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ABSTRACT

In the present research, a unified formulation for free vibration analysis
of the bidirectional functionally graded conical and cylindrical shells and
annular plates on elastic foundations is developed. To cover more
individual cases and optimally tailored material properties, the material
properties are assumed to vary in both the meridian/radial and transverse
directions. The shell/plate is assumed to be supported by a non-uniform
Winkler-type elastic foundation in addition to the edge constraints.
Therefore, the considered problem contains some complexities that have
not been considered together in the available researches. The proposed
unified formulation is derived based on the principle of minimum total
potential energy and solved using a differential transform analytical
method whose center is located at the outer edge of the shell or plate; so
that the resulting semi-analytical solution can be employed not only for
truncated conical shells and annular plates, but also for complete conical
shells and circular plates. Accuracy of results of the proposed unified
formulation is verified by comparing the results with those of the three-
dimensional theory of elasticity extracted from the ABAQUS finite
element analysis code. A variety of the edge condition combinations are
considered in the results section. A comprehensive parametric study
including assessment of influences of the material properties indices,
thickness to radius ratio, stiffness distribution of the elastic foundation,
and various boundary conditions, is accomplished. Results reveal that
influence of the meridian variations of the material properties on the
natural frequencies is more remarkable than that of the transverse
gradation. © 2020 IAU, Arak Branch. All rights reserved.

Keywords: Free vibration; Bidirectional functionally graded; Conical
and cylindrical shells; Annular plates; Non-uniform elastic foundation.
1 INTRODUCTION

ANY structural components have been formed in the shape of a shell of revolution. The circular/annular and
conical/cylindrical shells are among the common examples of this kind of structures. The main reason for
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commonly using the motioned structures is the geometrical symmetry; so that more simpler and economic
manufacturing processes may be used and less energy dissipation (e.g., heat transfer), coating costs, rotational
capability, etc. may be achieved. Using functionally graded material properties enables establishment of a somewhat
uniform resulting effective stress to strength ratio in the structure, through accurately tailoring variations of the
material properties. Since the stresses of the axisymmetric structures vary in both meridian/radial and thickness
directions, a bidirectional functionally graded material should be employed to accomplish the mentioned aim more
properly. To this end, proper shell/plate theories may be used to accurately simulate the structure. Various form of
the shell theories have been proposed so far. More details may be found in the comprehensive books published by
Quta [1], Reddy [2], Shen [3], Carrera et al. [4], and Tornabene and Fantuzzi [5]. The main difference between all of
these theories was the form the transverse interpolating function; so that apart from the polynomial, trigonometric,
hyperbolic interpolating functions, piecewise defined (layer wise, zigzag, and global-local theories) have been
developed. It is evident that last category of theories reduces to the previous category for the single-layer
functionally graded shells, unless the thickness is divided to artificial layers. On the other hand, since assumptions of
the first-order shear-deformation theories (FSDTs) holds largely in the relatively rigid functionally graded shells,
using high-order theories may be neither economic nor more accurate. Results of the FSDT may be especially
justified for the global responses. Using higher order approximations (that what really is) may even lead to
erroneous results in some situations [2] due to the oscillatory nature of the interpolation functions. Efraim and
Eisenberger [6] used exact element method to analyze the vibration of variable thickness annular FGM plates based
on FSDT. Hosseini-Hashemi et al. [7] presented an approach for in-plane/out-of-plane free vibration of circular and
annular moderately thick FGM plates. Based on 3D elasticity theory, dynamic analysis of multi-directional FGM
annular plates was investigated by Nie and Zhong [8] using the state-space-based DQM. Malekzadeh et al. [9]
studied free vibration of elastically supported FGM annular plates in thermal environments. Jodaei et al. [10]
performed a free vibration analysis for FGM annular plates by the state-space based DQM. Dong [11] presented
three- dimensional free vibration analysis of FGM annular plates using Chebyshev—Ritz method. Shariyat and
Alipour have presented analytical solutions for free vibration of circular [12-15] and annular [16]
transverse/bidirectional elastic/viscoelastic FGM plates with uniform/variable thickness with or without elastic
foundations. The fully coupled thermo-mechanical behavior of bi-directional functionally graded material (FGM)
beam structures is studied by Lezgy-Nazargah [17]. Free vibration analysis of variable thickness viscoelastic circular
plates made of heterogencous materials was performed by M Shariyat et al. [18]. Free vibration and modal stress
analyses of thin circular plates resting on two-parameter elastic foundations were investigated by Alipour et al. [19].
Analysis of functionally graded and layered neutral magneto-electro-elastic plates resting on two-parameter elastic
foundations was performed by Lezgy-Nazargah and Cheraghi [20]. Free vibration of FGM plates rested on two-
parameter elastic foundations were investigated by Lezgy-Nazargah and Meshkani [21].

