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 ABSTRACT 

 In this research, the thermal buckling analysis of a truncated 

conical shell made of porous materials on elastic foundation is 

investigated. The equilibrium equations and the conical shell`s 

stability equations are obtained  by using the Euler`s and the 

Trefftz equations .Properties of the materials used in the conical 

shell are considered as porous foam made of steel, which is 

characterized by its non-uniform distribution of porous materials 

along the thickness direction. Initially, the displacement field 

relation based on the classical model for double-curved shell is 

expressed in terms of the Donnell`s assumptions. Non-linear strain-

displacement relations are obtained according to the von Kármán 

assumptions by applying the Green-Lagrange strain relationship. 

Then, performing the Euler equations leads obtaining nonlinear 

equilibrium equations of cylindrical shell. The stability equations 

of conical shell are obtained based on neighboring equilibrium 

benchmark (adjacent state). In order to solve the stability equations, 

primarily, due to the existence of axial symmetry, we consider the 

cone crust displacement as a sinusoidal geometry, and then, using 

the generalized differential quadrature method, we solve them to 

obtain the critical temperature values of the buckling Future. In 

order to validate the results, they compare with the results of other 

published articles. At the end of the experiment, various parameters 

such as dimensions, boundary conditions, cone angle, porosity 

parameter and elastic bed coefficients are investigated on the 
critical temperature of the buckling. 

                                 © 2021 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 SING the improved Donnell equations in the thermal buckling analysis of thin cylindrical shells was perused 

by Eslami et al. [1]. Buckling of FGM cylindrical shells reinforced by rings and stringers under axial 

compression with the stability equations linearized in terms of displacements was investigated by Najafizadeh et al. 
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[2]. Considering the stiffeners and skins made of functionally graded materials that their properties vary 

continuously through the thickness direction, was observed in their study. Deliberating analysis of dynamic behavior 

of functionally graded conical shells, cylindrical shells and annular plates was accomplished by Tornabene et at. [3, 

4]. In order to scrutinize the above moderately thick structural elements, the First-order Shear Deformation Theory 

(FSDT) was used. When surmising the materials to be isotropic and inhomogeneous through the direction of the 

thickness, the treatment was instigated within the theory of linear elasticity. The mechanical buckling of functionally 

graded cylindrical shell embedded in an outer elastic medium, and subjected to combined axial and radial 

compressive loads was investigated by Bagherizadeh et al. [5]. Based on a higher-order shear deformation theory, 

the theoretical formulations are presented by pondering the transverse shear strains. Applying the nonlinear strain–

displacement relations of FGM cylindrical shells leads to obtaining the governing equations. For modelling the 

elastic foundation, a two-parameter Pasternak model obtained by adding a shear layer to the Winkler model is used. 

Bagherizadeh et al. [6] reviewed the thermal buckling of an FG cylindrical shell on a Pasternak-type elastic 

foundation. In this survey, the stability equations of the shell are decoupled to inaugurate an equation in terms of 

only the out of- plane displacement component. Sofiyev and Kuruoglu [7] perused the torsional vibration and 

buckling analysis of a cylindrical shell with functionally graded (FG) coatings surrounded by an elastic medium. 

The material properties of the FG coatings are assumed to be graded in the thickness direction according to a simple 

power law distribution in terms of the volume fractions of the constituents. A two-parameter foundation model or 

Pasternak foundation model is used to describe the shell–foundation interaction. Dung and Hoa [8–10], obtained the 

results on the static and dynamic nonlinear buckling and post buckling analysis of eccentrically stiffened FGM 

circular cylindrical shells under external pressure and torsional loads. The material properties of the shell and the 

stiffeners are assumed to be continuously graded in the thickness direction. The Galerkin method was used to obtain 

closed-form expressions to determine critical buckling loads. Sabzikar Boroujerdy et al. [11] presented buckling of a 

heated temperature dependent FGM cylindrical shell surrounded by an elastic medium based on the Donnell theory 

of shells combined with the von Karman type of geometrical nonlinearity. Equivalent properties of the shell are 

