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 ABSTRACT 

 In this paper, the analytical solution of an electric and 

Volterra edge dislocation in a functionally graded 

piezoelectric (FGP) medium is obtained by means of 

complex Fourier transform. The system is subjected to in-

plane mechanical and electrical loading. The material 

properties of the medium vary exponentially with 

coordinating parallel to the crack. In this study, the rate of the 

gradual change of the shear moduli and mass density is 

assumed to be same. At first, the Volterra edge dislocation 

solutions are employed to derive singular integral equations 

in the form of Cauchy singularity for an FGP plane 

containing multiple horizontal moving cracks. Then, these 

equations are solved numerically to obtain dislocation density 

functions on moving crack surfaces. Finally, the effects of the 

crack moving velocity, material properties, electromechanical 

coupling factor and cracks arrangement on the normalized 

mode I and mode II stress intensity factors and electric 

displacement intensity factor are studied.  

 © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Mixed mode loading; Multiple moving cracks; 
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1    INTRODUCTION 

 IEZOELECTRIC materials have been extensively used in electromechanical devices. These kinds of 

devices have played a significant role in the smart systems of aerospace, automotive, medical and electronic 

fields [1]. Mechanically and electrically induced stresses can cause premature failure of these devices due to the 

propagation of flaws or defects during production and/or in-service condition. Functionally graded materials 

(FGMs) play an important role in many complex systems for their superior properties. In most cases, FGMs are 

inhomogeneous with properties varying spatially and characterized by gradually changing material constants. In 

order to improve their application and reliability, FGMs can be extended to piezoelectric materials. When FGM 
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materials are combined with piezoelectric properties, new materials emerge known as functionally graded 

piezoelectric materials (FGPMs). These materials are widely used because of both of these properties and are 

used in important fields such as aerospace, nuclear power, chemical plants, electronics and biomaterials. On the 

other hand, since FGPM materials have a doping effect between the elastic domain and the electric domain, they 

are therefore widely used in the manufacture of actuators or sensors in intelligent composite systems.  The 

physical properties of FGPMs are non-homogeneous and the electro- mechanical parameters may vary 

continuously in particular directions. The main advantage of FGPMs over conventional composites is the absence 

of any interfaces. It is generally well known that FGPMs are very brittle and capable to fracture with low 

toughness. Thus, the investigation of the fracture analyses of piezoelectric materials could provide information to 

improve the design of electromechanical devices. For the cracks in piezoelectric solids and stress analysis in 

cracked materials, one of the most important issues is to investigate the fracture parameters, such as 

microstructural parameters, stress intensity factors and J-integral by employing the advanced numerical method 

[2–4]. Clearly, a moving crack has completely different characteristics from the static one. Great progress has 

been made in the analysis of cracks in bodies made up of FGMs. A brief review of the articles regarding the crack 

problem in piezoelectric materials under electromechanical loading is mentioned below. The fracture analysis of 

an infinitely long piezoelectric ceramic strip, containing a Griffith moving crack with constant velocity was 

studied by Kwon et al. [5]. Gao et al. [6] addressed an anti-plane problem of moving crack along the interface 

between two dissimilar piezoelectric medium. The crack is assumed to be permeable crack. Li and Weng [7] 

analyzed the problem of the moving cracks in a functionally graded piezoelectric material. Meguid et al. [8] 

considered the problem of a moving crack in an infinite medium with spatially varying elastic properties 

perpendicular to the direction of the crack propagation. The article by Wang et al. [9] deals with the Yoffe -type 

moving crack with a constant speed at the interface of two dissimilar piezoelectric half planes by using complex 

variable technique. The problem of an impermeable moving crack with a constant length propagating in a 

piezoelectric strip was considered by Li [10]. The cracked piezoelectric layer under the action of uniform anti -

plane traction and in-plane electric field. Hu and Zhong [11] considered the fracture behavior of a functionally 

graded piezoelectric strip containing a constant speed moving crack under impermeable and permeable 

conditions. Piva et al. [12] solved a transversely isotropic piezoelectric medium with an  impermeable and 

permeable Griffith moving crack under a remote generalized electro-mechanical loading. Yan and Jiang [13] 

obtained an analytical solution to the moving crack problem in a functionally graded piezoelectric material under 

an in-plane loading. In another work, the plane problem of two piezoelectric semi-infinite spaces with an 

interface moving crack under the permeable electric condition with an account of electric traction on its surfaces 