In contrast to cylindrical shells [22-31], a few researches may be found in literature on the functionally graded
annular plates and conical shells. A finite element formulation based on the FSDT was used by Bhangale et al. [32]
to study the thermal buckling and vibration behavior of truncated transversely FGM conical shells in a high-
temperature environment, employing a Fourier series expansion for the displacement variable in the circumferential
direction. Tornabene [33] and Tornabene et al. [34] presented free vibration analysis for transversely graded conical,
cylindrical shell and annular plates, based on the FSDT and the GDQ solution procedure. Qu et al. [35] developed a
general formulation for free, steady-state, and transient vibration analyses of transversely graded shells of revolution
subjected to arbitrary boundary conditions, using the FSDT. Fourier series and polynomials are applied to expand
the displacements and rotations of each shell segment. Free vibration and stability of transversely graded truncated
and complete conical shells with free/clamped boundary conditions subjected to external pressures were investigated
by Sofiyev [36, 37], using Donnell shell theory, Galerkin method, and the stress function concept. Malekzadeh [38]
presented a three-dimensional free vibration analysis for the FGM truncated conical shells subjected to thermal
environment, solving the resulting equations by the DQ method. Sofiyev [39] investigated non-linear free vibration
of the transversely graded truncated conical shells, using Donnell shell theory and the stress function concept.
Najafov and Sofiyev [40] extended this approach by considering a surrounding Pasternak elastic medium. Influences
of centrifugal and Coriolis forces and the material parameters on free vibration of rotating transversely graded
truncated conical shells subjected to different boundary conditions were investigated by Malekzadeh and
Heydarpour [41] based on the FSDT and DQM solution procedure. Sofiyev [42] investigated dynamic buckling
truncated conical shells with functionally graded coatings and subjected to axial load in the large deformation.
Donnell-Mushtari shell theory, von Karman kinematic non-linearity, and the stress function concepts were used.
Sofiyev [43] studied the nonlinear vibration of heterogeneous orthotropic truncated conical shells resting on the
Winkler—Pasternak elastic foundations. The formulation was based on the Donnell shell theory and von Karman
geometric nonlinearity. The basic equations were reduced to time-dependent geometrical nonlinear differential
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equations and solved using homotopic perturbation method. Xie et al. [44] provided a FSDT based solution based on
Haar wavelet discretization and Fourier series in the axial and circumferential directions, respectively, for the free
vibration analysis of the transversely graded conical shells and annular plates. A unified solution for free vibration
analysis of transversely graded cylindrical, conical shells and annular plates with general boundary conditions was
presented by Su et al. [45] using the FSDT and Rayleigh—Ritz procedure. Modified Fourier series expressed the
displacement and rotation parameters. Su et al. [46] presented a three-dimensional vibration analysis for the
mentioned structures, considering arbitrary elastic restraints. Tornabene et al. [47] present a free vibration analysis
for free-form doubly curved shell structures using higher-order equivalent single layer theories. The resulting
equations are solved by the GDQ method. Based on their previous works, Sofiyev and Kuruoglu [48] studied free
vibration of FGM truncated conical shells under mixed boundary conditions.

In the present research, a unified formulation that may be simultaneously used for free vibration analysis of the
bidirectional functionally graded conical and cylindrical shells and annular plates on non-uniform Winkler-type
elastic foundations is proposed. Gradation of the material properties is assumed to be in both the meridian/radial and
transverse directions. The proposed unified formulation is derived based on the principle of minimum total potential
energy and solved using a differential transform analytical method whose center is located at the outer edge of the
shell/plate. Accuracy of results of the proposed unified formulation is verified by comparing the results with those of
the three-dimensional theory of elasticity extracted from the ABAQUS finite element analysis code. A variety of the
edge condition combinations are considered and a comprehensive parametric study including assessment of
influences of the material properties indices, thickness to radius ratio, stiffness distribution of the elastic foundation,
and various boundary conditions, is accomplished.

2 THE UNIFIED FORMULATION
2.1 Description of variations of the material properties and the elastic foundation

Consider a two directional functionally graded conical shell with the length L, constant thickness 4, inner and outer
radius R; and R,, resting on a non-uniform elastic foundation, as shown in Fig. 1. It is assume that the material
properties are graded in the meridian and transverse directions.

E(x.z)=[(E, —E. ), +E,](a+ax +ayx’)

M
plx,z)= |:(pm e )Vm +p¢»:|(ﬁo +Px + fox 2)
where £, p. and E,_, p, represent Young’s modulus and mass density of the ceramic and metal constituent

materials, respectively. V,, is the volume fraction of the ceramic. a; and f; (i=1,2,3) are the coefficients of the
meridian variations of Young’s modulus and mass density, respectively. The ceramic volume fraction is assumed to
follow a power—law distribution as:

1 zY

where g is the positive definite volume fraction index. The elastic foundation is assumed to be a parabolic function;
ie. k =k, (y,+yx +7,x7%).

Fig.1
Geometric parameters of the bi-directional FGM conical shell.
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2.2 Derivation of the governing equations
Based on the First-order Shear Deformation Theory, the displacement field of axisymmetric shell can be defined as:

Ulx,z.0)=uy(x.0)+2y, (x.1)
W (x,2,8) =w o (x,1) 3)

where u, and w denote the mid-plane displacements in the x and z directions, respectively. ¥/, is the transverse

normal rotation of the normal to the reference surface and ¢ represents the time. For small deflections of conical
shells, the strain-displacement relations may be written as:
gx :uO,X +z V/x X2

. _uCos(p) wSin(p)  _ y,Cos(p)

0

>

RO RO RO (4)
yxz = Wx +w ox
R, =R, +xCos(p)

where €, and &, are the normal strain components and /,, indicate the transverse shear strain. R, is the radius of the
cone in any plane perpendicular to cone axis.

On the other hand, if the transverse normal strain can be neglected, Hooke's generalized stress-strain law may be
expressed as:

E@D) o E@, L uCos) wSin(@) | Bz (o)
’ 1-v 1-v R, R, 1-v o R,
E(x,z) E(x,z)uCos(p) wSin(p) E(x,z)z [y
= g, +ve )= + + +—"2" 1 L= Cos (@) + R 5
7 l—V 2 ( o x ) l—V 2 RO RO vu(),x 1—V 2 Ro & ((0) v l//x X ( )

. :E(x,z) :E(x,z)
T2 +v) 7 2(1+v)

(l//,r +w x )

The governing equations of motion may be derived by using the minimum total potential energy principle.