obtained based on the Voigt rule of mixture in terms of a power law volume fraction for the constituents. The 

properties of the constituents are considered temperature dependent. The temperature profile through the shell 

thickness is obtained by means of the central finite difference method. Linear pre-buckling analysis is performed to 

obtain the pre-buckling forces of the cylindrical shell. Stability equations are derived based on the well-known 

adjacent equilibrium criterion. Three coupled partial differential stability equations are solved with the aid of a 

hybrid Fourier-GDQ method. Thermal bifurcation behavior of cross-ply laminated composite cylindrical shells 

reinforced with shape memory alloy fibers is investigated by Asadi et al. [12]. The properties of the constituents are 

assumed to be temperature dependent. Donnell’s kinematic assumptions accompanied by the von Karman type of 

geometrical nonlinearity are used to derive governing equations of the shell. Furthermore, the one-dimensional 

constitutive law of Brinson is used to predict the behavior of the shape memory alloy fibers through the heating 

process. The governing equilibrium equations are established by employing the static version of the virtual 

displacements principle. A linear thermal buckling analysis of truncated hybrid FGM conical shells based on the 

classical shell theory using Sanders nonlinear kinematics equations was analyzed by Torabi et al. [13]. Dung et al. 

[14] studied linear buckling of FGM thin truncated conical shells reinforced by homogeneous eccentric stringers and 

rings subjected to axial compressive load and uniform external pressure load based on the smeared stiffeners 

technique and the classical shell theory.  Sofiyev and Kuruoglu [15] studied the nonlinear buckling behavior of 

FGM truncated conical shells surrounded by an elastic medium based on the classical shell theory and applying 

Galerkin method. Bahadori and Najafizadeh [16] derived the vibration characteristics of simply supported 2D-FG 

cylindrical shells based on Winkler-Pasternak elastic foundation by using the GDQ method. 

The new contribution of that paper is the investigation by analytical method on the buckling behavior of shell 

taking into account the change in distance between stringers in the meridional direction. The important highlight is 

that the authors used the smeared stiffeners technique for correctly establishing the general formula for force and 

moment resultants of eccentrically stiffened FGM (ES-FGM) truncated conical shells.  

2    PROBLEM DESCRIPTION  

2.1 Functionally graded material properties 

In this section, the aim is to obtain the buckling equations of the cone shell made of porous materials in Fig. 1, in 
which x is along the edges of the cone, θ is in the direction of the medium, and z is in line with the thickness of the 

crust. The displacements (u, v, w) are in line (x, θ, z), respectively. Also the cone angle that can vary from zero to 90 

degrees. 
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Fig.1 

Geometrical shape. 

 

In this paper, we obtain equilibrium equations and conical shell stability equations using the Euler and Trefftz 

equations. In Figs. (2) and (3) two different types of distribution of porous material are shown along the thickness 

direction. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Porosity Distribution 1. 

  

 

 

 

 

 

 

 

 

 

 

Fig.3 

Porosity Distribution 1. 

 

Due to the non-uniform distribution of porous materials in the direction of the thickness of the modulus of 

elasticity and the shear modulus, they change as a function of z in relations (1) to (2). In type 1 distribution, the 

lowest values are related to the modulus of elasticity and shear modulus in the middle of the shell and the highest 

values are related to the modulus of elasticity and shear modulus in the upper and lower sides of the crust, but in the 

type 2 distribution, the lowest values belong to the modulus of elasticity and modulus The shear is located on the 

bottom of the shell, and the largest values are the modulus of elasticity and shear modulus on the top of the shell. 

The relations of elastic modulus ( )E z and shear modulus ( )G z  for the porous materials anent distribution 

type 1 and type 2 are obtained as follows. 
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In the above relations
z

h
  . The displacement coefficient is also equal to 0 0

0

1 1

1 1
E G

e
E G

    . For isotropic 

materials, the elastic modulus E and the shear modulus G are as follows. 

