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 ABSTRACT 

 In this paper, the size dependent vibration behavior of doubly 

clamped single-walled coiled carbon nanotubes (CCNTs) is 

investigated using nonlocal helical beam model. This model is 

based on Washizu’s beam theory so that all displacement 

components of CCNT in the equations of motion are defined at the 

centroidal principal axis and transverse shear deformations are 
considered. After deriving the nonlocal free vibration equations, they 

are solved by the generalized differential quadrature method 

(GDQM). Then, the natural frequencies and corresponding mode 

shapes are determined for the clamped-clamped boundary 

conditions (BCs). After that, a parametric study on the effect of 

different parameters, including the helix cylinder to the tube 

diameters ratio ( / )D d , the number of pitches, the helix pitch 

angle, and the nonlocal parameter on the natural frequencies is 

conducted. It is worth noting that the results of the proposed 

method would be useful in the practical applications of CCNTs 

such as using in nanoelectromechanical systems.                   

  © 2021 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ARBON nanotubes (CNTs) are one of the carbon morphologies, which discovered by Ijima in 1991 [1]. 

Existence different arrangements of non-hexagonal rings such as the pentagons and heptagons in the hexagonal 

network of the CNTs induce positive and negative curvatures, which can bend and twist the CNTs into a variety of 

different shapes, as toroidal carbon nanotubes (TCNTs) and coiled carbon nanotubes (CCNTs) [2]. The single-

walled coiled carbon nanotubes (CCNTs) were proposed theoretically by Ihara et al. in 1993 [3]. The first 

experimental observation of single-walled CCNTs were performed using scanning tunneling microscopy (STM) by 

Biró et al. in 2000 [4]. In Fig. 1, the scanning electron microscopy (SEM) image of a vertically grown CCNT and 

formation of CCNTs during the chemical vapor deposition (CVD) synthesis process is shown [5].The CCNTs have 

major potential applications in various fields due to their unique spiral structures and the extraordinary physical 

______ 
*
Corresponding author. Tel.: +98 9122414371.  

E-mail address: omid.rahmani@znu.ac.ir (O. Rahmani) 

C 



115                                F. Darvishi and O. Rahmani 

 

© 2021 IAU, Arak Branch 

characteristics. One important application for CCNTs is to act as sensors. The CCNTs with attached electrodes can 
be used as self-sensing mechanical resonators, so that they are able to detect fundamental resonances ranging from 

100 to 400 MHz The self-sensing CCNTs sensors are sensitive to mass change and well suited for measuring small 

forces and masses in the femtogram range [6]. Also, the CCNTs can be applied as high-resolution force sensors in 

conjunction with visual displacement measurement as well as electromechanical sensors [7]. 

 

 

 

 

 

 
 
Fig.1 

SEM image of a vertically grown coiled carbon nanotubes 

[5]. 

 

Another application of CCNTs is the usage in reinforced high-strain composites due to the higher toughness 

compared to the carbon fibers. Also, they can be anchored better in their embedding matrix than CNTs [8]. 

Moreover, CCNTs can be used in nanoelectromechanical systems (NEMS) [9] and  electromechanical devices such 

as non-volatile random access memory (RAM), actuators, gears and receivers [5]. In addition, the CCNTs can be 

used as molecular Nano solenoids in nano-switches and electromagnetic nano-transformers [10]. It is necessary to 

study the mechanical properties and vibrational behavior of the CCNTs for better understanding of their 

applications. Since experimental studies at nanoscale size is quite expensive and time consuming, theoretical 

methods are preferred. Theoretical methods to study the nanostructures are categorized into atomistic modeling and 

non-classical continuum mechanics. Among the atomistic modeling methods, classical molecular dynamics (MD), 

tight-binding (TB) and density functional theory (DFT) can be mentioned, which need high computational costs. 

Hence, the use of non-classical continuum theories like nonlocal elasticity theory, strain gradient theory and couple 

stress theory, which are developed to consider the size effect, can play a significant role in the study of 

nanostructures [11]. Several theoretical studies were carried out to assessment the mechanical properties of single-

walled CCNTs and CCNT-reinforced nanocomposites. Fonseca et al. [12] using the Kirchhoff rod model, derived a 

series of expressions to obtain Young’s modulus and Poisson’s ratio of the CCNTs. Liu et al [13] employing DFT 

and TB methods calculated the Young’s modulus and elastic constant of a series of CCNTs built from the armchair 

single-walled CNTs and predicted superelastic behavior of the CCNTs. Ghaderi and Hajiesmaili [14] using the MD-

based finite element method determined fracture strain, fracture load, and energy storage density of the CCNTs. 