Employing this principle leads to the following three equations of motion for the plate under consideration in the
cylindrical coordinate system (7, 6, z):

u,Cos(p) wSin .Cos ()
SU =J{ox5(uw +zy, )+0'9§( 0 R, 1 + RO(¢)+Z (V/’ R, (© ]J+sz5(‘//x tw,, )}dV (6)
5K =—Vjp{U5U +W W JdV 7
2
V =j[kw (Yo + 7% +7,x " w Sw HA ®
Vv
Nx,x +%COS (¢) = IOZZO +[ll/;x
0
M _ —-M . ..
M, +—7—"Cos(9)=Q,. =1Ly + 1Y, 9)
0
sz _NG . _ 2 _ ..
O.. . +R—COS(<0) R—Sm((P) k, (o +nx +y,x"w =1w
0 0
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Details of derivation of Eq. (9) are not included in the present paper to save space. Based on Eq. (5), The stress
resultants M, N, Q are defined as:

hi2

N, = J. o.dz =Au,, +/IMMO+/IMW +By, +B~M(//X
—h/2 RO RO 0
hi/2 .
N, = I o,dz =4 COS(¢)MO+A Sm((p)w +1‘I”o,x +B Ml//x +B~l//”
—h/2 RO RO RO (10)
hi/2 .
M = ‘[ o.zdz =Bu, +B~Muo+lfmw +Dy, . +D wa
—h/2 RO RO 0
hi2 .
M,= f o,zdz =B Cas(go)uo +B Sm(go)w +Bu, +D Ml//}( +Dy_ |
—h/2 RO 0 i RO ’
hi2 _
0, = [ rudz =A(y, +w,, (11)
—h/2
where
A E(x,z) A~ " VE (x,z) A- " E(x,z) :
B—I = dz,B—I—’zz dz, {B ;= | ——><z ,
D —h/2 1-v 22 15 —h/2 1-v 22 D_ —h/2 2(l+v) 5
1y hi2 1
I = 'f p(x,z)yz dz
12 —h/2 Zz
A =a,+a,(x —x,)+a,(x —x,) (12)
B =b,+a,(x —x,)+a,(x —x,)’
D =d,+d,(x —x,)+a,(x —x,)’
A= +a,(x —x,)+B(x —x,)’
I, =T 410 —x )+ TP (x —x, )’
L=1"+1"(x -x)+1Px —x,)
I, =[_2(0) +[_2(])(x _x0)+]_2(2)(x _x0)2
The governing Eqgs (9) may be simplified and rewritten based on Egs. (10-12) as:
2
Au,, +455@, 4@,
' RO ' RO
2
\By. _+B Cos((o)l// _B Cos”~ ()
X ,XX RO XX Roz x
Si Sin(o\C (13a)
i m((/))w’x _4 Sin(9) 2os(qo)w
RO RO
+A, uy, +A,, COS((ﬂ)uO +4,, @w +B, . +B, CO;((D) w, =1, + 1,
0 0 0
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2
Cos (go)u _gB Cos ((p)u

BuO,xx +B RO 0,x R02 0
2
+D l//X xXx + X X COS (w) _D COS z(w) X
) o RO RO
S Sin(o)C (13b)
5 Sin(®) . B in(o) 2os((p)w kA (w, +w.,)
RO RO
+B, u, +B,. Cos(w)uo +B,, Sin(g),, +D, v, +D,, M% =1gi, + 1.,
‘ RO 0 o 0
_iSin@, _,Cos@)Sin(e)
RO ' RO
_Sin(@) g, _pCos@)Sin@) g, . ;Cos@),
R, R, R, (13¢)
.2
+Aw rex +4 Cos ((p)w e —A Sln—z(go)w
N RO RO

—k,, (7, +7x +72x2)w +A—ax (‘//x +w ’x):[()wl

2.3 The mathematical forms of the boundary conditions

We consider some most common edge conditions of the solid circular plates to develop the semi-analytical solution:
Roller-supported edge:

N, =0, M_ =0, w =0, (14a)
Free edge:

u=0, M, =0, w =0, (14b)
Clamped edge:

u=0, y. =0, w =0, (14¢)

3 THE ANALYTICAL DIFFERENTIAL TRANSFORM SOLUTION
By using series solutions for the unknown displacement:
uy(x,0,t)= ZUI. (x —x,)
i=0

v, (x,0,6)=> ¥ (x —x,)

i=0

w(x,@,t):ZWi (x —x,) (15)
B ) [ By R
R, +x Cos (¢) i\ R, +x,Cos(¢)

Cos (p)* _ S nl - Cos (¢) " )
(R,7+xCos((p))2 jz()(]_'_)( R,,+x0C0S(€0)] (=)
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In practical applications, the functions must be expressed by means of finite series. By substituting Eq. (15) into
the governing Eq. (13) and performing some manipulations, the transformed form of Eq. (13) may be obtained as:

N i+l i

Z(;{_Zo(i —j A0 M g, +b W + tan(p)dy ,-,,H)—Zo(j # DV 72 (a U, +b, Y1) +tan(p)afV, ) -
i=0 | j= J=

i i-1

(i-jy’™ (a] 4+ Y +tan(p)aV ) (j+y j+2(

Jj=0

2 i th, ‘P(X_] L +tan(p)alV 1)
=

i-l i-2

Y- -0 aU, b, tan()al, )Y (DY P (@l +b, P+ tan(p)aV, )
0

j=0 j=

(16a)
Y GU, +bYL + tan(p)at )~ ZY @Y, +b, W+ tan()afV, )+
=0

j=0

J

(42 +D)(a U, +b P )+ +1) (U, +0,200 ) +i (0 +1) (a0, +b,P0 )+

i+l
o (1,U, +I} UH+I_0(2)Ul.72)+a)2(1_1<°)‘1’f")+I_1<1)‘PE{}+1_1‘2“Pf.f>2)}}(x —x,) =0
N it 5
Z{—ZY’”(;’ DU, +d, P +tan(p)bgt )= Z(J +DV 2 (bU, +d, P +b, tan(p)V, )~
i=0 j=

Zw“o -Hbu,, +dlxp5i}+tan<¢>ziwf,j)-§<j+1>Y»’“( Sy anW ) -
j =0

i-j-1
j=0

- i2 )
Y“'(z JOBU, +d P ran(@B )= Y G+ (bU, L +d, W b tan(ol )

j=0

<

(16b)
+d, ¥

ZY’”(bU +d, P +tan(p)b Y, ) ziY’M( Uicia gl 1)
j=0

Jj=0
(i +2)G +)(aU,, +b W0 )+ 1) (DU, +d/F ) +i G +D)(b,U, +d,9)-
Gy (W G+ )= (B0 + G =197 )= (WL + G =207 )+