 

0,1
2(1 )

i

i
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
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
 (3) 

2.2 The basic formulation 

The relation of the classical displacement field for double curved shell is as follows. 
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In the aforementioned relation, 1 2,   are the curvatures of the shell in line with ,x   directions, which 

according to the assumptions of the Donnell, are expressed as follows. As shown in Fig. 1, ( ) .sin( )R x x  . 
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Now, by instituting the relations (5) into the relations (4), the classical displacement field relations for the 

conical shell are obtained using the Donnell assumptions as follows. 
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(6) 

 

The linear and nonlinear components of normal and shear strains for the conical shell are obtained as follows 

[2,3] by using the classical displacement field for the conical shell, the Donnell assumptions , the values of the Lame 

constants and the curvature radii of the conical shell. 
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The linear components of the normal thermal strain for the conical shell are as follows. 
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Now we want to obtain the equilibrium equations of the conical shell under the external force using Euler's 

equations. The total potential energy for the cone shell is defined as follows. 
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(9) 

 

In the above relation, U is the strain energy of the system and V is the external work of the external forces 
entering the system. For the conical shell, the external work obtained from the elastic bed forces is obtained in the 

form below. 
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In the above relation, k1 is the Winkler coefficient and k2 is the Pasternak coefficient. In addition, for the cone 

crust, the strain energy is obtained in the form below. 
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To simplify the relationship between the strain energy, we define the forces and flexural torques below [1] 
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where N is the membrane force and M is the bending torque. By substituting the resultant stress Eq. (12) in the strain 

energy Eq. (11) we have: 
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Now, using the following equation, you can obtain the total functional. [4] 
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Using Eq. (14) we have: 
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Now we use the Euler equation method to obtain equations of equilibrium as follows: 
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Within calculating each term of the above equations, the equilibrium equations of cylindrical shell are obtained 
by considering the classical model of surfaces and Donnell assumptions. As seen from the above equations, the 

conical shell equilibrium equations are non-linear. 
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In order to obtain equations of equilibrium in terms of displacement, we must obtain the tensile vibrations by 
using Hooke's law in terms of displacements. The stress-strain relationship under stress condition for isotropic 

materials is as follows: 
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The tensions are defined as follows. 
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The stiffness coefficients of matrix Q for porous materials are also defined by: 
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(20) 

 
In the above relation, the elasticity and shear modulus functions are defined in Eq. (2). By inserting the stiffness 

matrix components within the Hooke relationship, the Cauchy stress components are obtained as follows: 

 

11 12 11 12

12 22 12 22

66

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

T T

x x x

T T

x x

x x

Q z Q z Q z Q z

Q z Q z Q z Q z

Q z

 

  

 

    

    

 

   

   

            

 (21) 

 

The tensile and flexural stiffness matrices are also defined as follows. [12] 
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where A is the tensile stiffness matrix, and B is the matrix of the bending-tensile coupling stiffness, and D, is the 
flexural stiffness matrix.Thermal stiffness matrices are: 
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Using the relations (12) and (21-23), we can write the membrane force sequences in terms of displacement 

terms. 
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(24) 

 

To get the equilibrium equations in terms of displacement, the above resultant stresses should be inserted within 

the equilibrium equations. 

3    THE EQUILIBRIUM EQUATIONS OF CONICAL SHELL BASED ON TREFFTZ PRINCIPLE  

The equilibrium equations of conical shell are derived based on neighboring equilibrium ratio (adjacent) in 

equipoise equilibrium state or Trefftz principle. It is considered that, equivalence condition of conical shell are 

presented under the thermal field in terms of 0 0 0, ,u v w components. The equipoise equilibrium state is alluded on 

basis of infinitesimal virtual components 1 1 1, ,u v w . The total displacement components in the equipoise state are as 

follows. 
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Similar to the above, the forces and bending moments are expressed in terms of the sum of equilibrium and 

neighbor states. 