Wang et al. [15] via the MD simulations and the second generation of the reactive empirical bond-order (REBO) 

potential and Lennard-Jones (LJ) potential investigated the mechanical properties of a coiled carbon nanotube 

(CCNT) under compression, tension, re-compression, re-tension and pullout from a polyethylene (PE) matrix. They 

obtained spring constants, yielding strains and pullout force of the CCNT. Wu et al [16] using the MD simulations 

and with the adaptive intermolecular reactive empirical bond-order (AIREBO) potential and obtained stiffness and 

gravimetric toughness for them. Khani et al. [17] using new representative volume element (RVE) generation 

method based finite element and evaluated the effect of volume fraction, orientation geometry of the CCNTs on the 

elastic moduli of the nanocomposites. Kianfar et al. [18] presented three-dimensional finite element modeling of the 

CCNT-reinforced polymer nanocomposites and generated representative volume elements to determine the 

mechanical behavior in elastic and plastic zones. They studied the effects of different volume fractions, geometrical 

parameters and orientations of the CCNTs on the elastic characteristics of the nanocomposites. Yarali et al. [19] 

numerically investigated the thermomechanical properties of the coiled carbon nanotube reinforced shape memory 

polymer nanocomposites (SMP) under large deformations. They employed a thermo-visco-hyperelastic constitutive 

model for SMP and introduced a cubic RVE using Monte Carlo algorithm. Then, the effect of inclusion's geometry, 

volume fraction, as well as their distribution on the thermomechanical properties of SMP/CCNT composite in two 

stress- and shape recovery processes in different heating rates and pre-strains is studied using finite element (FE) 

technique. So far, two theoretical studies were carried out to investigate the free vibration behavior of the CCNTs. 

Fakhrabadi et al. [20], studied the vibration behavior of the single-walled CCNTs using molecular mechanics based 

finite element method (MMFEM) and 3D elastic beam elements. They determined the natural frequencies and mode 

shapes of CCNTs with different geometries and boundary conditions. Rahmani and Darvishi [21], investigated the 
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free longitudinal vibration of single-walled CCNTs via MD simulation method and with the reactive empirical bond 

order (REBO) potential. They evaluated the influence of different parameters, including diameter of tubes, number 

of pitches and various boundary conditions on the fundamental frequencies. However, several studies have been 

conducted to investigate the free vibration behavior of straight and curved carbon nanotubes. For example, Arash et 

al. [22] studied the potential of CNTs as nano sensors in detection of genes through a vibration analysis with 

molecular dynamics simulation. Different genes are detected by identifying a differentiable sensitivity index that is 

defined to be the shifts of the resonant frequency of the CNT. Gajbhiye and Singh [23] studied the vibration 

characteristics of open- and capped-end armchair and zigzag single-walled CNTs using atomistic finite element 

method (AFEM). The natural frequencies are calculated for clamped-free and clamped-clamped boundary 

conditions. Ali-Akbari and Firouz-Abadi [24] studied the nonlinear vibration of single-walled CNTs embedded in a 

Kelvin-Voigt foundation. The CNT is considered as a simply-supported elastic Euler-Bernoulli beam with von-

Kármán type geometrical nonlinearity. The governing equation of motion is derived based on the Hamilton’s 

principle and the nonlocal elasticity theory. Then, the equation of motion is solved using the Galerkin method and an 

asymptotic perturbation method called Krylov-Bogolubov-Mitropolskij (KBM) method. The effects of amplitude, 

residual stresses, and viscoelastic foundation are discussed. Farokhi et al. [25] developed a new size-dependent 

nonlinear model for the analysis of the behaviour of carbon nanotube-based resonators using modified couple stress 

theory. The nonlinear partial differential equations of motion of the system are discretized by means of the Galerkin 

technique and the nonlinear resonant behavior is examined via the pseudo-arclength continuation technique. Hussain 

and Naeem [26] examined free vibrations of single-walled CNTs using wave propagation approach (WPA) and 

Flügge’s shell model. They obtained the vibration frequency spectra and evaluated influence different boundary 

conditions and various physical parameters e.g., length and thickness-to-radius ratio on the natural frequencies. Tadi 

Beni et al. [27] using the couple stress theory provided a new model for vibrating behavior of anisotropic carbon 

nanotubes. The motion equations are solved using the analytical Navier method and the effect of different 

parameters, particularly the anisotropic effect are investigated on the carbon nanotube natural frequency. 

Jiang et al. [28] investigated the vibrational behavior of single-walled CNTs bridged on a silicon channel using a 

three-segment Timoshenko beam model and a one-segment Timoshenko beam model together with molecular 

dynamics (MD) simulation. Explicit formulas are derived for the van der Waals (vdW) interaction coefficients 

between the SWCNTs and silicon substrates. The boundary elastic constants of the SWCNTs bridged on the silicon 

channel are obtained by fitting the bending curve of CNTs subjected to a static uniformly distributed lateral load 

simulated via the MD method. Shahabodini et al. [29] adopted the variational differential quadrature (VDQ) method 

for the multiscale analysis of vibrations of single-walled CNTs. They modeled CNT by a hyperelastic membrane 

whose kinematics is described using the higher-order Cauchy-Born rule. The effects different geometrical 

parameters, boundary conditions and chiralities are evaluated on the frequencies and mode shapes of CNTs. Chwal 

[30] analyzed the eigenfrequencies of single-walled CNTs using the nonlocal elasticity theory. The nonlocal 

parameter is determined for single-walled carbon nanotubes based on the finite element approximation in modeling 

the dynamic behavior instead of commonly used MD simulations. The effects of the length-to-diameter ratio L/D, 

nonlocal parameter, the influence of boundary conditions are investigated on eigenfrequencies of the CNTs. Eltaher 

et al. [31] investigated dynamical behaviors of perfect and defected fixed-fixed single-walled CNTs. Energy-

equivalent model is implemented to find a relationship between the energy stored in atomic chemical bonding and 

potential energy of mechanical beam structure. The bonding between each two atoms is modeled by 3D beam 

element with circular cross section. The effects of vacancy are evaluated on activation and deactivation of vibration 

modes, fundamental frequencies, and modal participation factors of CNTs. 