O[040, TP, e (T T T ) <0

i{tan((p)iY P =j+D(aU, ., +b ‘I’f*l+l)+tan((p)ZY’”(l J)(aU, b )

i=0 j=0 =0

ran((p)ZY“‘(z JD(@U, , +6,% )= tan(p) .+ DY el +b ¥ )-
J=

i-2
tan((p)zojy j+2 (“1Ux>j4 +b1‘1/f{;.71)—tan(¢)zo(j +Y 7 (azUi,‘, ,+b P 2)_
J J
i+1

a ZY’”(I —j+W_ aZY’”(l W azZY’”(l J=Wn aOZY T - (16c¢)

aIZY S 1—522Y PP a, (DY +ai Y+ a (- DY a1 20, +
j=0 j=0

il

ai(i +1W,,  +a,(i —1)iW, -, tan ((D)Z(] +DV W, —aa tan* (@)Y (j AV W,

j=0 Jj=0

G ()3 G+ W, +a (P04 +1W, ) +2a, (W1 + i, ) -

J=0

b, [(ro 7+ 70> W+ (4200 W+ |+ @ (LW, + LW+ LW, )| =x,) =0
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By substituting Eq. (15) into the boundary condition Eq. (14), the transformed form of Eq. (14) may be written
as:

N
N, =Yl a,G +1U,,, +aiU, +a,(i DU, ,+ C”;(“’) (@U, +dU, , +aU, )+

i=0 0

S’Z—(“’)(dow,. FAW G, )by + DR +b i P b, ()W) +

i+l
0

O G e -5 <0
0

N - - -
M, =3 [by(i +1)U,,, +b,iU, +b,(i —U,, +C%(‘”)(1%U,. +hU, +bU, )+ (17)
i=0 0
M(I;OW,. DI A )+d (DR +d i P +d, (- )WL) +
0
—C";((/’) (A9 +d, W) +d, W) )}(x —x,) =0
0

0, =i{1(50 (WO 4G+, |+ k@, (PO +iW, )+ k@, | W) + (i —I)WHJ}(X —x,) =0

i=0

Obtaining Taylor’s series expansion of the dimensionless displacements based on Eq. (16) and substituting the
resulted expression into the boundary conditions (17), the resulted equations can be expressed in the following
matrix form:

" 2 a0 Al A 0 ) (o

) xm) an) s’ e ||UC| |0

FAR SRS AR R SRS AR | N N I s
A A A A A || o “
20 2 A A A A el |0

2 2 2 2 2 [0

where }; are polynomials in terms of €2corresponding to nth term.
Existence condition of the non-trivial solutions yields the following characteristic determinant:

AN T TR T ZAR TP

P A SR A F AR

woam o aw xs a| 19
PR A AN S AR

PARN EAD 2 A S 2R S

Ko o X' Xa X' X

4 RESULTS AND DISCUSSIONS

The numerical results are tabulated in Tables 1-9 and illustrated in Figs. 2-3 for bidirectional functionally graded
conical/cylindrical shells and annular plates resting on elastic foundation under different boundary conditions. In
order to validate the present analysis, finite element (FE) simulations via commercially available FE code ABAQUS
are undertaken in all tables for annular, cylindrical and conical shells and compared with obtained results. A 20-node
brick element with parabolic basis function C3D20R, which yields more accurate stresses than shell elements in the
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thickness direction, is used. Comparison shows excellent agreement between the results from these tables and
maximum error is less than 3%. The dependence of natural frequencies on the geometrical parameters, e.g. R/R, and
h for annular plates, R and % for cylindrical shells, R, & and ¢ for conical shells is presented in Tables 1-3. The
Young’s modulus varies linearly with thickness coordinate. From Table 1, it is observed that the increase of the
Ri/R, ratio yields an increase in the w; (i=1, 2, 3) but the fundamental frequency, w; affected more significantly.
Similar results also can be concluded for cylindrical and conical shells in Table 2 and 3 by increasing radius or ¢. In
addition, the effect of thickness is more notable compared to radius. Similar results can be observed for
conical/cylindrical shells and annular plates with linear variation of density and Young’s modulus in x-direction in
Tables 4-6. It is obvious from these tables that when the thickness increases, w; increases. Moreover, the restriction
of edge increased due to change of boundary conditions from free-end to simply-supported or from simply-
supported to clamped edge; hence it leads to highest natural frequencies.

Table 1
First three natural frequencies of foundationless bidirectional annular FGM plates with different boundary conditions and inner to
outer radius ratios (g = 1, ;= 0, a9 = By = 1, a;5 = B1., = 0).

Boundary Frequency h=0.1 R,»/R,,:O} h=0.2 R/R, :0..1 h=0.2 R/R, :0.2
Condition (Hz) 3D Difference 3D Difference 3D Difference
Present (ABAQUS) (%) Present (ABAQUS) (%) Present (ABAQUS) (%)
Annular
o, 922.47 925.62 0.34 1518.9 1540.2 1.39 1868.2 1898 1.55
c-C , 2346.5 2363.5 0.72 3467.1 3541.4 2.1 4146.8 4248 2.37
[oX 4223.8 4272.2 1.13 5461.8 5436.5 0.47 5868 5850 0.32
o, 618.92 618.13 0.13 1068.7 1076.5 0.73 1345.2 1357 0.86
C-S , 1954.9 1961.5 0.34 2918 2873.6 1.55 3079.6 3038 1.38
, 2921.9 2877.2 1.55 3065.4 31133 1.54 3730.8 3799 1.79
o, 786.04 790.72 0.59 1401.4 1382 1.4 1601.8 1619 1.08
S-C , 2128.7 2144 0.71 3356.4 3383.6 0.8 3930.8 4007 1.89
[oN 3976.2 4017 1.02 5759.6 5840 1.38 4568.9 4585 0.34
o, 154.23 153.26 0.63 293.34 292.55 0.27 359.69 359 0.2
C-F , 863.94 862.71 0.14 1443.6 1453.7 0.7 1799.5 1815 0.84
o 2353.6 2361.6 0.34 2924.6 2878.2 1.61 3091.8 3047 1.48
o, 364.82 366.2 0.38 686.23 691.49 0.76 704.97 709.9 0.7
F-C , 1347.1 1355.5 0.62 2279.7 2310.6 1.34 2429.2 2460 1.25
[0 2871.9 2897.3 0.88 4405.6 4491.3 1.91 4568.6 4574 0.11
Table 2

First three natural frequencies of foundationless bidirectional cylindrical FGM plates with different boundary conditions and
inner to outer radius ratios (h=0.1,g=1,y;,=0, ag=po =1, 05, = f1,=0).

