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 ABSTRACT 

 In this research static deflection and free vibration of homogeneous 

Nano beams coated by a functionally graded (FG) layer is 

investigated according to the nonlocal elasticity theory. A higher 

order beam theory is used that does not need the shear correction 

factor. The equations of motion (equilibrium equations) are 

extracted by using Hamilton’s principle. The material properties 

are considered to vary in the thickness direction of FG coated layer. 

This nonlocal Nano beam model incorporates the length scale 

parameter (nonlocal parameter) that can capture the small-scale 

effects. In the numerical results section, the effects of different 

parameters, especially the ratio of thickness of FG layer to the total 

thickness of the beam are considered and discussed. The results 

reveal that the frequency is maximum for a special value of 

material power index. In addition, increasing the ratio of thickness 

of FG layer to the total thickness of the beam increases the static 

deflection and decreases the natural frequencies. These results help 

with the understanding such coated structures and designing them 

carefully. The results also show that the new nonlocal FG Nano 

beam model produces larger vibration and smaller deflection than 

homogeneous nonlocal Nano beam.  

 © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 INCE the discovery of carbon nanotubes by Iijima [1] in 1991, nanostructures have been increasingly used due 

to their large Young’s modulus, yield strength, flexibility, and conductivity properties (Zhang, Wang, Duan, 

Xiang, & Zong, [2]). Nanostructures can be modeled using the molecular dynamics or the continuum mechanics. 

Compared to the molecular dynamics model, the continuum mechanics approach is widely used due to its 

computational efficiency and simplicity. Due to the presence of small scale effects at the nano scale, size dependent 

continuum mechanics models such as the strain gradient theory (Nix & Gao, [3]), couple stress theory 

(Hadjesfandiari & Dargush, [4]), modified couple stress theory (Asghari, Kahrobaiyan, & Ahmadian, [5]; Ma, Gao, 
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& Reddy, [6]; Reddy, [7]), and nonlocal elasticity theory (Eringen, [8]; Eringen & Edelen, [9]; Eringen, [10]) are 

used. Among these theories, the nonlocal elasticity theory initiated by Eringen is widely used. Unlike the local 

theories which assume that the stress at a point is a function of strain at that special point, the nonlocal elasticity 

theory assumes that the stress at a given point is a function of strains at all points in the continuum. (Huu-Tai Thai, 

[11]). Nonlocal elasticity has been used to study wave propagation in composites, elastic waves, dislocation 

mechanics, the dynamic and static analysis of carbon nanotubes and nanorods (A.C. Eringen,[12]; A.C. 

Eringen,[13]; A.C. Eringen, [14]; A.C. Eringen, [15]; J. Peddieson, [16]; L.J. Sudak, [17]; M.C. Ece, [18]; P. Lu, 

H.P. Lee, C. Lu, P.Q. Zhang, [19]; M. Aydogdu, [20]). Molecular dynamic simulations and nonlocal continuum 

models were compared for wave propagation in single- and double-walled carbon nanotubes (Y. Hu, K.M. Liew, Q. 

Wang, X.Q. He, B.I. Yakobson,[21]) and the elastic buckling of single layered graphene sheet(A. Sakhaee-

Pour,[22]). Good agreement was observed between the molecular dynamic simulations and the nonlocal continuum 

modeling. (Metin Aydogdu, [23]). In the classical (local) elasticity theory, the stress at a given point depends only 

on the strain at the same point whereas in the nonlocal elasticity theory, the stress at a point is a function of strains at 

all points in the continuum. In this way, the nonlocal continuum theory contains information about the long range 

forces between atoms, and the internal length scale is introduced into the constitutive equations including a material 

parameter to capture the small scale effect. In this context, the application of the classical continuum theory to the 

analysis of nanostructures is not appropriate since the classical theory lacks the accountability for the size effects 

arising from the small-scale. (M. Simsek, H.H. Yurtcu, [24]). A functionally graded material (FGM) is described by 

a continuous material variant in one or more dimensions by steadily changing the microstructure from one material 

to another for the optimum distribution of component materials. FGMs present numerous profits (Byrd & Birman, 

[25]) including the improved stress spreading, the enhanced thermal resistance, the higher fracture toughness, and 

the inferior stress intensity factors that introduce them as very eye-catching choices in various engineering fields. 

This category of materials affords the specific profits of both ingredients (O.Rahmani, O.Pedram, [26]). Functionally 

graded materials are such desirable ones that would be used in industrial applications variously such as, 

biomedicines, electronics, optics, etc.; therefore, this huge amount of requirments have made researchers to study 

this topic more. (Ebrahimi, F., A. Rastgoo, and A. Atai, [27]; Ebrahimi, F., M.H. Naei, and A. Rastgoo,[28]; 

Ghadiri, M., et al,[29]; Navvab Shafiei, Majid Ghadiri & Mohammad Mahinzare ,[30]). Following the development 

of the material technology, functionally graded materials, FGM, are extensively used. Reddy (Reddy JN, Chin CD, 

[31]) and Praveen (Praveen GN, Reddy JN, [32]) studied the thermo-mechanical behavior of FG plates. They used a 

through-the-thickness variation of the material properties according to a power law. FGMs are used in micro/ nano-

electro-mechanical system (MEMS/NEMS) and atomic force microscopes (AFMs) to achieve a high-level 

sensitivity and the desired performance. Pisano et al. (Pisano AA, Sofi A, Fuschi P, [33]; Pisano AA, Sofi A, Fuschi 

P ,[34]) exploited the nonlocal finite element method for analyzing homogeneous and nonhomogeneous nonlocal 

elastic 2D problems.( M.A.Eltaher,Samir A, Emam,F.F.Mahmoud,[35]). Song et al. (Song M., Yang J., Kitipornchai 

