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 ABSTRACT 

 This article presents an analysis of free vibration of elastically 

supported Timoshenko beams by using the spectral element 

method. The governing partial differential equation is elaborated 

to formulate the spectral stiffness matrix. Effectively, the non-

classical end boundary conditions of the beam are the primordial 

task to calibrate the phenomenon of the Timoshenko beam-soil 

foundation interaction. Non-dimensional natural frequencies and 

shape modes are obtained by solving the partial differential 

equations, numerically. Upon solving the eigenvalue problem, 

non-dimensional frequencies are computed for the first three 

modes of vibration. Obtained results of this study are intended to 

describe multiple objects, such as: (1) the establishment of the 

modal analysis with and without elastic springs, (2) the 

quantification of the influence of the beam soil foundation 

interaction, (3) the influence of soil foundation stiffness’ on free 

vibration characteristics of Timoshenko beam. For this propose, 

the first three eigenvalues of Timoshenko beam are calculated 

and plotted for various stiffness of translational and rotational 

springs.                 © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords : Free-vibration; Non classical boundary conditions; 

Timoshenko beam; Spectral element method; Finite element 
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of soil.  

1    INTRODUCTION 

 TRUCTURES like buildings, bridges, pipelines, scaffoldings…etc, are directly in contact with the soil 

foundation that generates a transfer of loading between them. For its importance, it must be taken into account in 

the analysis and design under static or dynamic loadings [1]. Early, classical models do not consider the effect of the 

interaction between the structure and the soil foundation. Really, the interaction effect is neglected in simplify 

mathematical models in computing phase. In this concept, Mohod and dhadse [2] studied the importance and the 

role of the soil structure interaction task in computational modeling of ground-structure interaction. In the civil 
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engineering domain, many numerical methods are used to obtain the solutions for static or dynamic responses of 

structures. It underlined that the finite element method is one of most popular and powerful of them [3]. This method 

can converge to the solution of a problem if many assumptions must be verified, such as: the robustness of the 

algorithm, mesh refinement, incompatible element forms, the structural form and boundary conditions. On the 

opposite hand, the spectral finite element method provide as a very important tool for structural dynamics. Its 

performance and rapidity have been highly observed comparing it with the finite element method [4-5]. Instead, 

many studies have already been devoted to free vibration analysis of beam with elastically supports using Euler-

Bernoulli theory with the finite element method and spectral element method (SEM) [5-6]. Many approaches have 

already presented assuming that beams are sufficiently slender to be considered as an Euler-Bernoulli beam 

neglecting the shear deformations and do not give accurate solutions for thick beams. These studies have been 

elaborated related to the problem of free vibration of beams with elastically supports based using Euler-Bernoulli 

theory or Timoshenko theory of beams. The common factor between these theories is that the Timoshenko 

assumption takes into consideration the shear deformations. The solutions of partial differential equations governing 

the Timoshenko beam depend on the time and the spatial parameter. Using the separate method of variable, it is 

possible to eliminate the temporal variable [7]. The transformation reduces the governing partial differential 

equations to a set of ordinary differential equation [8]. Firstly, the task problem of free vibration of Timoshenko 

beams using finite element procedure is solved by Abbas [9], in which the influence of translational and rotational 

support flexibilities on the natural frequencies of free vibrations of Timoshenko beams with non-idealized end 

conditions are investigated. Adding, Hernandez et al [10] analyzed a mixed finite element method for computing the 

vibration modes of a Timoshenko curved rods with arbitrary geometry. Free vibrations of elastically supported 

beams are investigated using Euler-Lagrange equation [11]. The two main matrices, which are the stiffness and mass 

matrices for a two-node beam element with two degree of freedom for each node, are computed based upon 

Hamilton’s principle. Lee and Schultz [12] applied the pseudo-spectral method to the eigenvalue analysis of 

Timoshenko beams. Zhou [13] used the Rayleigh-Ritz method for the free vibration of multi-span Timoshenko 

beams. Farghaly [14] has investigated the natural frequencies and the critical buckling load coefficients for a multi-

span Timoshenko beam. Banerjee [15] investigated the free vibration analysis of axially loaded Timoshenko beams 

by using the dynamic stiffness method. The free vibration of Timoshenko beams with internal hinge and subjected 

to axial tensile load is carried out by Lee et al. [16]. A dynamic investigation method for the analysis of Timoshenko 

beams which takes into account shear deformation is proposed by Auciello and Ercolano [17]. In [17], the solution 

of the problem is obtained through the iterative variational Rayleigh-Ritz method. The free vibration of Timoshenko 

beams having classical boundary conditions, which was satisfied by Lagrange multipliers, was investigated for 

different thickness-to-length ratios by Kocatürt and Şimşek [6]. In this study, free vibrations of elastically supported 

Timoshenko beam for the first three eigenvalues of the Timoshenko beam are analyzed using Lagrange equations. 