Boundary Frequency REL=1 - k112 - REL=2 -
Condition (Hz) Present 3D Difference Present 3D Difference Present 3D Difference
(ABAQUS) (%) (ABAQUS) (%) (ABAQUS) (%)
Cylindrical
2] 1571.4 1584.4 0.82 1378.5 1392.5 1.01 712.97 716.21 0.45
cc , 2392.8 2408.5 0.65 1415 1424 0.63 860.6 863.29 0.31
[oX 3858.4 3893.6 0.9 1694.3 1705 0.62 1243.7 1248.4 0.38
cS o) 14149 1424 0.64 1013 1010.5 0.24 668.56 671.1 0.38
, 2091.1 2095.7 0.22 1368 1378.8 0.78 799.03 801.03 0.25
[0 2250.8 2254.9 0.18 1443.7 1455.7 0.82 1090.2 1090.5 0.03
S8 o, 1370.2 1380.4 0.74 1298 1309.9 091 663.37 670 0.99
, 1909.1 1915 0.31 1377.1 1380.4 0.24 753.22 757.75 0.6
, 3187.1 3201 0.44 1525.7 1551.6 1.67 1029.6 1037.2 0.73
CF o, 1317.2 1329.5 0.93 1012.6 1010.2 0.24 657.35 660.47 0.47
, 1514.6 1524.3 0.63 1322.7 1336.1 1 686.26 688.95 0.39
[oX 2171.8 2170.8 0.05 1384.8 1396.6 0.84 857.11 859.31 0.26
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First three natural frequencies of foundationless bidirectional conical FGM plates with different boundary conditions and inner to
outer radius ratios (h=0.1,g = 1,9, =0, a9 =y =1, a;, = f;, = 0).

Boundary Frequency RL=1 - RELI=2 - REL=2 -
Condition (Hz) Prosent 3D Difference Prosent 3D Difference Prosent 3D Difference
(ABAQUS) (%) (ABAQUS) (%) (ABAQUS) (%)
Conical
. o} 909.009 913.73 0.52 412.11 413.19 0.26 312.51 313.17 0.21
=76 , 2047.621 2063.3 0.76 662.97 665.01 0.31 597.03 598.97 0.32
, 3643.951 3681.6 1.02 11152 1119.8 0.41 1073.3 1078 0.43
. ol 1052.829 1058.3 0.52 585.02 587.16 0.36 409.16 410.15 0.24
Cc-C =74 , 2114.614 2129.9 0.72 792.61 795.17 0.32 652.44 654.36 0.29
; 3684.975 3722 0.99 1202.3 1206.9 0.38 1106.7 1111.2 0.4
. o, 1222.592 1222.1 0.27 788.29 792.25 0.5 513.06 514.62 0.3
¢= A , 2199.743 2210.7 0.28 958.98 962.78 0.39 719.48 721.53 0.28
, 3737.157 3771 0.54 1322.4 1327.4 0.38 1148.8 1153.2 0.38
. o, 579.6134 581.19 0.04 398.95 399.97 0.25 275.51 276 0.18
=76 , 961.9995 964.67 0.5 512.29 513.33 0.2 337.75 338.19 0.13
o, 2126.474 2138 0.9 719.73 720.99 0.17 614.84 616.14 0.21
al 827.609 825.04 0.31 580.96 583.01 0.35 392.13 393.1 0.25
F-C ¢= % , 1103.661 1102.2 0.13 703.72 705.91 0.31 445.84 446.78 0.21
[eX 2181.32 2189.8 0.39 879.65 881.91 0.26 670.7 672.03 0.2
. o, 1052.594 1048.3 0.41 786.8 790.75 0.5 501.18 502.72 0.31
e ®, 1257.304 1253.4 0.31 889.57 892.8 0.36 548.82 550.56 0.32
, 2230.887 2234.5 0.16 1055.01 1059 0.38 735.05 736.61 0.21
Table 4
First three frequencies of annular plate for difference thickness values (= 0,7, =0, g =g +(E.-E, )% p=pn+(p.—p, )% ).
Boundary Frequency R/R=01 Ri/Ro=02 R/R~05
Condition (Hz) Present 3D Difference Present 3D Difference Present 3D Difference
(ABAQUS) (%) (ABAQUS) (%) (ABAQUS) (%)
Annular
o} 931.95 939.65 0.82 1165.6 1176.9 0.96 2626.5 2667 1.52
h=0.1 ®, 2350.2 2374.5 1.02 2887.7 2922.3 1.18 5978.1 6092 1.87
cc @5 4199.8 42532 1.26 5078 5151.7 1.43 8395.2 8480.3 1
al 1486.2 1508.3 1.46 1823.6 1853.3 1.6 3596.7 3681.5 2.3
h=0.2 , 3406.8 3471.6 1.87 4047 4132 2.06 7335.4 7558.3 2.95
@, 5355.7 5385.6 0.56 5673.4 5722.7 0.86 8395.2 8502 1.26
o, 821.79 822.42 0.08 989.47 990.1 0.06 2224.8 22359 0.49
h=0.1 , 2195.5 2204.2 0.39 2664.3 2678.9 0.54 5502.7 5490.6 0.22
S.C @5 4050.3 4080.8 0.75 4485 4483.1 0.04 5667 5736.4 1.21
o, 1394.7 1402.9 0.59 1670.7 1681.7 0.65 33522 3399.4 1.39
h=0.2 ®, 3353.2 3397.7 1.31 3971.4 4032 1.5 5502.7 5493.9 0.16
@, 4841.2 4866 0.51 4485 4482 0.07 7324.2 7496.5 2.3
al 428.28 429.15 0.2 446.38 446.72 0.04 810.21 808.73 0.18
h=0.1 , 1437.9 1442.3 0.3 1586.7 1588.3 0.1 3240.2 3257.3 0.52
@ 2979.1 2995.9 0.56 3427.3 34452 0.52 5502.7 5489.4 0.24
F-c o, 800.89 805.02 0.51 834.86 837.09 0.27 1449 1452 0.2
h=0.2 o, 2405.3 2428.3 0.95 2613.8 2634.5 0.78 4697.7 4766.7 1.45
@, 4500 4563.7 1.4 4485 4478.4 0.15 5502.7 5492.2 0.19
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First three frequencies of Cylindrical shell for difference thickness and radius values (L=1,2=0,7.=0, g =g + (E.-E ))L,
" ¢ "L