S,[36]) investigated the static bending and compressive buckling behavior of FG multilayered plates reinforced by 

graphene nanoplatelets by using the FSDT and the Halpin-Tsai micromechanical model. The effect of graphene 

platelets on the thermal buckling and post buckling analyses of FG multilayered nanocomposite plates was 

investigated by Wu et al. (Wu H., Kitipornchai S., Yang J.,[37]) according to the FSDT. FGMs offer great promise 

in applications where the operating conditions are severe. For example, wear-resistant linings for handling large 

heavy abrasive ore particles, rocket heat shields, heat exchanger tubes, thermoelectric generators, heat-engine 

components, plasma facings for fusion reactors, and electrically insulating metal/ceramic joints. The mechanical and 

thermal response of materials with spatial gradients in composition and microstructure is of considerable interest in 

numerous technological areas such as tribology, optoelectronics, biomechanics, nanotechnology and high 

temperature technology. They are also ideal for minimizing thermo-mechanical mismatch in metal–ceramic 

bonding. Gradations in microstructure are also commonly found in biological cellular materials such as wood and 

bone, where biological adaptation has distributed the strongest microstructure in regions that experience the highest 

stress. Functionally graded materials are produced using the advanced manufacturing techniques, including powder 

metallurgy, chemical vapor deposition, centrifugal casting, and so on. Today the development of mechanical and 

electronic systems in a compact case such as micro-electro-mechanical-systems (MEMS) has become more 

important, because this essential part of technology increases the speed and compact size of industrial equipment 

(Ali Khanchehgardan, Ghader Rezazadeh, Rasoul Shabani,[38]). In the earlier research, the material properties of 

the nanobeam were taken as homogeneous and isotropic. Very recently, the Nano beam made of functionally graded 

materials (FGMs) received extensive attention, which represents a type of composite materials made of two or more 

different materials. Now the FGMs have broadly spread into MEMS and NEMS, which endows MEMS and NEMS 

with more sensitive and advanced functionalities. Their effective properties can be tailored with smooth changing. In 

contrast, the combing properties of laminated composites vary suddenly. The mechanical properties of FGM 
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structures, such as buckling, post-buckling, free vibration, forced vibration and thermal vibration have been 
extensively studied  )Zhen W, Wanji C,[39];;Reddy J,[40];Ke L-L, Wang Y-S, Yang J, Kitipornchai S.,[41];Jia X, 

Ke L, Feng C, Yang J, Kitipornchai S.[42];Li L, Hu Y.,[43]; Chen D, Yang J, Kitipornchai S. ,[44]; Arbind A, 

Reddy J. ,[45]; Reddy J. ,[46]; Yang J, Wu H, Kitipornchai S. ,[47]; Wu H, Kitipornchai S, Yang J. ,[48]; Simsek 

M,[49]; Simsek M, Yurtcu H ,[24]; Ke L-L, Yang J, Kitipornchai S, Wang Y-S ,[50]; Ke L-L, Yang J, Kitipornchai 

S, Bradford MA. ,[51]; Kitipornchai S, Ke L, Yang J, Xiang Y.,[52]; Farokhi H, Ghayesh MH, Gholipour A. ,[53]; 

Shafiei N, Kazemi M. ,[54]; Lee JW, Lee JY. , [55]). It is noted that, in most published researches, the material 

properties of the FGMs were assumed to vary in one direction. Obviously, this is not ideal; the unidirectional FG 

structures may not be suitable for various complex engineering applications. Some multi-directional FG materials 

may be required, which can provide great flexibility in the design of advanced devices ( Tianzhi Yang, Ye Tang, 

Qian Li, Xiao-Dong Yang,[56]). Variation in material properties through the thickness of FGM plates or beams 

results in quite different behaviors for plates or beams made of pure materials under both static and dynamic loading 

conditions. For example, bifurcation buckling generally cannot occur for FGM plates or beams with simply 

supported edges due to in plane loading. Transverse deflection is initiated, regardless of the magnitude of the 

loading, as is often the case with laminated composite materials (Leissa AW, [57]; Leissa AW, [58]; Qatu MS, 

Leissa AW,[59]). Shen (Shen HS, [60] and Aydogdu (Aydogdu M, [61] considered the phenomenon. Shen (Shen 

HS, [60]) stated that bifurcation buckling does not take place for FGM rectangular plates with simply supported 

edges due to the bending–stretching coupling. In the past, several analyses had been reported concerning the 

buckling of FGM plates, which cannot exist physically, as pointed out by Qatu and Leissa (Qatu MS, Leissa AW, 

[59]). The flatness conditions of an FGM plate during the pre-buckling stage were presented by Aydogdu (Aydogdu 

M, [61]). However, few researchers have further studied these special behaviors of FGM plates or beams in detail. 

Shen (Shen HS, [62]) analyzed the influence of various factors such as thermal loading and in plane boundary 

conditions on the nonlinear bending of FGM plates. Nonlinear bending and post-buckling of an FGM circular plate 

under a thermal loading and uniform radial pressure, respectively, were investigated by Ma and Wang (Ma LS, 

Wang TJ, [63]; Ma LS, Wang TJ, [64]). They found that transverse deflections occur immediately when an in-plane 

compressive load is applied to a simply supported FGM circular plate (S. Ma, D.W. Lee, [65]). 

In general, in this paper the free vibration and static bending of homogeneous Nano beams coated by a 

functionally graded (FG) layer is presented by using the nonlocal elasticity theory. The homogeneous structures 

coated by FG layers are used widely in industrial applications, but a few studies considered their mechanical 

behaviors. Unlike the local theory, the nonlocal elasticity considered that stress at a given point is not only 

dependent on the strain at that point, but is a function of strain at the neighboring points. The equations of motion 

are procured by nonlocal differential constitutive relations of Eringen and Hamilton’s principle. The material 

properties of FG layer are defined by power-law form. In the numerical results section, the effects of different 

parameters, especially the ratio of thickness of FG layer to the total thickness of beam are considered and discussed. 

2    MATHEMATICAL FORMULATION 

2.1 Nonlocal beam theories  

Eringen first introduced nonlocal beam theory. The nonlocal theory states that the stress at a point x' not only 

depends on the strain at the same point but also on strains on those all points of the body. Nonlocal stress tensor   

at point x is expressed by: 

  

   ( ' , ) ( ')
v

k x x s x dx  (1) 

 

where k is  ( ')s x  the classical macroscopic stress tensor at point is  'x,  he nonlocal modulus or kernel 

function,  'x x  is the Euclidean distance, and   is a material constant as define   0e a

L
 where a is an internal 

characteristic length parameter and 
0e  is a constant appropriate to each material and L is the external characteristic 

length. The simple form of nonlocal constitute relations is proposed by Eringen as: 

 


   

2

2
( )x

x x

d
E z

dx
 (2a) 
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
   

2
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( )xz

xz xz

d
G z

dx  

(2b) 

 

where   
2

0e a  is the nonlocal parameter , E and 
 


2 1

E
G

v
 are the elastic and shear modulus of the 

beam(where ν is the Poisson’s ratio) ,  xx
 and  xx

 are the axial stress and strain,  xz
 and  xz

  are the shear stress 

and strain. When the nonlocal parameter is taken zero ( 0 0e a ), the constitutive relations of the local classical 

continuum theory is obtained. Choice of 
0e a  is crucial to ensure the validity of nonlocal FG Nano beam. A 

conservative estimate of the scale coefficient 
0 2.00e a nm  for a single wall carbon nanotube is proposed (Wang & 

Wang [66]). 