The higher-order Timoshenko beam element is developed and employed in studying free vibration of 2-D 

functionally graded materials Timoshenko beams. The material properties of the beams are considered to vary in 

both the thickness and longitudinal directions by a power-law distribution. Based on Timoshenko beam theory, 

equations of motion are derived from Hamilton’s principle and they are solved by a finite element procedure based 

on the developed beam element. The beam element, using hierarchical functions to interpolate the displacement 

field, is formulated by constraining the shear strain constant for improving its efficiency [18].  More, the geometrical 

characteristics; length to depth ratio, and different end conditions of a Timoshenko beam are examined by using the 

differential transform method [19]. In this work, the end conditions, such as: hinge-hinge, fix-hinge, fix-fix and fix-

free beams are studied. In this case, the vibration frequencies are computed for the beam with various values of the 

length to depth ratio. Finally, Magdalena [20] has presented a review on spectral methods for modeling of wave 

propagation in structures. Therefore, he has exploited it as a tool for diagnostic and damage detection method using 

the phenomenon of mechanical wave propagation. More, nonlinear vibrations of a slightly curved beam with 

arbitrary rising function are handled [21]. In this study, the Method of multiple scales is used to solve the equations 

of motion dealing that the primary resonance is resulted in the steady-state vibrations and thus, the natural 

frequencies can be obtained for different supports' types, locations of the masses and linear coefficient of the 

foundation.  

In this contribution, the vibrations of the soil foundation-Timoshenko beam are studied by using the spectral 

element method. The partial differential equations governing the dynamic behavior of the beam with non-classical 

boundary conditions are illustrated. This topic is of a primary interest by the authors who have already developed it 

to analyze the riddle of the soil structure interaction [4-5, 22-23]. Upon solving the eigenvalue problem, non-

dimensional frequency of the beam are plotted in function of the soil intensity. The sensitivity analysis is also 

carried out based on the mechanical parameters of compounds of the system. Obtained results are intended to many 

objects, such as: (1) the establishment of the modal analysis with and without elastic springs, (2) the quantification 



Vibration of Timoshenko Beam-Soil Foundation….                              609 
 

© 2020 IAU, Arak Branch 

( , )q x t   

of the influence of the interaction between the beam and the soil foundation, (3) the influence of soil foundation 

stiffness’ on free vibration characteristics of Timoshenko beam. For this propose, the first three eigenvalues of 

Timoshenko beam are calculated for various rigidity of translational and rotational springs, and obtained results are 

presented in 2D plots.  

2    MATHEMATICAL FORMULATION  

Consider a straight uniform Timoshenko beam of length L, flexional rigidity EI and cross-section . The Cartesian 

axis (xx) is associated to the central one of the beam. The beam studied is restricted on both ends with elastic 

supports, which are made of translational and rotational stiffness’s, k0, k1, K0 and K1 (Fig. 1).  

 
 

 

 

 

 

 

 

 

 

Fig.1 

Mechanical and geometrical data of the beam. 

 

The governing coupled differential equations for transverse vibrations of Timoshenko beams are 
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In which R
s

 *
 and R

s
is the reduced shear factor, G, the modulus of rigidity,  , the mass per unite the 

volume, v x t( , ) , the transverse deflection, x t( , ) the bending slope and q x t( , ) .  Particularly for free-vibration of 

the beam, the equation system (1) becomes 
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The slope of an x-abscise section can be coupled of the flexion and shear effect (Fig. 2). The corresponding 

expression can be expressed by  
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where (x, t) is the slope of the beam due to shear strains.  
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Fig.2 

Deformations due to flexion and shear forces. 

The system of Eqs. (2) becomes after integration the Eq. (3) 

 

G v x t x t v      * ( ( , ) ( , )) 0  (4a) 

 

EI G v Ix t x t x t       * ( ) 0( , ) ( , ) ( , )  (4b) 

 

The partial differential Eq. (4) can be solved using Fourier decomposition of the displacement field into the sum 

of harmonic vibration with absence of external loading as: 
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The substitute the Eq. (5) into the Eq. (4), we obtain  

 

G W x x W x      2* ( ( ) ( )) ( ) 0  (6a) 
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So, the relation (6) can be written as matrix form 
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The solutions of the Eq. (6) can be written 
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Subtitling the Eq. (8) into the Eq. (7), we obtain  
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In order to obtain non-trivial solutions, the determinant of the above matrix must be zero. 