 
0 1

0 1

0 1

0 1

0 1

0 1

x x x

x x x

x x x

x x x

N N N

N N N

N N N

M M M

M M M

M M M

  

  

  

  

 

 

 

 

 

 

           

 
(26) 

 

The subtitle terms 0 are related to displacements 0 0 0, ,u v w , and the subtitle terms 1 are associated with 

displacements 1 1 1, ,u v w , which express the additional part of the forces and torque outputs that are in linear 

1 1 1, ,u v w terms .   By entering Eqs. (25) and (26) in 17, the terms of the equations obtained with the index 0 satisfy 

the equilibrium conditions. So, they are eliminated from equilibrium stability equations. Then, the stability equations 
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are obtained by ignoring nonlinear terms (second-order semantics) in 1 1 1, ,u v w due to their infinitesimal size to the 

linear terms and the rest of the components of 1 1, ,...xN N  . 
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(27) 

In the above equations, 0
xN  is the axial thermal buckling force. 
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In addition, the resultant stresses associated with the small development of the neighborhood are obtained as 

follows, regardless of nonlinear regions. 

 
2

1 12

11 11 12 12 122 2

2

12 12 11 122 2

2

1 22

12 12 22 22 222

.sin( ) .cos( ) 1
cos( )

( ) ( ) ( ) ( )

1 sin( )

( )( )

.sin( ) .cos( ) 1

( ) ( ) ( )

x

x

Au w v u w v
N A B A A B

x R x R x R xx R x

w w
B B

R x xR x

Au w v u w
N A B A A B

x R x R x R xx R





 


 


 



 



   
     

  

 
   



  
     

 
2

2

22 22 12 222 2

1 66

66 66 66 66 2

2

66 66 662 2

cos( )
( )

1 sin( )

( )( )

.sin( ) 3 cos( ) 3 sin( ).cos( )

( ) ( ) 2 ( ) 2 ( )

2.sin( ) 2 1 cos( )

( ) 2( ) ( )

x

x

v

x

w w
B B

R x xR x

Av v u v
N A A B B v

x R x R x R x x R x

w w u
B B B

R x xR x R x









 



   



 

 





 
   



  
    

  

  
  

   

    

2

1 12

11 11 12 12 122 2

2

12 12 11 122 2

2

1 22

12 12 22 22 222

.sin( ) .cos( ) 1
cos( )

( ) ( ) ( ) ( )

1 sin( )

( )( )

.sin( ) .cos( ) 1

( ) ( ) ( )

x

x

Bu w v u w v
M B D B B D

x R x R x R xx R x

w w
D D

R x xR x

Bu w v u w
M B D B B D

x R x R x R xx R





 


 


 



 



   
     

  

 
   



  
     

 
2

2

22 22 12 222 2

1 66

66 66 66 66 662 2

2

66 66 2

cos( )
( )

1 sin( )

( )( )

.sin( ) 3 cos( ) 3 sin( ).cos( ) 2.sin( )

( ) ( ) 2 ( ) 2 ( ) ( )

2 1 cos( )

( ) 2 ( )

x

x

v

x

w w
D D

R x xR x

Bv v u v w
M B B D D v D

x R x R x R x x R x R x

w u
D D

R x x R x









 



    

 









 
   



   
     

   

 
 

  

       

 

(29) 



46                          M. Gheisari et.al. 

 

 

© 2021 IAU, Arak Branch 

By placing the above-mentioned stress factors in the stability Eqs. (27), they are obtained in terms of 

displacement terms. 

3.1 Solving equations by differential quadrature method 

Primarily, we consider conical shell displacements in the following geometric relation due to the existence of axial 

symmetry to solve the equilibrium equations, 
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In the above relation, n is the number of environmental waves that we consider to find the critical buckling force 
equal to n = 1.  In order to solve the differential equations, we use the generalized differential Quadrature method. 

3.2 Principles of differential quadrature method and generalized differential quadrature 

The differential quadrature method, or DQ, is a powerful method for solving initial or boundary value problems. 