2.2 Functionally graded material  

Fig. 1 shows a functionally graded simply supported beam of length L, width b and thickness h. The material 

properties of beam vary continuously through the thickness direction. The thickness of the homogenous part is 
0h  

and the thickness of the FG material is  0h h  . In general, the distribution of a material property P through the 

thickness can be given as: 

 




  
 



0

0

( ) ( )
2( )( )

s

k

a s s

P

hP z z h
P P P

h h

         
   
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0

0

2 2

2 2

h hz h

h hh z
 (3) 

 

where k is the non–negative number that it is the power law exponent which dictates the material variation profile 

through the thickness of the beam. Pa and Ps are the material properties of alumina and steel. P (z) can be expressed 

in terms of the young’s modulus, density and shear modulus as follows: 
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Fig.1 

Schematic of the FG Nano beam. 
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2.3 Kinematics 

In this survey, the Nano beam displacement theory is as follows:

  

2

1

1 5
( , , ) ( , ) ( ) [ ( ) ]

4 3

b sdw dwz
u x z u x z z z

d
t t

x h dx
                      (4a) 

 

2 ( , , ) 0u x z t                    (4b) 

 

3( , , ) ( , ) ( , )b st tu x z w x w x t                    (4c) 

 

where u, wb and ws are the axial displacement, bending and shear components of transverse displacement, 

respectively. Then nonzero axial and shear strains are given as: 

 
2 2

2 2

b s

x

d w d wdu
z f

dx dx dx
                      (5a) 

 

s

xz

dw
g

dx
                    (5b) 

 

where 

 

25
( )

4 3

z z
f z

h
                     (6a) 

 

25
1 5( )

4

df z
g

dz h
                      (6b) 

2.4 Equations of motion 

The governing equations will be obtained by using Hamilton’s principle: 

 

0
( ) 0

T

U V K td                       (7) 

 

where U , V and K  are the variation of strain, potential and kinetic energy, respectively. 

The Hamilton Principle states that the total kinetic, potential and strain energy in a certain period is equal to 0. 

With regard to minimum energy principle, if a small change is made in a system in a short period, the system will 

return back to its previous condition and will remain stable. The variation of strain energy is given as: 

 
2 2

2 20 0
( ) ( )

L L
b s s

x x xz xz b s
A

d w d w d wd u
U dAdx N M M Q dx

dx dxdx dx

  
                              (8) 

 

where N is the axial normal force, Q is the shear force; Mb and Ms are the bending and shear components of moment. 

These stress resultants are defined as: 

 

x
A

N dA                    (9a) 

 

b x
A

M z dA                    (9b) 
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s x
A

M f dA                    (9c) 

                                                                                                                         

xz
A

Q g dA                   (9d) 

 

The variation of potential energy is given as: 

 

0
( )

L

b sV q w w dx                     (10) 

 

where q is the transverse load. 

The variation of kinetic energy is given as: 

 

1 1 3 3 0 1
0 0

2 3 4 5
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b s b s
A
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dx dx

d w dw dw d w dw d w dw d w dw d w
I u u I I I dx

dx dx dx dx dx dx dx dx dx dx


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    


       

     

  
                 (11) 

 

where dot-superscript above the displacement parameters shows the derivative with respect to the time variable t. I0, 

I1, I2, I3, I4 and I5 can be obtained as follows: 

 

0 ( )
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I z dA                    (12a) 

 

1 ( )
A

I z z dA                    (12b) 

 

2 ( )
A
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2

3 ( )
A

I z z dA                    (12d) 

 
2

4 ( )
A

I f z dA                    (12e) 

                                                                                                                       

5 ( )
A

I fz z dA                    (12f) 

 

Substituting the Eqs. (8), (10) and (11) into Eq. (7) and integrating by parts and totalize the coefficients of u  , 

bw  and 
sw  , the following equations are taken: 

 

0 1 2

b sdw dwdN
I u I I

dx dx dx
                     (13a) 

 
2 2 2

0 1 3 52 2 2
( )b b s

b s

d M d w d wdu
q I w w I I I

dxdx dx dx
                        (13b) 

 
2 2 2

0 2 4 52 2 2
( )s s b

b s

d M d w d wdQ du
q I w w I I I

dx dxdx dx dx
                         (13c) 

 

In addition, the boundary conditions are extracted as follows: 

 

N=0 or u=0                  (14a) 
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wb = 0 or 

  
1 3 5 0b b s

b

dM dw dw
V I u I I

dx dx dx
      (14b) 

 

ws= 0 or    2 4 5 0s s b

s

dM dw dw
V Q I u I I

dx dx dx
       (14c) 

 

0bdw

dx
  or   Mb= 0                                                                                                                     (14d) 

 

0sdw

dx
  or   Ms= 0                                                                                                                     (14e) 

 

Substituting Eq. (5) into Eq. (2) and then substituting the results into Eq. (9), the stress resultants are taken as: 

 
2 22

0 1 22 2 2

b sd w d wd N du
N J J J

dxdx dx dx
     (15a) 
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1 3 42 2 2
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b
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dxdx dx dx
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     (15c) 

 
2

62

sdwd Q
Q J

dxdx
   (15d) 

 

where J0, J1, J2, J3, J4, J5 and J6 can be obtained as follows: 
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The nonlocal equations of motion can be obtained in terms of displacement by substituting Eq. (15) into Eq. (13) 

as: 
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3 3 3 32 2

0 1 2 0 1 22 3 3 2 3 3
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J J J I u I I
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  


       

     

 (17c) 

3    ANALYTICAL SOLUTION FOR STATIC BENDING AND VIBRATION OF A SIMPLY_SUPPORTED 

FG NANOBEAM  

For simply supported Nano beam with length L, the boundary conditions are: 

 

0b s b sw w M M      at  0,x L  (18) 

 

The displacement fields are assumed as follows: 
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where 1i    is the imaginary number , 
n

L


   , urn , wbn and wsn  are coefficients and   is the natural 

frequency . The transverse load q is given by the Fourier sinusoidal series as:  

 

1

( ) sinn

n

q x Q x




  (20) 

 

where Qn are the Fourier coefficients and are given for uniform load q(x) =q0 as follows: 

 

 0

0

42
( )sin 1,3,5,...