is investigated by Lapusta et al. [14]. In accord with the above studies, there is not a promising examination 

regarding the multiple moving cracks interaction with arbitrary arrangement in the piezoelectric materials. The 

distributed dislocation method has been introduced as a powerful tool to obtain the fie ld intensity factors in the 

piezoelectric materials weakened by multiple cracks. Li and Lee [15] considered a piezoelectric plane with two 

collinear unequal cracks under mode-I electromechanical loadings. Asadi [16] employed Volterra climb and glide 

dislocations to analyze an infinite transversely isotropic piezoelectric plane having co-axial annular cracks under 

axisymmetric electromechanical loading. The results were used to evaluate field intensity factors for a system of 

interacting annular and/or penny-shaped cracks. Bagheri et al. [17] provided the calculation of the stress intensity 

factors for multiple moving cracks in a functionally graded magneto-electro-elastic strip under an anti-plane 

mechanical and in-plane magneto-electrical loading based on the distribution of screw dislocations. The 

distributed dislocation technique was also applied to the analysis of a piezoelectric substrate with imperfect 

functionally graded orthotropic coating (Bagheri et al. [18]) and interface crack in two bonded dissim ilar 

materials (Monfared et al. [19]) in which the interaction of several cracks was studied. Wang and Pan considered 

the problem of a screw dislocation in functionally graded piezoelectric solids [20]. Monfared and Ayatollahi [21] 

determined stress and electric displacement intensity factors for several cracks with various configurations in an 

infinite piezoelectric plane under impermeable and permeable conditions. Bagheri [22] studied the interaction of 

multiple horizontal cracks in a piezoelectric half-plane under anti-plane transient loading. He employed the 

distributed dislocation technique to determine the field intensity factors. To our best knowledge, in the previous 

studies (which deals with the relatively simple problem of cracked functionally graded piezoelectric materials), it 

is assumed that in the direction(s) parallel to the plane of the crack the material properties does not vary. In the 

case of fracture of such a nonhomogeneous medium since, generally, the plane of the crack is not a plane of  

symmetry, and hence the propagating crack would eventually align itself parallel to the direction in which the 

material properties vary.  

In the present study, it is then assumed that the crack is located on the y = 0 plane, the material properties are 

an exponential function of x. However, no solution has been presented for the multiple moving cracks in 
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functionally graded piezoelectric materials wherein material properties vary exponentially in the plane of the 

crack direction. The paper is organized as follows: the dislocation solution is accomplished in an FGP plane, 

wherein the material properties are an exponential function of x in section 2. The solution of the mixed-mode 

problem of multiple moving cracks as well as the solution of the system of integral equations is obtained in 

section 3. Section 4 contains the numerical results. Finally, concluding remarks are provided in section 5.  

2    MOVING ELECTRO-ELASTIC DISLOCATIONS IN AN FGP PLANE 

As shown in Fig. 1, the problem under consideration consists of moving electric and Volterra edge dislocations in an 

FGP plane with properties that vary as a function of coordinate x. Although, the jump in the electric potential is not a 

type of dislocation, it is referred here as the electric potential discontinuity for convenience. It is worth noting that 

the medium is free of any mechanical and electrical loads. Let x and y, denote Cartesian coordinates and suppose 

that a piezoelectric material occupies the entire space except for the region 0y  , 0x  , where there are electric 

and Volterra edge dislocations with the discontinuity strength and Burgers vectors. The electric dislocation is 

initially assumed to remain open to prevent the transfer of electric potential between its faces. On the other hand, the 

electro-elastic dislocations obstruct the electric potential as shown in Fig. 1. 

 

 

 

 

 

 

Fig.1 

Schematic view of functionally graded piezoelectric plane 

with moving electro-elastic dislocations. 

 

Field equations for piezoelectric materials are given by [15] 
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(1) 

 

where XX , 
Y Y  and 

XY  are the in-plane stress tensors, XD  and 
YD  are the in-plane electric displacements. 