Majeed et al. [32] investigated vibration analysis of single-walled CNTs based on Love’s thin shell theory and 

the wave propagation approach. The CNTs are taken into account under the influence of Winkler and Pasternak 

foundations. The vibrational natural frequencies of CNTs is obtained with various boundary conditions and the axial 

modal dependence is measured by the complex exponential functions implicating the axial modal numbers. Hussain 

and Naeem [33] presented formulation of Love’s shell theory for single-wall carbon nanotubes (SWCNTs) using 

Galerkin’s method. They performed vibrational analysis to investigate the effect of different mode and in-plane 

rigidity with clamped-clamped and clamped-free boundary conditions. Moreover, the influence of mass density per 

unit lateral area on the same structure is also developed. Hayati et al. [34] analyzed the free vibration behavior of a 

single-walled curved CNT under twist-bending couple using nonlocal theory. They solved differential equations 

using Navier analytical method for the simply supported boundary condition and evaluated the effect of nonlocal 

parameter, the curved nanotube’s opening angel on the natural frequencies. Hitherto, the continuum mechanics 

methods have not been implemented for studying the free vibration behavior of CCNTs. Whereas, for macro-scale 

helical beams and springs, the formulations are presented based on beams theories such as Timoshenko beam theory 

and Washizu’s beam theory. Wittrick [36] investigated the wave propagation on the semi-infinite springs. He 
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derived a set of twelve linear coupled partial differential equations for a uniform helical spring based on the 

Timoshenko beam theory. Thereinafter, researchers generalized the Wittrick’s equations for studying the vibrational 

behavior of helical beams and springs, and solved the governing equations by various numerical methods such as the 

finite element method (FEM), the transfer matrix method (TTM), dynamic stiffness method and pseudospectral 

method. For example Mottershead [37] computed the natural frequencies from FEM and compared the obtained 

results with the results of his experimental study. Pearson [38] analyzed the free vibrations of compressed 

cylindrical helical springs using TMM proposed by Yildirim [39]. He evaluated the effect of boundary conditions, 

helix pitches angle and number of pitches on natural frequencies. In another research, Yildirim [40] investigated the 

free vibration of cylindrical helical springs under combined compression and torsion. Furthermore, Yildirim [41] 

studied the free vibration of helical springs under axial static load based on the theory of spatially curved bars and 

used the numerical solution method that previously had offered. Lee and Thompson [42] used the dynamic stiffness 

method to calculate the natural frequencies of helical springs and compared the obtained results with those of TMM 

and FEM. Lee [43], used the pseudo spectral method to determine the natural frequencies and corresponding mode 

shapes of cylindrical helical springs. He approximated the displacements and rotations by expanding the series of 

Chebyshev polynomials and collocated the governing equations. Then, natural frequencies and mode shapes were 

determined with different fixed-fixed, free-free, fixed-free and hinged-hinged boundary conditions. In an analytical 

study, Yu et al. [44] investigated the free vibration of naturally curved and twisted beams using Washizu’s beam 

model [45]. They obtained explicit analytical expressions for the vibrating mode shapes under clamped-clamped 

boundary conditions using the symbolic computing package of Mathematica; furthermore a simple automated 

Muller root search method was used to determine the natural frequencies. 

The main purpose of this paper is to provide an analytical formulations for studying the free vibration behvior of 

the singel-walled CCNTs. In this regard, a continuum model is proposed based on the nonlocal form of Washizu’s 

beam theory. The nonlocal governing equations are derived from Hamilton’s principle and solved via the 

generalized differential quadrature method (GDQM). The natural frequencies and the corresponding mode shapes 

for CCNTs are determined under the clamped-clamped boundary conditions. Finally, the effect of different 

parameters such as the geometric and nonlocal parameters on the natural frequencies of CCNTs are evaluated and 

the results are provided. 

2    THE NONLOCAL HELICAL BEAM MODEL FOR THE CCNTs 

In this section, first the Washizu’s beam model is presented for helical beams and springs. Then, nonlocal governing 

equations are derived for CCNTs via this model and the nonlocal elasticity theory along with Hamilton’s principle.  

2.1 Washizu’s beam model 

In 1964, a theory was presented by Washizu to study the naturally curved and twisted beams subjected to combined 

loads [45]. The relations for these beams in the curvilinear coordinate system was obtained with the aid of Frenet-

Seret formulae [45] under the following assumptions: 

1) The curvature of the beam is assumed to be moderate. 

2) The displacement field of the beam is assumed to consist of stretching, bending and torsion deformations 

and non-classical effects. 