L

n

q
Q q x xdx n

L n



    (21) 

 

By substituting the displacement fields and transverse load q from Eq. (19), (20) into Eq. (17) into equations of 

motion, the following equations can be obtained as: 

 
2 3 3

0 1 2 0 1 2

3 4 4 2 2 2

1 3 4 1 0 3 0 5

3 4 4 2 2 2

2 4 5 6 2 0 5 0 4

0rn

bn n

sn n

J J J I I I u

J J J I I I I I w Q

J J J J I I I I I w Q

    

       

       

            
       

          
                

 (22) 



                                                                                    Considering Bending and Vibration of Homogeneous….                         419 

 

© 2020 IAU, Arak Branch 

From above equation, the transverse displacement under static loading ( 0  ), and natural frequencies of free 

vibration ( 0nQ  ) are extracted.  

4    NUMEERICAL RESULTS  

In this section, the numerical results for the previous sections are presented. The shear correction factor is taken 5/6 

and modulus of elasticity, Poisson’s ratio and density of materials of the beam in the Table 1. are shown. The length 

of the Nano beam is assumed 10 nm.  Non-dimensional fundamental frequency and non-dimensional deflection 

relations are given as follows: 

 

2

1
ˆ s

s

A
L

E I


   (23) 

 

2 3

4

0

100( )
ˆ sw w E I

w
q L


  (24) 

 
Table 1  

Material properties of FGM constituent. 

 

Tables 2-7 present the fundamental frequency for different ratio h0/h and power exponent k, and the results 
compared for h/L= 0.2,0.1,0.05 and 0.01, and nonlocal parameter μ=0,1,2,3 and 4(nm

2
). By increasing the nonlocal 

parameter, fundamental frequency decreases and by increasing h/L fundamental frequency increases. In addition, by 

increasing the h0/h, the fundamental frequency decreases. For a constant value of k, by increasing nonlocal 

parameter, the value of static bending will increase and the frequency will reduce. Accordingly, changes in the 

nonlocal parameter affect the physical quality. Fundamental frequency decreases versus increasing the nonlocal 

parameter (Figs. 2 to 5).  

In addition, the minimum of fundamental frequency is for homogeneous Nano beam (Table 8, Fig. 6). Table 9 
presents the fundamental frequency for h/L=0.1 and μ=2. In addition, Fig. 7 shows the variation of fundamental 

frequency versus the power low index of FG properties. In addition, the results compared different value of h0/h and 
k. This observation is produced for h/L=0.05 and μ=2 (Table 10). It is seen that the frequency is the maximum when 

the power index k is equal to one. 

In the Table 11and Table 12, the fundamental frequency is examined for h/L=0.1, k=1 and h/L=0.05, k=1 and 
different values of h0/h and μ. As shown in Fig. 9, by increasing the nonlocal parameter the fundamental frequency 

is decreasing while the h/L and k remain unchanged, and the fundamental frequency decreases when the h0/h 
increases. Table 13 listed the fundamental frequency for k=1 and μ=1 and different values of h0/h. Fig. 8 shows the 

variation of fundamental frequency versus h0/h for k=1 and μ=1. The frequency decreases by increasing the h0/h.  
 

 

 

 

 

 

 

 

 

Fig.2 

Variation of fundamental frequency versus nonlocal parameter 

for h0/h=0.5 and k=0.5. 

  

Properties Steel Alumina(Al2O3) 

E 
ρ  

ν 

210(GPa) 

7800(Kg/m3) 

0.3 

390(GPa) 

3960(Kg/m3) 

0.24 
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Fig.3 

Variation of fundamental frequency versus nonlocal parameter 

for h0/h=0.7 and k=0.5. 

  

 

 

 

 

 

 

 

 

Fig.4 

Variation of fundamental frequency versus nonlocal parameter 

for h0/h=0.5 and k=2. 

  

 

 

 

 

 

 

 

 

Fig.5 

Variation of fundamental frequency versus nonlocal parameter 

for h0/h=0.7 and k=2. 

  

 

 

 

 

 

 

 

 

Fig.6 

Variation of fundamental frequency versus nonlocal parameter 

for homogeneous nanobeam. 

  

 

 

 

 

 

 

 

 

Fig.7 

Variation of fundamental frequency versus power exponent for 
h/L=0.1 and μ=2. 
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Fig.8 

Variation of fundamental frequency versus h0/h for μ=1 and 

k=1. 

  

 

 

 

 

 

 

 

 

Fig.9 

Variation of fundamental frequency versus nonlocal parameter 

for h/L=0.1 and k=1. 

 

 

Table 2 

Nondimensional fundamental frequency versus nonlocal parameter for h0/h=0.5 and k=0.5. 

 

 

Table 3 

Nondimensional fundamental frequency versus nonlocal parameter for h0/h=0.7 and k=0.5. 

h/L μ (nm2) Fundamental frequency 

 

 

0.2 

 

 

0 

1 

2 

3 

4 

10.9156 

10.4138 

9.9754 

9.5880 

9.2426 

h/L μ (nm2) Fundamental frequency 

 

 

0.2 

 

 

0 

1 

2 

3 

4 

11.5303 

11.0003 

10.5372 

10.1280 

9.7631 

 

 

0.1 

 

 

0 

1 

2 

3 

4 

12.0914 

11.5355 

11.0499 

10.6208 

10.2382 

 

 

0.05 

 

 

0 

1 

2 

3 

4 

12.2484 

11.6853 

11.1933 

10.7587 

10.3711 

 

 

0.01 

 

0 

1 

2 

3 

4 

12.3002 

11.7348 

11.2407 

10.8043 

10.4150 
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0.1 

 

 

0 

1 

2 

3 

4 

11.4824 

10.9545 

10.4933 

10.0859 

9.7225 

 

 