P=p, +(p. =P, )% )-

Boundary Frequency h=0.1 R=1 . h=0.2 R=1 . h=0.2 R=2 '
Condition (H2) Present 3D Difference Present 3D Difference Present 3D Difference
(ABAQUS) (%) (ABAQUS) (%) (ABAQUS) (%)
Cylindrical
@) 1525.8 1528.1 0.15 1849.2 1858.2 0.48 1465.8 1479.8 0.95
Cc-C , 2350.8 2359.9 0.38 3206.3 3241.4 1.08 3042.2 3089.2 1.52
@ 3794.2 3825.6 0.82 4102.5 41372 0.84 4079.3 4113.8 0.84
o, 1354.1 1351.6 0.18 1612.6 1608.2 0.28 1238.8 1239.9 0.09
C-S , 2127.1 2128.1 0.05 2499.3 2495 0.17 2481.6 2475.1 0.26
@, 2533 2519.4 0.54 3081.6 3091 0.31 2875.5 2901.5 0.89
@) 1323.7 1322.1 0.12 1452.4 1445.1 0.5 952.75 949.19 0.38
S-S ®, 1902 1895.3 0.35 2701.4 2695 0.24 2482 2491.2 0.37
@5 3196.8 3196.3 0.01 4250.7 4236.7 0.33 42349 4219.3 0.37
el 1017 1021.4 0.43 1076.3 1085 0.81 619.88 621.23 0.22
C-F , 1493 1490.7 0.15 1913.3 1912.1 0.06 1641.1 1645.6 0.27
5 2414.8 2418 0.13 2524.6 2515.7 0.35 2487.7 2479.6 0.33
Table 6

First three frequencies of Conical shell for difference thickness and radius values (L=1,2=10,y,=0, g =g + (E.—E )i ,
m c—Ea)T

p=p,+(L.—p, )% )-

Boundary Frequency h=0.1 R= . h=0.2 R=1 . h=0.2 R=2 ‘
Condition (Hz) Present 3D Difference Present 3D Difference Present 3D Difference
(ABAQUS) (%) (ABAQUS) (%) (ABAQUS) (%)
Conical
o [2) 912.75 916.72 0.43 1394.6 1409.4 1.05 1342.6 1359.5 1.24
=76 , 2043.7 2061.9 0.88 3019.6 3068.5 1.59 2998.8 3049.7 1.67
[oX 3615.2 3656.7 1.14 4181.7 4221.8 0.95 4119.6 4157.7 0.92
o, 1051.2 1053.5 0.21 1488.3 1499.9 0.77 1373.4 1389.3 1.14
C-C 9=74 , 2101.6 2117.9 0.77 3055.9 3101.1 1.46 3009.8 3059.8 1.63
[ 3647.9 3687.4 1.07 4162.7 4202.2 0.94 4110.5 4148.2 091
. o, 1213.2 1214.2 0.08 1605.4 1614.4 0.56 1409 1423.8 1.04
e , 2176.6 2190.6 0.64 3102.8 3144.5 1.33 3022.6 3071.1 1.58
o, 3691.1 3728.1 0.99 4138.8 4177.7 0.93 4099.5 4136.4 0.89
x o, 495.23 494.72 0.1 598.47 595.67 0.47 440.11 438.75 0.31
¢= % , 1022.8 1021.4 0.14 1667.3 1672.1 0.28 1593.9 1600.9 0.44
, 2245 2251.6 0.29 2710.9 2703.9 0.26 2582.9 2575.7 0.28
2] 684.46 684.55 0.01 758.16 755.41 0.36 502.12 500.92 0.24
F-C 9="4 , 1128.1 1125.6 0.22 1722.1 1724.1 0.12 1608.7 1614.8 0.38
, 2288.1 2293.4 0.23 2663.4 2656.4 0.27 2561.9 2554.7 0.28
x o) 848.59 849.78 0.14 907.91 907.12 0.09 560.45 559.77 0.12
7= A , 1254.5 1251.1 0.27 1790.6 1790.1 0.03 1624.6 1629.8 0.32
, 2342.1 2346.6 0.19 2605.2 2598.1 0.27 2536.5 2529 0.3

The effect of non-homogeneity material and density parameters in the x-direction are tabulated in Table 7 for
different values of a; and f;. The nonlinearity of elastic modulus and density increased by considering more
coefficients. It is evident from this table that natural frequencies take larger values, provided that either Young’s
modulus coefficients, a; or density coefficients, f;, increase.