3) The in-plane stress components, ,    and  , are assumed to be very small compared to  the remaining 

components. 

According to Fig. 2, the origin of the curvilinear coordinate system ( , , )s   , with corresponding unit vectors of 

  , t i and i , is in coincidence with the cross-section center of a helical beam [44]. s is arc length along the curve. 
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Fig.2 

Geometry of the helical beam in the curvilinear coordinate 

system ( , , )s   . 

 

The parametric relationships of the helical beam are [44]: 
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where h is the pitch for unit angle of the helix, p is the pitch of the helix, R  is the centerline radius of the helix,   is 

the pitch angle and   is polar angle of the helix. k  and sk  are the curvature and torsion of the helix, respectively. 

According to the second assumption, the displacement vector ( s , , ) u  is expressed as follows [45]: 

 

( , , )s W U V     u t i i
ξ  

    ( ) ( ,( ) ( ) ( ) )s s s sW u s           
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The displacement vector is a linear function of displacement components. The deformation degrees of freedom is 

restricted to seven functions of s ; three translational functions ( ), ( ), ( )s s su u su    and three rotational functions 

( ), ( ), ( )s s s s     along with the generalized warping coordinate ( )s  [45]. 

The non-classical influences relevant to the beam are those due to the transverse shear deformations and torsion 

related warping [44]. The ( , )    is the warping function of Saint-Venant’s torsion in a cylindrical shaft with the 

same cross-section as the considered beam [46]. In this study, since the cross-section of the CCNTs is circular, the 

( , )    function is equal to zero. The strain-displacement relations are obtained as follows [45]: 
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where ,ss se e   and se   are the axial and shear strain components, respectively. Also ,  ,  ,   , s s        and   are 

generalized strains written by: 

 

ss k k uu u       
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(4) 
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ss k k         

s sk k        

s sk k        

 

where prime superscript denotes the derivative with respect to s . 

For the homogeneous and isotropic beams, the constitutive relationships are as follows [44]: 
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where E and G are the Young's modulus and shear modulus of the material, respectively. The G  and G  are shape 

factors that are dependent on the beam sections [47]. Also, according to the third assumption, the stress components 

of ,     and   are assumed to be very small, therefore we have: 

 

0        (6) 

2.2 Nonlocal governing equations of the CCNTs 

According to Eringen’s nonlocal theory, stress  at a reference point x  in a body depend not only on the strains at 

that point x , but also on the strains at all other points x  of the body [48]. Thus, Eringen presented the nonlocal 

constitutive relation, by Eq. (7), which is the spatial integral of weighted averages of strain tensors contribution of 

all points in to the stress tensor at a given point [11]. 
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where   is volume of body, ( )x  and ( )xt  are nonlocal stress tensor and the local stress tensor in point x , 

respectively. The stress tensor of  ( )xt  is related to linear strain tensor of )(x  by Hooke’s law as follows: 

 

( ) ( ) : ( )Cx x xt ε  (8) 

 

Here C  is the fourth order elasticity tensor and ‘:’ denotes the double dot product. In Eq.(7), nonlocal modulus, 

( , ) x x , is an attenuation function, which can be determined experimentally or by fitting the dispersion curves 

of plane waves with those of atomic lattice dynamics [48].  x x  denotes the Euclidean distance and is a material 

constant given as: 
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In which,  depends on a characteristic length ratio /a l , where a is an internal characteristic length (such as 

lattice parameter, bond length, granular distance) and l is an external characteristic length (such as crack length, 

wave length); in addition, 0e  is a material-dependent constant [48]. Nonlocal effect considered in the nonlocal 

elasticity theory is determined by the magnitude of nonlocal parameter 
0e a  . 

Using Hamilton's principle, nonlocal governing equations can be derived for the free vibration behavior of 

CCNTs. 
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where 
sU  and NLT  are strain energy and nonlocal kinematic energy. The 

sU  is expressed as follows:  
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In this research, unlike the conventional method to convert local to nonlocal relations, the method introduced by 

Challamel et al. [49] and Hache [50] is adopted. That way, NLT  is defined as follows: 

 
NL ErT T T   (12) 

 

where T is kinematic energy and ErT  is Eringen kinematic energy, which are expressed as follows: 
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      It is worth noting that Eringen kinematic energy ErT  has no physical meaning [50]. The variations of  , sU T  

and ErT  are: 
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where 2(1 )g k k     is determinant of the metric tensor in the curvilinear coordinate system. To guarantee 

the first assumption 1g   [44, 45]. By substituting Eq. (15) into (10) and applying the Eqs. (2)-(4), the equilibrium 

equations are obtained by integrating as follows: 
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The associated boundary conditions are: 
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(17) 

 

where two dots over the quantities denote the second partial derivative with respect to time t. , sQ Q  and Q  are the 

axial and shear resultant forces and , sM M   and M   are the twisting and bending resultant moments on a cross-

section of the CCNTs which are defined as: 
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where ,  ,  , A I I   and pI  are the density, the cross-sectional area, the second moments of area and the torsional 

moment of inertia of the cross-section, respectively. 
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Finally, by substituting Eq. (18) in terms of displacement components into the equilibrium equations given in Eq. 