0.05 

 

 

0 

1 

2 

3 

4 

11.6419 

11.1067 

10.6391 

10.2260 

9.8576 

 

 

0.01 

0 

1 

2 

3 

4 

11.6947 

11.1571 

10.6874 

10.2724 

9.9023 

 

 

Table 4 

Nondimensional fundamental frequency versus nonlocal parameter for h0/h=0.5 and k=1. 

h/L μ (nm2) Fundamental frequency 

 

 

0.2 

 

0 

1 

2 

3 

4 

11.1153 

10.6043 

10.1579 

9.7635 

9.4117 

 

 

0.1 

 

0 

1 

2 

3 

4 

11.6721 

11.1355 

10.6667 

10.2525 

9.8831 

 

 

0.05 

 

 

0 

1 

2 

3 

4 

11.8283 

11.2845 

10.8094 

10.3897 

10.0154 

 

 

0.01 

0 

1 

2 

3 

4 

11.8799 

11.3338 

10.8566 

10.4351 

10.0591 

 

 

Table 5 

Nondimensional fundamental frequency versus nonlocal parameter for h0/h=0.7 and k=1. 

h/L μ (nm2) Fundamental frequency 

 

 

0.2 

 

 

0 

1 

2 

3 

4 

10.6050 

10.1174 

9.6915 

9.3152 

8.9796 

 

 

0.1 

 

 

0 

1 

2 

3 

4 

11.1510 

10.6384 

10.1905 

9.7948 

9.4419 

 

 

0.05 

 

 

0 

1 

2 

3 

4 

11.3046 

10.7849 

10.3308 

9.9297 

9.5719 
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0.01 

0 

1 

2 

3 

4 

11.3554 

10.8333 

10.3773 

9.9743 

9.6150 

 

 

Table 6 

Nondimensional fundamental frequency versus nonlocal parameter for h0/h=0.5 and k=2. 

h/L μ (nm2) Fundamental frequency 

 

 

0.2 

 

0 

1 

2 

3 

4 

10.6640 

10.1738 

9.7455 

9.3671 

9.0296 

 

 

0.1 

 

0 

1 

2 

3 

4 

11.2060 

10.6909 

10.2408 

9.8432 

9.4885 

 

 

0.05 

 

0 

1 

2 

3 

4 

11.3583 

10.8361 

10.3799 

9.9769 

9.6174 

 

 

0.01 

0 

1 

2 

3 

4 

11.4086 

10.8842 

10.4260 

10.0211 

9.6601 

 

Table 7 

Nondimensional fundamental frequency versus nonlocal parameter for h0/h=0.7 and k=2. 

h/L μ (nm2) Fundamental frequency 

 

 

0.2 

 

 

0 

1 

2 

3 

4 

10.2560 

9.7845 

9.3726 

9.0086 

8.6841 

 

 

0.1 

 

 

0 

1 

2 

3 

4 

10.7743 

10.2790 

9.8463 

9.4640 

9.1230 

 

 

0.05 

 

 

0 

1 

2 

3 

4 

10.9198 

10.4178 

9.9792 

9.5918 

9.2462 

 

 

0.01 

0 

1 

2 

3 

4 

10.9679 

10.4637 

10.0232 

9.6340 

9.2869 
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Table 8 

Nondimensional fundamental frequency versus nonlocal parameter for k=0 (homogeneous beam). 

h/L μ (nm2) Fundamental frequency 

 

 

0.2 

 

0 

1 

2 

3 

4 

9.27452 

8.84816 

8.47566 

8.14656 

7.85305 

 

 

0.1 

0 

1 

2 

3 

4 

9.70751 

9.26124 

8.87135 

8.52689 

8.21967 

 

 

0.05 

 

 

0 

1 

2 

3 

4 

9.82813 

9.37631 

8.98158 

8.63284 

8.32180 

 

 

0.01 

0 

1 

2 

3 

4 

9.86793 

9.41429 

9.01795 

8.66780 

8.35550 

 

 

Table 9 

Nondimensional fundamental frequency versus power exponent for h/L=0.1 and μ=2. 

h0/h k Fundamental frequency 

 

 

0.1 

 

 

0 

1 

2 

3 

4 

8.8714 

11.6508 

10.8627 

10.5013 

10.2771 

 

 

0.2 

 

 

0 

1 

2 

3 

4 

8.8714 

11.3448 

10.7038 

10.3835 

10.1761 

 

 

0.3 

 

0 

1 

2 

3 

4 

8.8714 

11.0932 

10.5533 

10.2628 

10.0693 

 

 

0.5 

 

0 

1 

2 

3 

4 

8.8714 

10.6667 

10.2408 

9.9933 

9.8261 

 

 

0.7 

 

0 

1 

2 

3 

4 

8.8714 

10.1905 

9.8463 

9.6498 

9.5209 

 

 

0.9 

0 

1 

2 

3 

4 

8.8714 

9.4457 

9.2705 

9.1780 

9.1205 
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Table 10 

Nondimensional fundamental frequency versus power exponent for h/L=0.05 and μ=2. 

 

 

Table 11 

Nondimensional fundamental frequency versus nonlocal parameter for h/L=0.1 and k=1. 

h0/h μ (nm2) Fundamental frequency 

 

 

0.1 

 

0 

1 

2 

3 

4 

12.7490 

12.1629 

11.6508 

11.1985 

10.7950 

 

 

0.2 

0 

1 

2 

3 

4 

12.4141 

11.8434 

11.3448 

10.9043 

10.5114 

 

 

0.3 

0 

1 

2 

3 

4 

12.1387 

11.5807 

11.0932 

10.6624 

10.2783 

 

 

0.5 

 

0 

1 

2 

3 

4 

11.6721 

11.1355 

10.6667 

10.2525 

9.8831 

h0/h k Fundamental frequency 

 

 

0.1 

 

0 

1 

2 

3 

4 

8.9816 

11.7930 

11.0023 

10.6402 

10.4147 

 

 

0.2 

 

0 

1 

2 

3 

4 

8.9816 

11.4850 

10.8434 

10.5221 

10.3130 

 

 

0.3 

 

0 

1 

2 

3 

4 

8.9816 

11.2333 

10.6932 

10.4009 

10.2052 

 

 

0.5 

 

0 

1 

2 

3 

4 

8.9816 

10.8094 

10.3799 

10.1286 

9.9581 

 