( , )q x t   

  v

x





                

 

 

 

 

x
  x

  

                  

 

 

 

 

                 

 

 

 

 



Vibration of Timoshenko Beam-Soil Foundation….                              611 
 

© 2020 IAU, Arak Branch 

 F F G        4 4 2 4 4

1 1 0  (10) 

 

with 
F

EI


 

 
  

 

1/ 4

,  

1/ 4

,G

sR G


 

 
  

   

I
 


1 ,

 
2

s

EI

R G
 


 and    1 2

 

The roots of the Eq. (10) are 
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Thus, the displacement and rotation expressions can be obtained with  
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The nodal degree of freedom vector can be deduced as: 
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In the same manner, the nodal force vector is 
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The relationship between nodal force and degree of freedom vectors is expressed by  
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where   
1
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 is the spectral stiffness matrix of the Timoshenko beam on non-classical conditions.  
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3    NUMERIC EXAMPLES  

3.1 validation of the approach 

3.1.1 Beam without soil foundation 

The free vibration of the Timoshenko beam without considering the soil foundation is investigated to show the 

validity of this approach for particularly cases (Fig. 3). Different boundary conditions were considered and circular 

frequencies were compared to references [24-25]. The mechanical properties and geometrical dimensions of the 

beam are given by the Table 1. 
 

Table 1 

Mechanical and geometrical properties of the beam. 

The first three circular frequencies of Timoshenko beam free vibrations using various classical boundary 

conditions (Fig.3) are compared to reference [24-25] (Table 2). 
 

Table 2 

Convergence study for first three mode circular frequencies  / .rad s    

Boundary conditions Method used 1  
2  

3  

Pinned-pinned 
SEM 6838.833559 23190.827069 43443.493061 

Reference [24]        6838.8336            23190.827        43443.493 

Clumped-free 
SEM 2529.492708 13279.905185 31044.790965 

Reference [24]        2529.4927         13279.905        31044.791 

Clamped-pinned 
SEM 9741.946896 26150.250677 45545.510089 

Reference [25]        9741.9469        26150.251         45545.510 

 

 

 

 

 

 

  C1: Clamped-free beam             C2: Pinned-pinned beam        
 

 

 

                          

                         C3: Clamped-pinned beam 

 

 

 

 

 

 

 

Fig.3 

Beams studied. 

 

This section shows not only the convergence of this approach but also the influence of supported classical 

conditions on vibration modes of the Timoshenko beam. The Fig. 4 regroups the relative non-dimensional frequency 

ratio for above beam configurations showing the influence of supported end conditions on the modes of Timoshenko 

beam vibration. This diminution of the influence is remarkable for the first mode and decreases corresponding to 

higher modes. As example, it varies from 4 times for the first mode to 1.5 times for the third mode of vibration. 

  

                              

 

 

 

 

 

 

 

 

Fig.4 

Influence of Supported classical conditions. 
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3.1.2 Beam with translational spring  

The mechanical properties and geometrical dimensions of a stainless beam are regrouped in Table 3. 
 

Table 3 

Mechanical and geometrical properties of the beam. 

Young’s modulus, E=210 GPa 

Density,  = 7850 kg/m3 

Poisson’s ratio,  =0.3 

Spring stiffness, k0=104N/m 

Shear correction factor, Rs=5/6 

 

Length, L=450 mm 

Width, b=20 mm 

Thickness, t=3 mm 

 

Beam with translational spring (Fig. 5) 

 

 
                               

Fig.5 

Beam on transversal spring. 

 

 

The comparison of the first three circular frequencies is elaborated by using the finite element method and the 

spectral element method (Table 4). The convergence is largely observed between the spectral element method and 

the finite element method meshing the beam to 200 finite elements.  
 

Table 4  

First three frequencies of vibration of the beam.  

Method 
1( / )rad s  

2( / )rad s  
3( / )rad s  

FEM (200 elements) 196.839179 580.351268 1202.704901 

SEM (1 element) 196.839191 580.351264 1202.704858 

3.1.3 Beam with rotational spring  

Beam with rotational spring (Fig. 6) 

 
                              

 

 

 

 

 

 

 

Fig.6 

Beam on rotational spring. 

 

The rotational stiffness of the spring is estimated at 410 . /K N m rad
 
and the first three frequencies of the 

beam vibration are regrouped in the Table 5.  

 
Table 5 

First three frequencies of vibration of the beam.  

Method 
1( / )rad s  

2( / )rad s  
3( / )rad s  

FEM (200 elements) 54.463076 490.098502 1360.991677 

SEM (1 element) 54.463053              490.098494 1360.991615 

3.1.4 Beam with translational and rotational spring  

Beam with translational and rotational spring (Fig. 7) 
  

 

Fig.7 

Beam on translational and rotational springs. 
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In the same manner, the first three frequencies of the beam on translational and rotational springs are regrouped 

in the Table 6.  
 

Table 6  

First three frequencies of vibration by finite element method.  