(16), the governing equations of motion for the CCNTs are obtained as follows: 
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The clamped-clamped boundary conditions for CCNTs at 0,s l  are as follows: 

 

0, 0,  0,  0,  0,  0.   s su u u            (21) 

 

For an infinitesimal angular element, d ds C  , the differential operator D is defined as follows in order to 

obtain the dimensionless form of governing equations of motion [44]: 
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Also, assuming the occurrence of harmonic vibration with the frequency of  , translational and rotational 

displacements can be expressed as follows: 
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Using the Eqs. (22) and (23), the nonlocal governing equations of motion in the dimensionless form is obtained 
as follows: 
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(24) 

In Eq. (24), the dimensionless quantities 1 2 7, ,...,A A F    are defined as: 
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3    SOLUTION PROCEDURE  

In this section, numerical solution is introduced to solve nonlocal governing equations for free vibrational responses 

of CCNTs. For this purpose, the generalized differential quadrature method (GDQM), which is an efficient and 

accurate numerical tool is used. The basic idea of GDQM is that the derivative of a function with respect to a 

coordinate variable at a given grid point can be approximated as the linear weighted sums of its values at all of the 

grid points in the domain. Based on GDQM, a typical function ( )f   with the domain of 00     is discretized 

into N grid points along the  -direction. Then, at each grid point of i , where   1,2,3, ... ,  ,i N  the rth-order 

partial derivatives of the ( )f   function with respect to   are approximated as [51, 52]: 

 

( )

1

( )
 

i

Nr
r

jijr
j

f
A f

 










  (26) 

 

where ( )j jf f  , also the elements of ( )r
ijA  are the GDQ weighting coefficients of rth-order derivatives, which 

can be found in Ref. [51]. Unequally spaced grid points gives more accurate results, therefore, Gauss-Lobatto-

Chebyshev type points is an appropriate choice [51], which is given as: 
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where   pn is the number of pitches. Generally, dimensionless nonlocal governing equations by Eq. (24) are of 

Twelfth-order (6 coupled second-order equations) along with 12 boundary conditions at boundary points as given by 

Eq. (21). The GDQ approximation of Eq. (24) is written as: 
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In addition, the GDQ approximation of boundary conditions from Eq. (21) at the 0   and 2 pn  , 

boundary points are written as: 

 

   0,        0,        0,       0,        0,        0,        1,si i i si i iu u u i N             (29) 

 

In Eqs. (28) and (29),    ,  ,     , ,i i i iu u s            . The GDQ approximation of Eqs. (28) and (29) 

can be written in the matrix form as follows: 
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where the subscripts b and d refer to the boundary and domain grid points, respectively. The elements of the 

stiffness matrixes ddK    and dbK    and the mass matrix dM    are obtained from the GDQ approximations of the 

governing equations of motion; while the elements of the stiffness matrixes bdK    and bbK    are obtained from the 

GDQ approximations of boundary conditions. The displacement vectors of  d  and  b  are defined by: 
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Finally, by solving the eigenvalue system of Eq. (30), the natural frequencies of   and the associated mode 

shapes of the CCNTs will be obtained. 

4    RESULTS AND DISCUSSION   

Since the free vibration of helical nano-beams and CCNTs has not been studied from the continuum mechanics point 

of view; therefore for validating the proposed method, a helical spring sample that its vibrational behavior has 

already been studied under clamped-clamped boundary conditions in the experimental [37] and theoretical [39, 44] 

investigations, is considered. The geometric and material characteristics of this helical spring sample are as follows: 

 
3 11 27900 2 06 10 0 3 2 10kg / m ,  E . N / m ,  . , D R  mm ,          1 7 6pd  mm ,  n . ,    

8 5744 0 9091. ,  G G .       
(32) 

 

where D, d and v  the centerline diameter of the helix, the diameter of cross-section and Poisson’s ratio, respectively. 

By setting nonlocal parameter 0  , the present method is reduced to the local continuum model of the mentioned 

helical spring sample. As provided in Table 1, the present results are in very good agreement with the results given 

by Mottershead [37], Yildirim [39] and Yu et al. [44]. 

 
Table 1 

Comparison of natural frequencies (Hz) of the helical spring with circular cross-section under clamped-clamped BCs. 

 

In this study, according to Fig.3, various CCNT samples are built from armchair single-walled CNTs (5,5). To 

guarantee the first assumption 4 0 4888D / d , k .  nm
-1 are for the CCNTs. 

 

 

 

Fig.3 

Single-walled carbon nanotube CNT (5,5) and coiled carbon 

nanotube CCNT (5,5). 