 

0.7 

 

0 

1 

2 

3 

4 

8.9816 

10.3308 

9.9792 

9.7782 

9.6462 

 

 

0.9 

0 

1 

2 

3 

4 

8.9816 

9.5692 

9.3897 

9.2950 

9.2362 
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0.7 

 

0 

1 

2 

3 

4 

11.1510 

10.6384 

10.1905 

9.7948 

9.4419 

 

 

0.9 

0 

1 

2 

3 

4 

10.3360 

9.8608 

9.4457 

9.0790 

8.7518 

 

Table 12 

Nondimensional fundamental frequency versus nonlocal parameter for h/L=0.05 and k=1. 

h0/h μ (nm2) Fundamental frequency 

 

 

0.1 

 

0 

1 

2 

3 

4 

12.9046 

12.3113 

11.7930 

11.3351 

10.9267 

 

 

0.2 

 

0 

1 

2 

3 

4 

12.5675 

11.9898 

11.4850 

11.0391 

10.6413 

 

 

0.3 

 

 

0 

1 

2 

3 

4 

12.2921 

11.7270 

11.2333 

10.7972 

10.4081 

 

 

0.5 

 

0 

1 

2 

3 

4 

11.8283 

11.2845 

10.8094 

10.3897 

10.0154 

 

 

0.7 

 

0 

1 

2 

3 

4 

11.3046 

10.7849 

10.3308 

9.9297 

9.5719 

 

 

0.9 

0 

1 

2 

3 

4 

10.4711 

9.9898 

9.5692 

9.1976 

8.8663 

 

Table 13 

Nondimensional fundamental frequency versus h0/h for μ=1 and k=1. 

h/L h0/h Fundamental frequency 

 

 

0.2 

 

0.3 

0.5 

0.7 

0.9 

1 

11.0565 

10.6043 

10.1174 

9.4003 

8.8482 

 

 

0.1 

 

0.3 

0.5 

0.7 

0.9 

1 

11.5807 

11.1355 

10.6384 

9.8608 

9.2612 

 

 

0.05 

0.3 

0.5 

0.7 

11.7270 

11.2845 

10.7849 
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0.9 

1 

9.9898 

9.3763 

 

 

0.01 

0.3 

0.5 

0.7 

0.9 

1 

11.7753 

11.3338 

10.8333 

10.0324 

9.4143 

 

Tables 14-21 show the nondimensional deflection for different ratio h0/h and value of k, and the results are 
compared for different ratio h/L and nonlocal parameter μ. The values of nondimensional deflection are calculated 

by using 100 terms in series in Eqs. (19) and (20) that has a good convergence. By increasing the nonlocal parameter 

the nondimensional deflection increases and through increasing the ratio h/L, the nondimensional deflection 

decreases. By increasing the ratio h0/h, the deflection increases and with increasing the value of k, the deflection 

increases (Figs. 10-13). It can be seen that the maximum value of deflection is for the homogeneous nanobeam (Fig. 
14). In Fig. 15, the variation of non-dimensional deflection versus the power index is shown for h/L=0.1 and μ=2, 

and the results are compared for different values of h0/h and k, this examination is procured for h/L=0.05 and μ=2 

(Table 22). 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Variation of non-dimensional deflection versus nonlocal 

parameter for h0/h=0.5 and k=0.5. 

 

  

 

 

 

 

 

 

Fig.11 

Variation of non-dimensional deflection versus nonlocal 

parameter for h0/h=0.7 and k=0.5. 

 

  

 

 

 

 

 

 

 

 

Fig.12 

Variation of non-dimensional deflection versus nonlocal 

parameter for h0/h=0.5 and k=2. 
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Fig.13 

Variation of non-dimensional deflection versus nonlocal 

parameter for h0/h=0.7 and k=2. 

  

 

 

 

 

 

 

 

 

Fig.14 

Variation of non-dimensional deflection versus nonlocal 

parameter for homogeneous Nano beam. 

  

 

 

 

 

 

 

 

 

Fig.15 

Variation of non-dimensional deflection versus power 
exponent for h/L=0.1 and μ=2. 

 
 

Table 14 

Non-dimensional deflection versus nonlocal parameter for h0/h=0.5 and k=0.5. 

h/L μ (nm2) Non-dimensional deflection 

 

 

0.2 

 

0 

1 

2 

3 

4 

1.1057 

1.2102 

1.3147 

1.4192 

1.5237 

 

 

0.1 

0 

1 

2 

3 

4 

1.0284 

1.1267 

1.2250 

1.3233 

1.4216 

 

 

0.05 

 

0 

1 

2 

3 

4 

1.0090 

1.1058 

1.2025 

1.2993 

1.3960 

 

 

0.01 

0 

1 

2 

3 

4 

1.0028 

1.0991 

1.1953 

1.2916 

1.3879 
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Table 15 

Non-dimensional deflection versus nonlocal parameter for h0/h=0.7 and k=0.5.  

h/L μ (nm2) Non-dimensional deflection 

 

 

0.2 

 

0 

1 

2 

3 

4 

1.1470 

1.2552 

1.3634 

1.4716 

1.5799 

 

 

0.1 

 

0 

1 

2 

3 

4 

1.0580 

1.1591 

1.2602 

1.3612 

1.4623 

 

 

0.05 

0 

1 

2 

3 

4 

1.0357 

1.1350 

1.2343 

1.3336 

1.4329 

 

 

0.01 

0 

1 

2 

3 

4 

1.0286 

1.1273 

1.2261 

1.3248 

1.4235 

 

Table 16 

Non-dimensional deflection versus nonlocal parameter for h0/h=0.5 and k=1. 

h/L μ (nm2) Non-dimensional deflection 

 

 

0.2 

 

 

0 

1 

2 

3 

4 

1.1360 

1.2433 

1.3505 

1.4578 

1.5651 

 

 

0.1 

 

0 

1 

2 

3 

4 

1.0524 

1.1529 

1.2535 

1.3541 

1.4547 

 

 

0.05 

 

0 

1 

2 

3 

4 

1.0314 

1.1303 

1.2292 

1.3281 

1.4270 

 

 

0.01 

0 

1 

2 

3 

4 

1.0247 

1.1231 

1.2215 

1.3198 

1.4182 

 

Table 17 

Non-dimensional deflection versus nonlocal parameter for h0/h=0.7 and k=1. 