Richard Bellman developed this technique in the early seventies of the twentieth century. The main idea in the DQ 

method is the approximation of the unknown function and its derivatives in each node as a linear sum of the function 
values in all nodes in the interval under consideration. In this method, the derivative of the nth order approximates 

the smooth function over the node as follows. 
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An important point in the DQ method is the way of choosing the weight coefficient and the distribution of the 
discontinuity points. The differential quadrature method was determined by Shu in the early 1990s to improve the 

DQ method in determining the weight coefficients [13]. The principles of this method are similar to the DQ method, 

but the weight coefficients determination is different. In GDQ method, the weight coefficient for the first-order 

derivative is obtained by a simple algebraic relation. The weight coefficients for higher order derivatives are also 
determined by a recurrence relation. The first-order derivative weigh coefficients are gained as the following 

relationships [13]: 
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which 
1 2, ,..., Nx x x are coordinate nodes and selecting them is optional. The weighting coefficients of the 

derivative of the mth are calculated from the following recursive relationships: 
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Similar to the previous state, ( )m

iiC can be calculated from the following equation: 
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As can be seen, the weight coefficients in the GDQ method do not depend on the studied issue. By choosing the 
number of discrete points and their distribution, these coefficients are calculated using the above relations. Burt and 

Malik [14] pointed out that the proper distribution method is dependent on the considered problem, and has 

proposed the use of Chebyshev –Gauss- Lobatto (C-G-L) distribution for solving mechanical problems of structures 

due to the high convergence velocity in the results. The distribution of C-G-L is as follows. 
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In the above distribution, the density of nodes in the two rows is greater than the median range, and therefore the 
boundaries of the conditions in this division have a more effective role than the division with equal distances. To 

apply boundary conditions in the GDQ method, at the boundary point, the boundary condition replaces the equation 

studied at that point. In some issues, such as the vibration of the beams, there are more than one boundary condition 

at each boundary. Using the above method, the number of equations generated by the discretization of the GDQ 

method increases the number of sudden events, which is the same amount of value in the nodes. Different ways have 

been proposed to solve this problem. One of the methods used in this research is to remove the equation for one of 

the internal points and replace it with the additional equation obtained by applying the GDQ method to the multiple 

boundary condition. Shu [15] has shown that this method is very suitable for vibrations of beams and sheets with 

different boundaries. It has also been shown that the optimal choice for the internal substitute point is the adjacent 
node of boundary conditions. By replacing the relation (31) within the stability Eqs. (27), it follows from the linear 

algebraic equation system. 
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By solving this system of linear algebraic equations, the critical temperature of the buckling is obtained. 

4    NUMERICAL RESULTS AND DISCUSSION  

As stated before, the numerical results presented here are related to conical shells made of porous materials, which 

are functionally in line with the thickness of the shell. 

4.1 Validation 

In this section, to determine the accuracy of the solution method, the results are presented for thermal buckling of a 
functionally graded conical shell under uniform heat load. The properties of the functionally graded materials are 

obtained using the following equation.  

 
2

( , ) ( , ) ( , )( )
2

N

m m cm cm

z h
E E E

h
  


 

          

  

 

The material used in the functionally graded materials is as follows. 

 

Table 1  

Basic constituents of FGM conical shell. 
3( / )kg m  E(GPa)  

11.7×10-6 200 M 

7.4×10-6 380 C 

 

The clamped boundary conditions for the conical shell are defined as follows 0xv u M w    .Boundary 

conditions are assumed as clamped in validation. The governing equilibrium equations of the shell obtained in 

Chapter 4 are solved using the differential quadrature method. We considered the number of nodes equal to N = 20. 

To compare the heat buckling analysis of a conical shell under uniform heat load, the results are compared with 

reference [7] and presented in Tables 1 to 2. 

 

Table 2 
Comparison of critical temperature values of FGM cone shell buckling with SS boundary condition. 

310c crT  
 

0

1 2
0.01 , 10 , / 1, 0, 0h m H R K K      

         N  
200/R h   400/R h   

present Ref[7] present 

0 2.83 2.78 1.27 

0.3 2.49 2.44 1.13 

1 2.23 2.22 1.01 

5 1.98 1.95 0.92 

  1.69 1.73 0.84 
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Table 3 

Comparison of critical temperature values of FGM conical shell`s buckling with SS boundary condition. 

