24 25*

21

j j j j

j

j

G V G V G V G b
a

G V

  
  , 

 2 *5 3
5121 22 23* *

4 2 2

24 25 26

,
j jj j j

j j

j j j

V F bH V H V H V
b c

H V H V H V

 
  

 
, 

 
 

* 2 *

32 31 34 37*

2

36

1, 2, 3, 4
j j j j j

j

j

F V F V a F V F b
d j

F V

  
  . 
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