© 2020 TAU, Arak Branch



396 M.M. Alipour et.al.

Table 7
Effect of non-homogeneity of material in the x-direction on the natural frequencies (R =L =1, g=0 (4l), y,=0, h =0.1).
a,=a, =1, a,=0 o, =a,=a, =1 a,=a, =1, a, =5
Freq‘ B=B=1 B=0 B=B=1 B=0 B=B=5=1
c-C S-C F-C Cc-C S-C F-C c-C S-C F-C

Present 51079 39336 128.98 560.39 434.87 14827 650.73 520.02  199.75
@ 3D(ABAQUS) 51746  395.89 129.51 567.54 437.43 148.78 658.82 52274 20028
] Difference (%) 17895 06394 04059 1.2602 0.5862 03442 12275 05202 0.2623
A Present 1304.6 1135.7 582.59 1424.7 12443 644.59 1633.8 1442 775.64
€ @, 3D(ABAQUS) 1325 1146.1 586.24 1446.6 1255 648.23 1658.5 1453.6  779.38
= Difference (%) 1.5386___ 0.9095 0.6229 1.5162 0.8522 0.5618 1.492 0.7954 04792
< Present 2347.2 1728 1409.4 2558 1933.7 1544.1 2915.9 24251 17926
@ 3D (ABAQUS) 23899 1732.7 1421.9 2604 1937.9 1556.9 2967.7 24281  1806.2
Difference (%)  1.7851 0.2737 0.8821 1.7651 0.2168 0.8221 1.7449 0.1256 07515
Present 674.73 596.2 518.16 736.8 647.5 539.74 851.84 750.63  584.99
< o 3D(ABAQUS)  678.75 596.83 517.95 741.06 647.92 539.4 856.63 750.76  584.63
& Difference (%) 05922 0.1048 0.0404 0.5748 0.0655 0.0639 0.5595 0.0171 _ 0.0623
= Present 13713 1207.6 73232 1495.9 13212 796.39 1714 15288  932.93
% o, 3D(ABAQUS) 13888 1215.1 733.31 1514.7 1328.9 797.29 17352 15368 933.79
s Difference (%)  1.2583 0.6211 0.135 1.2385 0.5764 0.1131 12197 0.5226  0.0924
g Present 2386.3 1667 1465.6 2599.7 18712 1602.9 2962 23613  1856.6
O @, 3D(ABAQUS)  2426.1 1671.6 1475.4 2642.5 1875.2 1612.7 3010.4 23642  1866.8
Difference (%) 1.6406 0.2758 0.662 1.6205 02115 0.6102 1.6075 01215 0.5484
Present 983.011  878.68 810.19 1064.2 943.76 830.37 12148 10758  874.19
_ o 3D(ABAQUS) 98439 877.41 811.35 1065.9 942.22 831.99 1217.5 10743 876.67
3 Difference (%)  0.1401 0.1444 0.1431 0.161 0.1633 0.1947 0.2187 0.1439  0.2829
z Present 1524 1362.9 960.44 1660.1 1488.1 1038.7 1900.2 17215 1203.9
2 o, 3D(ABAQUS) 15355 1364.8 959.99 1672.6 1489.9 1037.7 19145 17233 12024
g Difference (%) 0.7481 0.1416 0.0466 0.745 0.1181 0.0952 0.7477 0.1018  0.1252
= Present 2479.6 1576.8 1526.6 2699.8 1779 1692.6 3073.5 22594 19914
© o 3D(ABAQUS) 2513 15813 1530.8 2735.7 1783 1696.4 3114.2 22625 19953
Difference (%) 13287  0.2847 0.2762 13126 0.2245 0.2251 1.3058 0.1362  0.1941

In Table 8, the variation of £ and p in thickness direction is studied, by considering different values of g. it is
seen that the natural frequencies increases with the increase of power variation, g. It can be also inferred that the
effect of parameter g is less pronounced compared to parameters o; and f,. As it is expected, the natural frequencies
increases as higher degrees of restraints are applied to the plate edges (from simply- supported to clamped edge).

The effect of the foundation stiffness, 4, on the first two natural frequencies are plotted in Figs. 2 and 3 for
clamped-clamped and clamped-free boundary conditions, respectively. The results obtained for annular, conical and
cylindrical shells. Generally, the annular plate has the smallest w; and cylindrical shell has the greater one and
natural frequencies of conical shells lays between them. From these figures, one can see that increase in the stiffness
of foundation lead to less changes in the vibration behavior than the smooth ones, and the frequency parameters w;
increase. For conical shell, one can obtain that by increasing the angle ¢, the w; will be increase. In fact, the lower
and upper limit of ¢ is 0 and z/2 which coincide with annular and cylindrical shell. As expected, the frequencies for
clamped-clamped boundary condition are larger than those for clamped-free boundary condition.

3500 4000
Annularplate
Conical Shell (p =7/
30001 | conical Shell (@

Annularplate —_—
Conical Shell (g=1/6) =

Conical Shell (@= 2z

3500
Conical Shell (g=7/3) —-—

Cylindrical Shell ~ -.eee

2500

@
2000

1500 {

1000 2000

500
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w Ky, (1E9)
(a) b)
Fig.2
First two natural frequencies for bidirectional functionally graded shell with clamped-clamped boundary condition (L=R=1,
h=0.1, g=1, y,= 7,=0, y,=1).
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First two natural frequencies for bidirectional functionally graded shell with free-clamped boundary condition (L=R=1, 7=0.1,

g=1, 7,7 7270, yp=1).

Table 8

Effect of non-homogeneity of material in two direction on the natural frequencies for different boundary conditions (R =L =1, y;

=0, h =0.1), Inner edge-outer edge: C-C, S-C.