 

Zhang et al. [53] reported the geometric and material characteristics of the CNT (5,5) as follow: 

 

  8 2 23 6481 10 278 25 0 19 0 678E / . m / s ,  E t . G  Pa nm ,  . ,  d . nm       (33) 

 

Using MD simulation for the free longitudinal vibration of the CNT (5,5), they concluded that the /E   ratio is 

constant and independent of CNTs length [53]. t is wall thickness of the CNTs. Conventionally, the interlayer 

spacing of graphite i.e., 0 34t .  nm , is taken as the CNTs thickness [53]. The ,E and  G  values of CCNTs (5,5) 

are obtained as follows: 

 

  
 

atom 8 
, 3.6 1 1048 ,  

    2 1

N m E
E G

A L



  


  (34) 

 

where atomN  is the number of atoms and m is mass of a carbon atom that is equal to 81 99452 10.  gr . Additionally, 

L is the total helix length of the desired CCNT (5,5) that is identical with the length of the CNT, which can be 

obtained through the following equation: 

Modes 1f  2f  3f  4f  5f  6f  7f  8f  9f  

Mottershead [37] 391.0 391.0 459.0 528.0 878.0 878.0 906.0 ---- 1282.0 

Yildirim [39] 393.5 395.9 462.8 525.5 864.0 876.8 914.3 1037.0 1310.5 

Yu et al. [44] 393.5 396.1 462.9 525.7 863.8 877.0 913.8 1037.5 1310.7 

Present study 393.4 396.0 462.7 525.6 863.6 876.8 913.5 1037.2 1310.4 
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  pL D n   2      1 tan    (35) 

 

Using Eq. (19) the parameters A I I ,  , for the CCNTs is obtained as follow:  

 

  A d t d t I I d t d t 

 
           
   

2 2 4 4( ) ( ) ; ( ) ( )
4 64

 (36) 

 

Furthermore, for the free vibration of CNT (5,5) under clamped-clamped boundary conditions,  Arash and Ansari 

obtained the nonlocal parameter   .  nm 1 7 based on nonlocal shell model [54] and using the results of the MD 

simulation [53]. In this study, the nonlocal parameter of the CCNTs with clamped-clamped boundary conditions is 

considered 1 7  .  nm.    

Values of helix length L  and number of atoms  atomN  of the CCNTs samples studied in this paper are provided 

in Tables 2-4. 
 

 

Table 2  

The helix length L and number of atoms atomN of the CCNTs (5,5) with E=817.01 GPa, v=0.19, G=343.28 GPa,   20.57 ,  

pn   6 and various ratio / .D d  

 D d/  4 6 8 10 12 14 16 

 L( nm )  54.601 81.902 109.202 136.503 163.803 191.104 218.405 

 atomN  4440 6660 8880 11100 13320 15540 17760 

 
 

Table 3  

The helix length L and number of atoms atomN  of the CCNTs (5,5) with E=817.01 GPa, G=343.28 GPa, D d / 4 ,  20.57       

and various number of pitches .pn  

pn  2 4 6 8 10 12 14 16 18 

 L( nm )  18.200 36.401 54.601 72.801 91.002 109.202 127.403 145.603 163.803 

 atomN  1480 2960 4440 5920 7400 8880 10360 11840 13320 

 
 

Table 4  

The helix length L and number of atoms atomN of the CCNTs (5,5) with E=817.01 GPa, v=0.19, G=343.28 GPa, D d / 4 , 

pn   6  and various pitch angle .  

  11.36   15.79   20.57   25.35   30.00   34.43   38.61   

 L( nm )  52.142 53.125 54.601 56.569 59.028 61.980 65.423 

 atomN  4240 4320 4440 4600 4800 5040 5320 

 

For instance, the mode shapes for a CCNT (5,5) is plotted with pD d n    / 4,  6,  20.57  and .  nm 1 7  

under clamped-clamped boundary conditions (Fig. 4). 

In Fig. 4, the first eight mode shapes of the CCNT (5,5) can be observed. Due to the stretching, bending and 

torsion deformations in the CCNTs, occurs longitudinal, transverse and torsional vibrational coupling. The 

fundamental mode shape of the CCNTs is always transvers. Mode 5 and 6 are predominantly longitudinal 

vibrational motions, while the other modes of the CCNT in Fig. 4 are predominantly transverse vibrational motions. 
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Fig.4 

First eight mode shapes of the CCNT free vibration with 

pD d n    / 4,  6,   20.57  under clamped-clamped BCs. 

Solid line: deformed shape, Dotted line: undeformed shape. 

 

 

Furthermore, coupled mode shapes with normalized translational displacements su u u ( , , ) and rotations 

displacements s    ( ,  , )  of the CCNT shown in Figs. 5 and 6. It is worth noting, unlike the CNTs, increasing a 

pitch in the CCNTs appears a vibrating peak in the fundamental mode shape. 

 
 

 

Fig.5 

The first four mode shapes of the CCNT for normalized translations su u u ( , , ) and rotations  s    ( ,  , )  with D d / 4,   

pn   6,   20.57 and .  nm 1 7  under clamped-clamped BCs. 
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Fig.6 

The second four mode shapes of the CCNT for normalized translations su u u ( , , ) and rotations  s    ( ,  , )  with 

pD d n    / 4,  6,   20.57  and .  nm 1 7  under clamped-clamped BCs. 

 

The natural frequencies of the CCNT (5,5) are given in Table 5. Regarding this Table, it is seen that some of the 

frequencies in CCNT are close to each other, which is in contrary with the elementary theory [35]. Therefore it can 

be concluded that a general instruction for determining the free vibration frequencies of CCNTs cannot be presented. 