Method 
1( / )rad s  

2( / )rad s  
3( / )rad s  

FEM (200 elements) 54.463076 490.098502 1360.991677 

SEM (1 element) 54.463053 490.098494 1360.991615 

 

Many free vibrations of beams have been studied in this section and the comparison made with and without 

translational and rotational springs. The robustness of the spectral element method via the finite element method is 

observed when the beam meshed to about 200 finite elements.      

3.2 Analysis using this approach 

In order to calibrate the effect of the interaction between the Timoshenko beam and the soil foundation on free 

vibrations, the first three eigenvalues of Timoshenko beam with various translational and rotational spring 

configurations are computed. The primordial objective of this section is to illustrate how the non-dimensional 

frequency parameters change for different configurations (Fig. 8). In all cases, the stiffness parameters, 

( / )ik N m and ( . / )iK N m rad , are taken into account with the same values for all support stiffness’. The geometrical 

and mechanical characteristics of a concrete beam are regrouped in the Table 7. 
 

Table 7 

Geometrical and mechanical characteristics of beams. 

Concrete beam (GP )E a  3(Kg/ )m  ( )L m  ( )b m  ( )h m   3/SK KN m  
* /     

 30 2000 10 1.10 0.50 5 104 5/6
 

0.20 

3.2.1 Beam on translational and rotational springs 

The study is devoted to analyze free vibration of clamped-clamped beam (Fig. 8).  

 
                              

 

 

 

 

 

 

 

 

 

Fig.8 

Case 1. 
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(a) First three modes of translational vibration.
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(b)First three modes of rotational vibration. 

 

Fig.9 

Effect of boundary spring stiffness on the frequency parameter: (a) Translational springs (b) Rotational springs:  (1) ki=100 

N/m(N.m/rad), (2) ki=109 N/m(N.m/rad), (3) ki=1018 N/m(N.m/rad).

 

3.2.2 Beam on rotational springs  

Beam on rotational springs (Fig. 10) 
                              

 

 

 

 

 

Fig.10 

Case 2.  
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Fig.11 

First three modes of (1) translational vibration (2) rotational vibration.
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Translational springs do not have an influence on the non-dimensional frequency parameter. Independently, the 

beam vibrates with a constant non-dimensional frequency parameter.  

3.2.3 Beam on translational springs  

Beam on translational springs (Fig. 12) 

 
                              

 

 

 

 

Fig.12 

Case 3. 
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Fig.13 

First three modes of (1) translational vibration (2) rotational vibration.

 

3.2.4 Beam on translational and (translational and rotational) springs  

Beam on translational and (translational and rotational) springs (Fig. 14) 

 
                              

 

 

 

 

 

 

 

Fig.14 

Case 4. 
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Fig.15 

First three modes of (1) translational vibration (2) rotational vibration for k1=109(N.m/rad).

 

3.2.5 Beam on (translational and rotational) and rotational springs  

Beam on (translational and rotational) and rotational springs (Fig. 16) 
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Fig.16 

Case 5. 

  

 
(1)  (2) 

Fig.17 

First three modes of (1) translational vibration (2) rotational vibration for k0=109(N /m).

  

In three-dimensional plot of the first three mode of vibration is shown in Fig. 18.   
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Fig.18 

First three modes of vibration for case 1.  

 

In this section, five cases are considered (Figs. 8, 10, 12, 14 and 16) to study the effect of non-classical boundary 

conditions or of soil-structure interaction on the free vibration of Timoshenko beam. The effect of translational and 

rotational springs is quantified and commented. It is observed that from Figs. 9, 11, 13, 15 and 17 that, translational 

springs are much effective on the frequency parameters than rotational springs. The analysis statement shows that a 

stable of the non-dimensional parameter can be observed when the stiffness of beams is either less than 10
5
N/m or 

more than 10
10

N/m. More, it seems that the configuration 2 is more appropriate to transversal free vibration of the 

Timoshenko beam.   

4    CONCLUSIONS 

In this paper, the spectral element method was used to analyze the vibrations of Timoshenko beam on non-classical 

supported end conditions. Obtained results are compared to those of the finite element method and analytical data. 

Non-dimensional frequencies of beam vibration were plotted and corresponding conclusions that can be inspired are  
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 The approach is validated using a beam with and without translational and rotational springs. This 

verification is done through the comparison of obtained results with finite element data and analytical 

method.  

 A single spectral element was used to modeling the Timoshenko beam while a large number of finite 

elements are required for achieving results accuracy.  

 Many numerical programs are developed for these concerns using the spectral element method and the 

finite element method. These numerical tools can be developed to analyze various problems.  

 Numerical applications using the spectral element method show lower computation cost compared to the 

finite element method.  

 Translational springs are much effective on the frequency parameters than rotational springs. 

 The analysis shows that a stable of the non-dimensional parameter can be observed for feeble and higher 

values of spring stiffness’s. 
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