( )
cr

T K  

1 1

0.0127 , / 100, 2 , 30 , 1
o

h m R h L R N    

 

 

K2 (N/m) 

K1 (N/m3) 

0 2×107 3.5×107 6×107 

present Ref[7] present Ref[7] present Ref[7] present Ref[7] 

0 206.12 205 210.34 209 213.30 212 218.15 216 

2×105 210.25 210 214.27 214 217.23 216 222.07 220 

3.5×105 213.19 212 217.21 215 220.18 218 225.02 222 

6×105 218.11 217 222.13 221 225.09 223 229.93 228 

 

According to the results of the above-mentioned tables, the differential quadrature (DQ) method used in this 

study has a good accuracy. 

4.2 Material properties of porous materials 

The materials used in the porous conical shell are made of steel foam, the properties of which are as follows. 

 

1

3

1

0

200

7850 /

11.7 6 1/

0.3

E GPa

kg m

E C











 


          

 
 

4.3 The results of thermal buckling analysis of conical shells made of porous materials 

In order to solve the equations using the DQ method, the number of nodes are considered to be N = 30. In this 

section, the results of thermal buckling analysis of conical shells made of porous materials with simple boundary 

conditions for different porosity coefficients 
00 1e  are shown. In the below tables, the critical temperature 

values of the buckling of the conical shell made of porous materials are obtained by simply and clamped supports. 

 

Table 4 

Critical temperature values and critical buckling load of porous conical shell with boundary condition SS. 

, ( )cr crN T K  

SS , Ra/h=100 , L/Ra=1 , h=0.01 , K1=0 , K2=0 

 
0

0e   
0

0.2e   
0

0.4e   
0

0.6e   
0

0.8e   

 Dist. 1 Dist. 2 Dist. 1 Dist. 2 Dist. 1 Dist. 2 Dist. 1 Dist. 2 Dist. 1 Dist. 2 

0   ,Tcr Ncr  349.80 

762.94 

349.80 

762.94 

412.39 

688.41 

400.57 

668.68 

493.14 

613.84 

491.57 

611.89 

591.97 

537.18 

510.89 

463.61 

687.52 

451.97 

523.56 

344.19 

15 

 

,Tcr Ncr  287.79 

606.31 

287.79 

606.31 

338.48 

545.78 

329.76 

531.70 

403.05 

484.60 

377.36 

453.72 

482.11 

422.59 

422.31 

370.16 

566.07 

359.45 

504.23 

320.18 

30 

 

,Tcr Ncr  224.92 

424.84 

224.92 

424.84 

264.75 

382.73 

257.87 

372.79 

315.57 

340.18 

295.28 

318.31 

377.88 

296.96 

330.69 

259.88 

443.83 

252.68 

340.50 

193.85 

45 

 

,Tcr Ncr  166.70 

257.09 

166.70 

257.09 

196.24 

231.63 

191.21 

225.69 

233.97 

205.94 

219.08 

192.83 

280.35 

179.89 

245.52 

157.54 

329.85 

153.33 

253.09 

117.65 

60 

 

,Tcr Ncr  112.08 

122.23 

112.08 

122.23 

131.98 

110.16 

128.72 

107.44 

157.38 

97.95 

147.72 

91.94 

188.52 

85.53 

165.90 

75.27 

221.62 

72.84 

171.19 

56.27 

 

In Table 3 for comparison, the buckling temperature values along with the critical buckling force of the conical 
shell made of porous material with a clamped support are obtained. According to the results of the above table, it 

can be seen that by increasing the porosity coefficient in the porous conical shell with the distribution of type 1 and 
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2, the amount of critical buckling force decreases and the critical temperature of the buckling increases. Therefore, it 

is understood that the presence of internal cavities leads to a reduction in the effective stiffened of E and a decrease 

in the effective permeability coefficient in the shell. The effective reduction of E reduces the amount of buckling 
force and decreases the effective permeability to increase the critical temperature of buckling in the shell. According 

to the formula for the porosity coefficient e0 from Eq. (3), when e0 = 0, the value of E0 is equal to the value of E1, 

and the value of the elastic modulus does not change along the thickness and the matter behaves like isotropic 
materials. However, if the large cavities were created inside the material, the amount of E0 will be smaller than E1 

and the porosity coefficient e0 decreases from 1, and the e0 value tends to zero as the cavities increase. According to 

the relation (3), the value of E0 is approximately zero when the porosity coefficient e0 is almost equal to zero, which 
indicates there are too many cavities inside the object. 