4.1 Effect of the nonlocal parameter   

Also, effect of the nonlocal parameter on the natural frequencies of CCNT (5,5) is reported in Table 5. As can 

observed, for the nonlocal parameter of .  nm , 1 7  the natural frequencies of the CCNT decrease compared to 

.  nm  0 0  (i.e. local continuum model). This is because the nonlocal parameter decreases CCNTs stiffness and 

consequently the frequency values are reduced. 
 

Table 5 

The natural frequencies (GHz) of the CCNT (5,5) with pD d n    / 4,  6,  20.57  under clamped-clamped BCs. 

e a  0  

(nm) 

Modes 

f 1  f 2  f 3  f 4  f 5  f 6  f 7  f 8  f 9  

0.0 15.418 15.446 30.512 33.343 38.242 38.480 58.642 63.213 65.410 

1.7 10.013 10.017 24.792 25.025 30.362 33.341 43.283 43.912 56.925 



N
o

rm
al

iz
e

T
ra

n
sl

at
io

n
al

D
is

p
la

ce
m

en
t

10 20 30

-1

-0.5

0

0.5

1

u
s
()

u

()

u

()

5th mode shape



N
o

rm
al

iz
e

T
ra

n
sl

at
io

n
al

D
is

p
la

ce
m

en
t

10 20 30

-1

-0.5

0

0.5

1

u
s
()

u

()

u

()

6th mode shape



N
o
rm

al
iz

e
T

ra
n
sl

at
io

n
al

D
is

p
la

ce
m

en
t

10 20 30

-1

-0.5

0

0.5

1
u

s
()

u

()

u

()

7th mode shape



N
o
rm

al
iz

e
T

ra
n
sl

at
io

n
al

D
is

p
la

ce
m

en
t

10 20 30

-1

-0.5

0

0.5

1
u

s
()

u

()

u

()

8th mode shape



N
o

rm
al

iz
e

R
o
ta

ti
o

n
al

D
is

p
la

ce
m

en
t

10 20 30

-1

-0.5

0

0.5

1


s
()



()



()

5th mode shape



N
o
rm

al
iz

e
R

o
ta

ti
o
n
al

D
is

p
la

ce
m

en
t

10 20 30

-1

-0.5

0

0.5

1


s
()



()



()

6th mode shape



N
o
rm

al
iz

e
R

o
ta

ti
o

n
al

D
is

p
la

ce
m

en
t

10 20 30

-1

-0.5

0

0.5

1


s
()



()



()

7th mode shape



N
o
rm

al
iz

e
R

o
ta

ti
o
n
al

D
is

p
la

ce
m

en
t

10 20 30

-1

-0.5

0

0.5

1


s
()



()



()

8th mode shape



129                                F. Darvishi and O. Rahmani 

 

© 2021 IAU, Arak Branch 

Furthermore, the nonlocal parameter can affect on the arrangement of CCNT mode shapes. To verify this claim, 

the mode shapes of the CCNT with .  nm  0 0  and .  nm 1 7  are plotted in Fig. 7.  

 

 

 

 

Fig.7 

First eight mode shapes of the free vibration of the CCNT 

with pD d n    / 4,  6,  20.57  under clamped-clamped 

BCs, (a) .  nm  0 0  and (b) 1 7.  nm.   

 

The effect of the nonlocal parameter on the f 1
 and f 7  natural frequencies of various CCNTs is shown in Figs. 8-

10. As it is obvious, the nonlocal parameter reduces CCNTs natural frequency values. Moreover, by increasing the 

D/d ratio, number of pitches pn  and helix pitch angle  , the effect of nonlocal parameter on the natural frequencies 

is decreased. 

 
  

 

 

 

Fig.8 

Effect of the nonlocal parameter on the natural frequencies 

(GHz) of the CCNTs with various D/d ratios. 

 

 

  
  

 
 
 
 
 
Fig.9 

Effect of the nonlocal parameter on the natural frequencies 

(GHz) of the CCNTs with various number of pitches. 
 
 

  

 

 

 

 

 

 

 

 

 

 

Fig.10 

Effect of the nonlocal parameter on the natural frequencies 

(GHz) of the CCNTs with various helix pitch angles. 
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Here, the fundamental frequencies of the CNT (5,5) and the CCNT (5,5) are compared with same length and 

nonlocal parameter. The fundamental frequency of the CNT (5,5) was obtained f 1 45.75GHz  with 

L . nm19 184 and .  nm 1 7 by Arash and Ansari [54], while the fundamental frequency of the CCNT (5,5) is 

f 1 54.51GHz  with same length ( pD d n   / 4, 20.57 ,  2.11 ) and nonlocal parameter in the present study.  

4.2 Effect of the ratio of D/d  

The variation of the natural frequencies versus the ratio of D/d is given in Table 6. As this ratio increases, decreasing 

trend can be observed in CCNTs stiffness, which in turn reduces the frequencies. Also, the frequencies get closer to 

each other with increasing this ratio and coupled modes begin to emerge. 
 