a,=a, =1, a,=0

o, =a, =a, =1

a,=a, =1, a, =5

B=B=L p=0 B=B=1 B=0 B=p=p=1
g=1 g=2 g=5 g=1 g=2 g=5 g=1 g=2 g=5
o 767.16 816.78 878.43 841.88 896.38 964.06 978.37 1041.9 1120.6
§ € 1980.7 2113.7 2271.9 2163.1 2308.4 2481.2 2482 2648.9 2847.2
‘g = 2 3598.4 3848.4 4134.4 3921.4 4193.9 4505.6 4471.9 4783 5138.5
ES o 588.35 626.1 674 650.38 692.11 745.07 777.82 827.77 891.13
2 SC o, 1712.3 1825.4 1963.6 1875.5 1999.3 2150.7 2173.5 2317 2492.6
@, 2812.7 3033.2 3218.6 3146.8 3393.6 3601 3943 4252.1 4511.9
2 906.84 967.89 1035 991.96 1058.7 113222 11493 1226.8 13122
E _ ey, 2042.4 2179.7 2338.3 2228.9 2378.8 2552 2555.6 2727.7 2926.6
g 2 @5 3637.9 3889.9 4174.7 3963.5 4238.1 4548.6 4518.5 4832 5186
2 l'% o 769.44 822.03 877.06 840.04 897.38 957.83 982.99 1050 1121.6
S SC o, 1780.7 1898.8 2037.1 1948.2 20773 2229 22543 2403.8 2579.8
@5 2762.2 2978.4 3160.4 3095 3337.1 3540.9 3889.9 4193.9 4449.6
o 1051.8 1124.7 1199.1 1148 1227.6 1308.9 1326.9 1419.1 1513.4
E _ CC 2109.5 22523 24133 2300.5 2456.3 2632 2636 2814.8 3016.4
g I @, 3678.7 3933.6 4219.1 4007 4284.7 4595.8 4566.7 4883.6 5238.3
2 l'% o, 940.73 1007.4 1071.6 1020.6 1092.9 1162.9 1180.5 1264 1346.1
3 SC o, 1854.1 1978.5 2119.2 2026.4 2162.2 2316.4 2341.7 2498.5 2671.5
@5 2704 2914.8 3092.2 3035.2 3271.6 3470.5 3828.4 4126.3 4376.7
@ 1221.9 1308.6 1392.3 1330.8 1425.2 1516.5 1533.8 1642.8 1748.5
E _ CC o, 2194.5 23445 2509 2391.4 2554.9 2734.4 2738.5 2925.9 3131.7
2 3 @5 3730.4 3989.2 4276.1 4062.3 4344.1 4656.8 4628.2 4949.7 5306.1
2 é o 1126.9 1209 1284.2 1216.6 1305.2 1386.8 1394.9 1496.4 1591
3 SC o, 1945.9 2078.2 22225 2124.2 2268.5 2426.6 2451.5 2617.9 2801.3
@, 2631.2 2834.7 3006.1 2960.7 3189.5 3382.1 3751.6 4041.4 4285
- o, 1567 1681.5 17853 1695.5 18193 1932 1934.9 2076.4 2205.9
% _ CC o, 2385.4 2551.7 2725.2 2597.8 2778.9 2968.1 2973.8 3181.6 3398.4
G @5 3849.2 41174 4408.5 4190.6 4482.7 4799.8 4772.6 5106 54673
'%; l's/ c 2 1428.7 1537.9 1633.4 1532 1648.7 17513 1739.5 1871.2 1988.7
5 @, 21432 2293.1 24463 2336.4 2499.7 2667.4 2695.9 2884.1 3078.8
@5 2515.7 2703.7 2862.9 2840.7 3053.3 3233.1 3616.7 3888.5 4117.5

The effect of nonlinearity of elastic foundation on the natural frequencies are investigated in Table 9 by means of
considering foundation coefficients, y;. It is interesting to note that the presence of elastic foundation cause the w; to
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be increased because the structure will be stiffer. Moreover, when the stiffness of foundation changes from constant
variation to linear and parabolic variation, the effect of elastic foundation is much pronounce.

Table 9
Effect of nonlinear elastic foundation on first three natural frequencies of the FGM annular, conical and cylindrical shells (g = 1).

k. =10° k, :109(1+%) k, :10‘)(1+2%+5x%2)

C-C F-C F-C C-C Cc-C F-C
3D Difference 3D Difference Present Present
Present (ABAQUY) (%) Present  (ABAQUS) (%)

oo o 819.67 824.06 0.53 321.86 322.06 0.06 842.84 345.84 923.07 397.71
é é \‘% @, 20052 2020.7 0.77 864.71 867.56 0.33 2014.6 882.73 2052.6 949.63
< @ 36147 3652.2 1.03 2090.3 2101.9 0.55 3619.8 2098.8 3641.5 2134.4
=_a @ 95056 954.8 0.44 643.02 644.04 0.16 970.74 656.75 1041.9 689.81
é g }T; @, 2066.1 2081.3 0.73 1000.7 1002.9 0.22 2075.2 1015.6 2112 1072.3
oY o 3654.1 3691.5 1.01 2143.6 2154.7 0.52 3659.2 2151.7 3680.6 2185.7
=_5 @ 1088.9 1093.9 0.46 873.15 876.61 0.39 1106.7 884.38 1170.1 912.57
% g \\Z @, 21325 2147.3 0.69 1137.6 1140.3 0.24 21413 1149.9 2176.9 1198.2
C T o 36951 3731.8 0.98 2197.5 2207.7 0.46 3700.1 2205.1 3721.2 2236.5
=_a @ 1253.8 1260.4 0.52 1088.8 1095.5 0.61 1269.3 1098.3 1325.4 1122.5
% g \\Z @, 22169 2231.4 0.65 1287.1 1291.6 0.35 22254 1297.6 2259.5 1339.5
C T e 31471 3783.1 0.95 2242.6 2248.9 0.28 3752 2247.6 3772.9 2266.1
3 o @ 1595.8 1588.7 0.45 1344.6 1356.9 091 1607.9 1350 1651.5 1362.6
E} E @, 2408.6 2405.1 0.14 1538.8 1547.6 0.57 2416.4 1548.5 2448.1 1585.5
° - @ 3868 3879.1 0.29 21743 2173.2 0.05 3872.8 2175.2 3893.1 21779

5 CONCLUSION

In this paper, free vibration analysis of bidirectional FG conical and cylindrical shells and annular plates resting on
non-constant elastic foundation were investigated based on the FSDT. The mechanical properties were assumed to
vary exponentially along the transverse direction and parabolic in the meridian/radial direction. The elastic
foundation was considered as a Winkler model with parabolic variation. Six complex equations of motion under
proposed unified formulation considerations were analytically solved by using differential transform method. In all
numerical assessment, comparison studies were conducted with FEM results to prove high accuracy of the current
analytical approach. Fundamental frequencies of conical and cylindrical shells and annular plates under different
combinations of free-end, simply-supported and clamped edge conditions were comprehensively studied by
considering the effects of thickness, radius, non-homogeneity material parameters and foundation stiffness
parameters.
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