Also, 11( )c X , 13 ( )c X , 33 ( )c X  and 44 ( )c X  are the elastic modules, 31( )e X , 33 ( )e X  and 15 ( )e X  are the 

piezoelectric parameters, and 11( )X  and 33 ( )X  are the dielectric permittivity of the FGPMs. Crack problems in 

the non-homogeneous piezoelectric materials do not appear to be analytically tractable for arbitrary variations of 

material properties. To this end, it is a general practice to adopt suitable mathematical functions to represent the 

variation in properties for which the problem becomes tractable. Similar to the treatment of the crack problem for 

isotropic non-homogeneous materials [23], we assume that the material gradient is oriented along the x-direction and 

the electro-elastic properties depend on the horizontal coordinate X as follows: 

 

11 110 13 130 33 330 44 440 31 310( ) , ( ) , ( ) , ( ) , ( ) ,X X X X Xc X c e c X c e c X c e c X c e e X e e          

33 330 15 150 11 110 33 330( ) , ( ) , ( ) , ( )X X X Xe X e e e X e e X e X e           
(2) 
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where 
0ijc  are the elastic modules, 

0ije  are the piezoelectric parameters, and 0ij  are the dielectric permittivity at 

0X   and   is a positive or negative constant. By neglecting body forces and electric charge density, the 

equations of motion and Maxwell equation for the FGPMs are expressed by 
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(3) 

 

Let us now assume that the variation of mass density in the medium are defined by 0( ) XX e   , where 0  is 

the density 0X  . It is usually convenient to study the crack propagation in a moving coordinate system ( , , )x y t , 

with [12] 

 
, , ,x X Vt y Y z Z     (4) 

 

where ( , , )x y t  represents the moving coordinate system, attached to the moving dislocation. By making use of (4), 

the equations of motion in the moving coordinate system are cast into the form: 

 
2 2 2 2

2
110 0 130 440 440 310 150 110 130 3102 2

( ) ( ) ( ) ( ) 0,
u v u u v

c V c c c e e c c e
x y x y x y yx y

 
 

      
         

       
 

2 2 2 2 2
2

440 0 130 440 330 150 330 440 1502 2 2 2
( ) ( ) ( ) 0,

v u v u v
c V c c c e e c e

x y y x xx y x y

  
  

       
         

       
 

2 2 2 2 2

110 330 150 330 310 150 150 1102 2 2 2
( ) ( ) 0.

v v u u v
e e e e e

x y y x xx y x y

  
   

       
         

       
 

(5) 

 

The issue of how to impose the electrical boundary conditions along the crack surfaces in piezoelectric fracture 

modeling is a controversial one. Here we consider impermeable boundary conditions. To obtain the solution of 

moving electric and Volterra edge dislocations, we locate an edge dislocation at the origin and let the line of 

electrical potential discontinuity be the dislocation cut; thus, the electromechanical boundary conditions at the 

dislocations path can be stated in the form: 

 

( ,0 ) ( ,0 ) ( ),xu x u x b H x  
   

( ,0 ) ( ,0 ) ( ),yv x v x b H x  
   

( ,0 ) ( ,0 ) ( ),x x b H x   
 

( ,0 ) ( ,0 ),yy yyx x  
   

( ,0 ) ( ,0 ),xy xyx x  
   

( ,0 ) ( ,0 ).y yD x D x   
(6) 

 

where (.)H is the Heaviside step function and xb , yb
 
and b  are the displacement, electric potential and magnetic 

potential jumps across the dislocation cut, respectively. By using the standard Fourier transform, the solution of the 

problem (5) may be obtained as: 
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(7) 
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where 1i   ,  is Fourier variable,U , V  and   are Fourier transforms of displacement components u , v  and 

electrical potential   respectively, and k , , ( 1,2,...,9)i i   are represented in the Appendix I. The solution of the 

problem satisfying the necessary far field conditions of displacement components and electrical potential may be 

expressed as: 

 
3

*

1

( , ) ( ) ,j y

j

j

U y A e


 



   

3
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( , ) ( ) ,j y

j j

j
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 
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
   

3
*

1

( , ) ( ) j y

j j

j
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

 


   (8) 

 

where 
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 (9) 

 

Moreover, , ( 1,2,...,5)ir i   are appeared in Appendix II. In Eqs. (9), functions , ( 1,2,3)jA j   are arbitrary 

unknowns. The characteristic equation and its roots are found to be: 
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The solution to (10) is found to be 
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where 

 

2 3 3 2
1 2 1 1 2 33 , 2 9 27 , 4 ,p q r p q             

  

 

4 8 6 6 2 7 1 6 3 7 4 4 6 8 2 4 5 1 4
1 2

4 8 6

( 2 ) ( ) ( )
,

H H H H H H H H H H H H      

  

         
 


 