Table 6 

 Effect of the ratio of D/d on the natural frequencies (GHz) of the CCNTs (5,5) with pn , . ,  .  nm    6 20 57 1 7  under 

clamped-clamped BCs. 

 D d/  
Modes 

f 1  f 2  f 3  f 4  f 5  f 6  f 7  f 8  f 9  

4 10.013 10.017 24.792 25.025 30.362 33.341 43.283 43.912 56.925 

6 5.430 5.432 13.246 13.602 14.011 15.159 23.268 23.789 26.347 

8 3.349 3.352 7.749 8.268 8.390 8.705 14.172 14.618 15.091 

10 2.251 2.253 4.999 5.395 5.637 5.734 9.376 9.791 9.810 

12 1.608 1.610 3.484 3.769 4.027 4.074 6.597 6.909 6.979 

14 1.203 1.205 2.565 2.777 3.012 3.041 4.876 5.129 5.211 

16 0.932 0.934 1.966 2.129 2.333 2.353 3.745 3.955 4.032 

4.3 Effect of the number of pitches  

The variation of the natural frequencies versus the number of pitches pn , is given Table 7. According to this table, 

increasing pn  would lead to an increase in the helix length and decrease in the stiffness of the CCNTs. 

Consequently, the frequencies are reduced and coupled modes begin to appear. 
 

Table 7 

Effect of the number of pitches on the CCNTs (5,5) natural frequencies (GHz) with D / d , . ,  .  nm    4 20 57 1 7  under 

clamped-clamped BCs. 

pn  
Modes 

f 1  f 2  f 3  f 4  f 5  f 6  f 7  f 8  f 9  

2 58.277 60.757 77.438 96.174 110.799 141.599 155.928 176.062 208.159 

4 20.652 20.737 43.231 47.582 47.607 51.215 72.010 76.805 81.095 

6 10.013 10.017 24.792 25.025 30.362 33.341 43.283 43.912 56.925 

8 5.822 5.827 15.049 15.115 22.679 25.061 27.325 27.737 40.808 

10 3.787 3.790 9.999 10.030 17.785 18.571 19.104 20.222 28.731 

12 2.654 2.656 7.094 7.111 13.287 13.363 15.370 16.832 21.053 

14 1.961 1.962 5.282 5.292 10.029 10.043 13.118 14.431 16.006 

16 1.507 1.508 4.080 4.086 7.806 7.808 11.458 12.500 12.543 

18 1.193 1.194 3.244 3.248 6.237 6.238 10.019 10.075 10.235 

4.4 Effect of the helix pitch angle 

The variation of the frequencies with respect to the helix pitch angle    is given in Table 8. As   increases, the 

helix length increases and the stiffness of the CCNTs decreases, which reduces the frequencies, subsequently. 

Again, the occurrence of the coupled modes is begun with increasing . 
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Table 8  

Effect of helix pitch angle on the CCNTs (5,5) natural frequencies (GHz) with D d / 4,  pn ,  .  nm 6 1 7  under clamped-

clamped BCs. 

  
Modes 

f 1  f 2  f 3  f 4  f 5  f 6  f 7  f 8  f 9  

11.36   16.452 16.506 31.651 34.011 36.578 37.800 57.043 58.782 61.172 

15.79   12.766 12.778 29.720 30.440 31.576 34.586 50.537 51.285 59.417 

20.57   10.013 10.017 24.792 25.025 30.362 33.341 43.283 43.912 56.925 

25.35   8.038 8.047 20.540 20.706 29.122 32.036 36.822 37.616 52.973 

30.00   6.591 6.600 17.174 17.312 27.612 30.302 31.392 32.785 47.083 

34.43   5.494 5.502 14.500 14.617 25.529 26.881 27.720 30.054 41.199 

38.61   4.635 4.642 12.343 12.442 22.642 23.120 25.580 28.280 35.957 

5    CONCLUSION 

In this paper, for the first time a nonlocal continuum method were proposed to study free vibration behavior of the 

single-walled CCNTs. The free vibration equations were derived based on a nonlocal helical beam model, including 

Washizu’s beam model and the nonlocal elasticity theory. Then, the nonlocal governing equations were solved 

numerically via GDQM. The vibrating natural frequencies and the corresponding mode shapes were obtained for 

CCNTs under clamped-clamped boundary conditions. Moreover, the effect of nonlocal parameter and the geometric 

parameters such as the ratio of D/d, the number of pitches and the helix pitches angle on the free vibrational 

behavior of the CCNTs were investigated and general conclusion were obtained. Thus, with increasing these 

parameters, the stiffness of the CCNTs was decreased and consequently, the natural frequencies were reduced as 

coupled modes begin to emerge. Also, it was found that the nonlocal parameter reduces the natural frequencies and 

changes the arrangement of the CCNTs mode shapes. Main limitation of present study is nonlocal parameter value 

of the CCNTs for different geometrical parameters such as diameter and chirality that must be determined by 

molecular dynamics simulation. Also, the curvature of CCNTs should be moderate. The present method can be used 

to investigate the effect of different boundary conditions, the tensile and compressive initial strain and axial static 

forces, attached mass and temperature on the free vibration behavior of CCNTs in future researches. 
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