h/L μ (nm2) Non-dimensional deflection 

 

 

0.2 

 

0 

1 

2 

3 

4 

1.1836 

1.2953 

1.4069 

1.5186 

1.6303 

 

0.1 

 

 

 

0 

1 

2 

3 

4 

1.0922 

1.1965 

1.3009 

1.4053 

1.5096 
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0.05 

 

 

0 

1 

2 

3 

4 

1.0693 

1.1718 

1.2744 

1.3769 

1.4794 

 

 

0.01 

0 

1 

2 

3 

4 

1.0620 

1.1639 

1.2659 

1.3678 

1.4698 

 

 

Table 18 

Non-dimensional deflection versus nonlocal parameter for h0/h=0.5 and k=2. 

h/L μ (nm2) Non-dimensional deflection 

 

 

0.2 

 

0 

1 

2 

3 

4 

1.1806 

1.2920 

1.4034 

1.5149 

1.6263 

 

 

0.1 

 

0 

1 

2 

3 

4 

1.0911 

1.1953 

1.2996 

1.4038 

1.5081 

 

 

0.05 

0 

1 

2 

3 

4 

1.0687 

1.1711 

1.2736 

1.3761 

1.4785 

 

 

0.01 

0 

1 

2 

3 

4 

1.0615 

1.1634 

1.2653 

1.3672 

1.4691 

 

 

Table 19 

Non-dimensional deflection versus nonlocal parameter for h0/h=0.7 and k=2. 

h/L μ (nm2) Non-dimensional deflection 

 

 

0.2 

 

0 

1 

2 

3 

4 

1.2331 

1.3495 

1.4659 

1.5823 

1.6987 

 

 

0.1 

 

0 

1 

2 

3 

4 

1.1397 

1.2486 

1.3575 

1.4665 

1.5754 

 

 

0.05 

 

 

0 

1 

2 

3 

4 

1.1163 

1.2234 

1.3304 

1.4375 

1.5445 

 

 

0.01 

0 

1 

2 

3 

4 

1.1089 

1.2153 

1.3217 

1.4282 

1.5346 
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Table 20 

Non-dimensional deflection versus nonlocal parameter for k=0 (homogeneous beam). 

h/L μ (nm2) Non-dimensional deflection 

 

 

0.2 

 

0 

1 

2 

3 

4 

1.43195 

1.56735 

1.70275 

1.83815 

1.97355 

 

 

0.1 

0 

1 

2 

3 

4 

1.33458 

1.46217 

1.58977 

1.71737 

1.84497 

 

 

0.05 

 

0 

1 

2 

3 

4 

1.31021 

1.43586 

1.56151 

1.68716 

1.81281 

 

 

0.01 

0 

1 

2 

3 

4 

1.30241 

1.42743 

1.55246 

1.67749 

1.80251 

 

 

Table 21 

Non-dimensional deflection versus power exponent for h/L=0.1 and μ=2. 

h0/h k Non-dimensional deflection 

 

 

0.1 

 

0 

1 

2 

3 

4 

1.5898 

1.1831 

1.2435 

1.2756 

1.2997 

 

 

0.2 

 

0 

1 

2 

3 

4 

1.5898 

1.2096 

1.2566 

1.2870 

1.3115 

 

 

0.3 

 

 

0 

1 

2 

3 

4 

1.5898 

1.2275 

1.2689 

1.2998 

1.3254 

 

 

0.5 

0 

1 

2 

3 

4 

1.5898 

1.2535 

1.2996 

1.3351 

1.3631 

 

 

0.7 

 

0 

1 

2 

3 

4 

1.5898 

1.3009 

1.3575 

1.3954 

1.4225 

 

 

0.9 

0 

1 

2 

3 

4 

1.5898 

1.4380 

1.4803 

1.5040 

1.5192 
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Table 22 

Non-dimensional deflection versus power exponent for h/L=0.05 and μ=2. 

h0/h k Non-dimensional deflection 

 

 

0.1 

 

0 

1 

2 

3 

4 

1.5615 

1.1633 

1.2208 

1.2511 

1.2742 

 

 

0.2 

 

0 

1 

2 

3 

4 

1.5615 

1.1889 

1.2331 

1.2619 

1.2856 

 

 

0.3 

 

0 

1 

2 

3 

4 

1.5615 

1.2058 

1.2445 

1.2741 

1.2990 

 

 

0.5 

 

0 

1 

2 

3 

4 

1.5615 

1.2292 

1.2736 

1.3084 

1.3361 

 

 

0.7 

 

 

0 

1 

2 

3 

4 

1.5615 

1.2744 

1.3304 

1.3680 

1.3950 

 

 

0.9 

0 

1 

2 

3 

4 

1.5615 

1.4104 

1.4526 

1.4762 

1.4913 

 

For a constant value of the nonlocal parameter, by increasing value of k the value of static bending will reduce 

and the value of fundamental frequency will increase. The power-law exponent has a great influence on the 

responses of FG Nano beam, and the responses can be controlled by choosing the proper values of the power-law 

exponent (Simsek M, Yurtcu H, [24]). Table 23 presents the variation of non-dimensional deflection for h/L=0.1 and 
k=1 and the results are compared for different values of h0/h and μ. These observations are taken in Table 24 for 

h/L=0.05 and k=1. Fig. 16 clears the variation of non-dimensional deflection versus the nonlocal parameter.  Fig. 17 

shows the variation of non-dimensional deflection versus the ratio h0/h. It is seen that by increasing the ratio h0/h, 

the deflection increases and the rigidity of the beam decreases. Timoshenko's theory considers the coincidence effect 

of shear deformation and bending moment. In the beam theory used in this article (Huu-Tai Thai, [11]), the effects 

have been examined separately, so the results have a higher accuracy when compared to the Timoshenko's theory. 

This theory does not need the correction factor. There are some discrepancies between the frequencies, by 

decreasing the thickness of the beam the resulting discrepancies reduce and this is due to the shear effect which 

cannot be captured by Euler–Bernoulli model (O.Rahmani, O.Pedram, [26]).  

 

 

 

 

 

 

 

 

 

Fig.16 

Variation of non-dimensional deflection versus nonlocal 

parameter for h/L=0.1 and k=1. 
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Fig.17 

Variation of non-dimensional deflection versus h0/h for μ=1 

and k=1. 