2
6 3 5 7 4 6 2 4 8 5 8 1 8 4 6 1 6 2 7 1 5 8

2 2
4 8 6

( ) (2 )
,

H H H H H H H H H H H H H H H H H H H  

  

       
 


 

2
1 6 5 8

3 2
4 8 6

( )
,

H H H H

  

 
 


 

(12) 

 

In addition, the functions , ( 1,2,...,8)iH i   are given in Appendix II. By using the inverse Fourier transform, 

the displacement fields and electrical potential (8) may be written as: 
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From (1), (2), (4) and (13) it then follows that 
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where 
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From (7), (8), (13) and (14), the unknown functions ( ), {1,2,3}iA i  may be obtained as follows: 
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where (.)  is the Dirac delta function and the functions , , {1,2,3}ijA i j   are given in Appendix II. Substituting 

unknown functions (16) into the stress fields and electric displacements (14), it may easily be shown that 
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where ( , , ), { , , }, { , }ijf x y i x y d j x y    are defined in Appendix II. The singular behavior of the kernels ijf  

may be obtained from the asymptotic analysis of the integrals in (17). In this case through an asymptotic analysis the 

singular part of the kernel can be separated and it can be shown that the integral equation has the standard Cauchy 

kernel. By adding and subtracting the asymptotic expressions of the integrands using asymptotic expressions for 

large value  , we find: 
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The stress fields and electric displacement components (17) by view of Eq. (18) and after very lengthy analysis, 

lead to 
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where ( , , ), { , , }, { , }ijf x y i x y d j x y   , , {1,2,...,9}i i  and , {1,2,...,15}i i   are given in Appendix III. It 

can be seen from Eqs (19) that the stress and electric displacement components exhibit the familiar Cauchy-type 

singularity at the locations of electro-elastic dislocation. It is worth mentioning that Eq. (19) may be used as Green’s 

function to determine stress and electric displacement fields in a FGP medium subjected to any distribution of self-

equilibrating traction.  
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3    ANALYSIS OF MULTIPLE MOVING CRACKS 

In this section, we will introduce, and apply, the distributed dislocation technique for modeling the moving cracks in 

FGPM. The present problem can be treated as the superposition of two-sub problem. First, the stress state and 

electric displacement induced in the uncracked medium is found. Then, the stress and electric displacement due to a 

continuous distribution of electro-elastic dislocations along the crack-line are obtained without external loadings; 

this is the "correct solution". The crack faces subjected to the distributed dislocations cancel out the stress and 

electric displacement induced by the first problem. In the framework of linear theory, the sum of the two solutions 

corresponding is the solution to the original problem. The geometry of crack is presented in parametric form as: 
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where ( , )ic icx y  and il  are the coordinates of the center and a half length of the i-th cracks, respectively. The total 

traction and electric displacement on the crack face due to the electro-elastic solution and the dislocation 

distributions can then be written as: 
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where ( )xkb q , ( )ykb q  and ( )kb q  are the dislocation density functions on the face of k-th crack, 

, , 1,2,3, , , ,lm

ikk l m i k x y d  are coefficients of xb , yb  and b  in Eq. (19). The kernels in Eq. (21) exhibit 

Cauchy type singularity for i k as q p  and may be expressed as: 
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The coefficients of singular terms , 1 ( )kl ia q  can be obtained by means of the Taylor series expansion of ( )ix q  

and ( )iy q in the vicinity of q and are 
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(23) 

 

It is also necessary to impose the closure conditions to enforce single-valued conditions out of each crack faces:  
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1

( ) 0, { , , }, {1,2,..., }kjb q dq k x y d j N
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     (24) 

 

By observing that the fundamental solution of the stress fields and the electric displacements has a square root 

singularity at crack tips, the unknown dislocation densities on the surface of impermeable cracks, are taken as 

(Delale and Erdogan [23]) 
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By replacing Eqs. (25) into Eqs. (21) and (24), and using the Lobatto–Chebyshev integration formula, the 

discretization singular integral equations lead to 

 
1

1 1

2
11

( )
( , ) ( , ) ( ), { , , }, {1,2,3}

11

n
ijh h

myij r myij l r ij r

r

g q
k p q dq e k p q g q m x y d h

nq





  

  (26) 

 

where the collocation points are chosen as 
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0.5re  for 1,r n  and 1re   for 1 r n  . The field intensity factors for a crack are obtained by Bagheri and 

Noroozi [24]. 

4    RESULTS AND DISCUSSION 

In this section, in order to investigate the effects of the crack moving velocity, the functionally graded material 

parameter and the applied electric and magnetic loading on the field intensity factors, we carried out some numerical 

works. In the computational procedure, the material properties used in the numerical examples are given in Table 1. 

To study the effect of electro-elastic interaction, the electric loading parameter is introduced as 

150 0 0 110D e D   . The modes I and II stress-intensity factors are normalized by 0 0k l  and 0 0k l  

respectively, for a crack in an infinite plane, where l  is the half length of the crack. Also, the electric displacement 

is normalized by 0 330 330Dk e l c .  
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The first example deals with the verification of the resulting analytical solutions. To verify the validity of 

formulation, the problem of an FG elastic plane under constant far-field applied traction weakened by a straight 

crack is examined. The stationary crack is subjected to the in-plane constant normal traction. The SIFs are in 

excellent agreement with those obtained by Delale and Erdogan (Fig. 2(b)). 

 
 

 

 
 

(a) 

 
(b)  

Fig.2 

Comparison of Mode I stress intensity factors of the non-homogeneous elastic material with [23]. 
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The preceding formulation lets the analysis of any number of parallel cracks subjected to mixed mode 

mechanical and electrical loads.  

4.1 Single moving crack  

The variation of normalized SIFs in an FGP plane containing a moving crack and subject to three different gradient 

material properties is shown in Fig. 3(b). The magnitude of the electric loading parameter is chosen as 0.1D  . It 

is observed that, the normalized SIFs of the right tip of the crack increases as the crack moving velocity increases, 

and for the same crack moving velocity the increase of the functionally graded parameter leads to larger SIF values. 

For the left tip of the crack, the foregoing argument does not hold. Finally, the results of the SIFs for the right crack 

tip, which is situated in a stiffer zone, is higher than the SIF of the left crack tip. This, of course, is the well-known 

result in fracture mechanics. The phenomenon was reported by other researchers see e.g. (Delale and Erdogan). It 

can be seen from Fig. 3(c) that the normalized electric displacement intensity factors vary as the crack speed 

changes. The EDIFs increases with increasing of the crack propagation speed. In this case, the effect of the gradient 

property upon EDIFs of the crack tips is not considerably with respect to the SIFs. The influence of the crack speed 

becomes larger when the ratio of V c  increases. However, the influence of crack speed is dominant only when 

V c  is in the range between 0.6 and 0.9. When the value of V c  being smaller than 0.6 its influence becomes very 

weak. 

 

 

 
 

(a) 

 
(b)  

  

 
(c) 

 

 

 

 

 

 

 

 

 

Fig.3 

(b) Variations of Mode I SIFs of a crack versus the graded 

parameter. (c) Variations of EDIFs of a crack with the 

graded parameter. 

 

It is interesting to investigate the influence of mechanical and electric loading parameter on the normalized field 

intensity factors. Figs. 4(b), 4(c), and 4(d) show the variations of mode I, mode II SIFs ( ,K )I IIK  and EDIF (K )D  
with electromechanical coupling factor D  and crack propagation speed. The value of the normalized fields 

intensity factors may increase or decrease as the applied electric field loading changes from negative to positive, 

depending on the location of the crack tip. The ‘‘negative’’ means that the direction of the electric loading is 

opposite to the poling direction. Generally, 
IK  and K II

 for the right crack tip increase with increasing the crack 
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propagation speed and increase with increasing D  (Figs. 4(b), 4(c)). The exception being the variation of 
IK  for 

large values of propagation speed when the crack speed approaches specific values, which 
IK  seems to decrease 

with increasing V c  (Fig. 4(b)). When the crack speed is low, the effects of D  upon the mode II stress intensity 

factor are insignificant. The normalized EDIFs versus the normalized crack speed V c  is depicted in Fig. 4(d). As 

can be seen, the EDIFs is only weakly dependent on the crack speed, which is a consequence of the quasi-static 
assumption of the electrical fields.  ghr ogdmnl dmnm hr nardqudc v hsg sgd   qb   a-Sánchez et al. [25] and Bagheri 

[26]. 
 

 

 
 
 

(a) 

 
(b)  

  

 
(c) 

 
(d) 

Fig.4 

(b) Variation of normalized Mode I SIFs with V c  for different gradient parameter (c) Variation of normalized Mode II SIFs 

with V c  for different gradient parameter (d) Variation of normalized EDIFs with V c  for different gradient parameter. 