 

 
Table 23 

Non-dimensional deflection versus nonlocal parameter for h/L=0.1 and k=1. 

h0/h μ (nm2) Non-dimensional deflection 

 

 

0.1 

 

0 

1 

2 

3 

4 

0.9931 

1.0881 

1.1831 

1.2781 

1.3730 

 

 

0.2 

 

 

0 

1 

2 

3 

4 

1.0154 

1.1125 

1.2096 

1.3067 

1.4037 

 

 

0.3 

 

0 

1 

2 

3 

4 

1.0305 

1.1290 

1.2275 

1.3261 

1.4246 

 

 

0.5 

 

0 

1 

2 

3 

4 

1.0524 

1.1529 

1.2535 

1.3541 

1.4547 

 

 

0.7 

 

0 

1 

2 

3 

4 

1.0922 

1.1965 

1.3009 

1.4053 

1.5096 

 

 

0.9 

0 

1 

2 

3 

4 

1.2072 

1.3226 

1.4380 

1.5533 

1.6687 

 

Table 24 

Non-dimensional deflection versus nonlocal parameter for h/L=0.05 and k=1. 

h0/h μ (nm2) Non-dimensional deflection 

 

 

0.1 

 

0 

1 

2 

3 

4 

0.9760 

1.0696 

1.1633 

1.2569 

1.3505 

 

 

0.2 

0 

1 

2 

3 

4 

0.9976 

1.0932 

1.1889 

1.2846 

1.3802 
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0.3 

 

0 

1 

2 

3 

4 

1.0118 

1.1088 

1.2058 

1.3029 

1.3999 

 

 

0.5 

 

 

0 

1 

2 

3 

4 

1.0314 

1.1303 

1.2292 

1.3281 

1.4270 

 

 

0.7 

 

0 

1 

2 

3 

4 

1.0693 

1.1718 

1.2744 

1.3769 

1.4794 

 

 

0.9 

0 

1 

2 

3 

4 

1.1834 

1.2969 

1.4104 

1.5239 

1.6374 

 

Tables 25-28 indicate the comparison of fundamental frequency and non-dimensional deflection in different 

values of h/L with references O.Rahmani,O.Pedram [26] and Simsek M,, Yurtcu H., [24].A good agreement between 

the results illustrates the validation of the presented formulation and the numerical results. For the lower thickness to 

length ratio, the results are more accurate. 

 
 

Table 25 

Non-dimensional fundamental frequency versus nonlocal parameter k=0.5. 

h/L μ (nm2) Ref.O.Rahmani [26] Present 

 

 

0.05 

 

 

0 

1 

2 

3 

4 

7.7149 

7.3602 

7.0504 

6.7766 

6.5325 

7.7151 

7.3604 

7.0506 

6.7768 

6.5327 

 

 

0.02 

 

0 

1 

2 

3 

4 

7.7413 

7.3854 

7.0745 

6.7998 

6.5548 

7.7414 

7.3855 

7.0745 

6.7999 

6.5549 

 

 

0.01 

0 

1 

2 

3 

4 

7.7451 

7.3891 

7.0780 

6.8032 

6.5580 

7.7451 

7.3891 

7.0780 

6.8032 

6.5581 

 

Table 26 

Non-dimensional fundamental frequency versus nonlocal parameter k=1. 

h/L μ (nm2) Ref.O.Rahmani [26] Present 

 

 

0.05 

 

 

0 

1 

2 

3 

4 

6.9676 

6.6473 

6.3674 

6.1202 

5.8997 

6.9676 

6.6473 

6.3675 

6.1202 

5.8997 

 

 

0.02 

 

0 

1 

2 

3 

4 

6.9917 

6.6703 

6.3895 

6.1414 

5.9201 

6.9917 

6.6703 

6.3895 

6.1414 

5.9201 
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0.01 

0 

1 

2 

3 

4 

6.9952 

6.6736 

6.3927 

6.1444 

5.9231 

6.9952 

6.6736 

6.3927 

6.1445 

5.9231 

 

Table 27 

Non-dimensional deflection versus power exponent for e0a=0 (nm). 

h/L k Ref. Simsek. M [24] Present 

 

0.1 

 

 

0 

1 

3 

10 

5.3383 

2.4194 

1.9249 

1.5799 

5.3383 

2.4194 

1.9234 

1.5790 

 

 

0.03 

0 

1 

3 

10 

5.2227 

2.3732 

1.8894 

1.5489 

5.2228 

2.3732 

1.8892 

1.5488 

 

 

0.01 

 

0 

1 

3 

10 

5.2096 

2.3679 

1.8853 

1.5453 

5.2096 

2.3679 

1.8854 

1.5454 

 

Table 28 

Non-dimensional deflection versus power exponent for e0a=1 (nm). 

h/L k Ref .Simsek .M [24] Present 

 

0.1 

 

 

0 

1 

3 

10 

5.8487 

2.6508 

2.1091 

1.7310 

5.8487 

2.6508 

2.1074 

1.7301 

 

0.03 

 

0 

1 

3 

10 

5.2784 

2.3985 

1.9095 

1.5654 

5.2785 

2.3985 

1.9094 

1.5653 

 

0.01 

0 

1 

3 

10 

5.2146 

2.3702 

1.8871 

1.5468 

5.2146 

2.3702 

1.8872 

1.5469 

5    CONCLUSION 

In the present study vibration and static bending of nonlocal homogeneous Nano beam coated by FG layers was 

analyzed by the nonlocal higher order shear deformation beam theory. The equations of motion were derived using 

the Hamilton’s principle. The material properties were considered to vary in the thickness direction of FG coated 

layer. This nonlocal Nano beam model incorporates the length scale parameter (nonlocal parameter) that can capture 

the small scale effects. In the numerical results section, the effects of different parameters, especially the ratio of the 

thickness of FG layer to the total thickness of the beam was investigated. The results revealed that the increasing the 

ratio of thickness of FG layer to the total thickness of beam increases the static deflection and decreases the natural 

frequencies, respectively. These results help with the understanding of such coated structures and designing them 

carefully. The results also show that the new nonlocal FG Nano beam model produces larger vibration and smaller 

deflection than the homogeneous nonlocal Nano beam. The results of this article can be used as a benchmark for the 

static deflection and free vibration of homogeneous plate coated by FG layers.  
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