4.2 Multiple moving cracks  

We consider now the case of FGP plane containing two moving equal-length cracks. The graded material parameter 

of FGP material is taken as 0.5L  . From Fig. 5(b), we observe that the mode I SIFs for the cracks tip, namely 

1R  increases with the increase of crack speed for two interacting cracks and the reverse behavior may be observed 

for crack tips 1L  and 2L . In the case of nonhomogeneous material, due to material asymmetry, the mode I SIFs at 

2L  and 2R  are not equal to those at 1L  and 1R . It can be seen that the effect of material gradient becomes stronger 

than the interaction of the crack tips.  
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(a) 
 

(b)  

Fig.5 

Variation of normalized Mode I stress intensity factor of two interacting colinear cracks with V c  for 0.5L   

 

In the next example, two moving cracks 1 1L R  and 2 2L R  with equal length 2 0.2L   for 0.5L   are 

considered. The dimensionless modes I and II SIFs are shown in Figs. 6b and 6c. The distance between the crack 

tips, 1L  and 2R , is minimum. Therefore, the modes I and II for these crack tips have local extreme. In addition, 

because of very effective interaction of two cracks, SIFs at the crack tips 2R  and 1L  is higher than that at tips 2L  

and 1R .  

 

 

 
 

(a) 

 
(b)  

  

 
(c) 

 

 

 

 

 

 

 

Fig.6 

(b) Variation of normalized Mode I stress intensity factor of 

two interacting cracks with V c  for 0.5l  .(c) Variation 

of normalized Mode II stress intensity factor of two 

interacting cracks with V c  for 0.5l  . 

 

Figs. 7(b)-7(c) reveal the effect of the crack speed upon the normalized modes I and II SIFs under in-plane 

loadings for different crack distances for the case where 0.0L  . The general feature of these curves is that the 

mode I SIFs monotonically increase with the increasing of the crack distances up to 0.55V c  . When the distance 

of the cracks tips is relatively small, the crack tip shielding and anti-shielding effects are observed. The filed 
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intensity factors increase with the increasing of crack distance in the range between 0.55 and 0.8. Also, the mode I 

SIFs significantly with the increasing of crack speed when the normalized crack speed approaches the range 

between 0.55 and 0.8. The mode II SIFs of cracks versus the normalized crack speed V c  are represented in Fig. 

7(c). The value of the normalized mode II SIFs may increase or decrease as the crack speed changes, depending on 

the different crack distance. When the crack speed is high enough, say, 0.55V c  , the variations of Mode II SIFs 

are significant. The variation of the normalized electric displacement intensity factor with crack speed for different 

values of crack distance is shown in Fig. 7(d). The trend of variations is the exactly the same as the mode I stress 

intensity factor. 

 

 

 
 

(a) 

 
(b)  

  

 
(c)  

(d) 

Fig.7 

(b) Variation of normalized Mode I stress intensity factor of two interacting parallel cracks with V c  for different crack 

distances (c) Variation of normalized Mode II stress intensity factor of two interacting parallel cracks (d) Variation of 

normalized electric displacement intensity factor of two interacting parallel cracks with V c . 

5    CONCLUSION 

The solution of dynamic electro-elastic dislocation is obtained in a functionally graded piezoelectric plane. The 

distributed dislocation technique is used to construct integral equations in the medium weakened by multiple moving 

cracks under mixed modes condition. The numerical solution to integral equations results in the dislocation density 

function on a crack surface, thereby determining field intensity factors for moving cracks. Numerical results indicate 

that the crack speed and electric loading have an influence on the dynamic modes I, II and electric displacement 

intensity factors. It is found that the electric fields may promote or retard crack propagation. On the other hand, the 

results are highly affected by the graded parameter. 

APPENDIX I 

The expressions in Eqs. (7) are defined as: 
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APPENDIX II 

The expressions appeared in Eqs. (9) and (12) are: 
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The functions , , {1,2,3}ijA i j   in Eq. (16) are as follows: 
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1 4 5 1 6p      , 2 5 6 1 8p      , 2

3 6 4 8p       



452                              In-Plane Analysis of an FGP Plane Weakened ….    
 

 

© 2020 IAU, Arak Branch 

The integrands are appeared in Eqs. (17) are 
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APPENDIX III 

The singular part of the integral appeared in Eqs. (19) are: 
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