In addition, according to the results presented in the above tables, we find that the porosity distribution in porous 

materials with porosity coefficient greater than zero affects the results. In such a way that the critical temperature 

buckling values in the second-order distribution are always lower than the critical buckling values in the first-order 

distribution, which is due to the fact that in the first-order distribution of small cavities that are harder than the 

center, the cylindrical thickness is higher and this causes the hardness of the cylinder to become more effective. 

 

Table 5 

Critical buckling temperature values of porous conical shell with boundary condition CC. 

( )crT K  

CC , Ra/h=100 , L/Ra=1 , h=0.01, K1=0 , K2=0 

 
0

0e   
0

0.2e   
0

0.4e   
0

0.6e   
0

0.8e   

 Dist. 1 Dist. 2 Dist. 1 Dist. 2 Dist. 1 Dist. 2 Dist. 1 Dist. 2 Dist. 1 Dist. 2 

0   429.12 429.12 509.73 491.89 608.18 561.83 727.78 624.09 858.28 628.96 

15   375.51 375.51 401.32 395.75 442.29 411.39 531.01 459.04 625.68 560.16 

30   322.14 322.14 341.59 338.14 359.67 334.70 431.44 373.41 508.53 471.51 

45   196.19 196.19 231.57 224.71 277.01 256.77 333.25 286.22 393.73 291.54 

60   136.83 136.83 161.52 156.72 193.33 179.07 232.96 199.61 276.47 203.31 

 

In addition, according to the results of the above tables, we find that by increasing the angle of the cone in the 

porous conical shell, the critical temperature of the buckling decreases, which is due to the instability of the cone 
with a high vertex angle. In the results of the following tables, we show them later in order to better illustrating the 

effect of geometric dimensions on critical buckling loads. 

 

Table 6 

Critical buckling temperature values of porous conical shell with boundary condition SS. 

( )crT K
 

SS , L/Ra=1 , e0=0.5 , h=0.01 , Dist. 1, K1=0 , K2=0 

 10aR h   20aR h   50aR h   100aR h   200aR h 

 0   5602.66 2855.94 1069.03 541.28 267.10 

15   5025.31 2314.76 903.83 440.97 217.16 

30   4267.00 1822.95 711.88 345.45 168.55 

45   3023.74 1412.15 533.02 256.19 124.22 

60   1923.51 1049.09 361.83 172.31 82.79 

 

From the results above, Table 5, which shows the critical temperature values of the buckling of the porous 

conical shell with the SS boundary condition, we find that by increasing the vertex angle , the critical temperature 

values of the buckling of the conical shell are reduced, which is a natural phenomenon. Because, the increase in the 

vertex angle leads the conical shell become geometrically unstable and the buckling phenomenon occurs at a 

lower temperature. 

In addition, from the results of Table 5, it can be seen that by increasing the value of x, the critical temperature 

values of the buckling of the conical shell decrease, which is due to the fact that by increasing the amount of x the 

conical shell becomes thinner and its stability is reduced. 
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Table 7 

Critical temperature values of buckling of porous conical shell with boundary condition SS. 

( )crT K
 

SS , Ra/h=100 , e0=0.5 , h=0.01 , Dist. 1, K1=0 , K2=0 

 
0.2

a

L

R
  0.5

a

L

R
  1

a

L

R
  2

a

L

R
  5

a

L

R
  

0   568.34 543.02 541.28 533.74 504.65 

15   528.92 499.79 440.97 364.17 267.58 

30   457.18 426.56 345.45 256.13 142.27 

45   372.23 319.88 256.19 178.20 96.84 

60   294.11 224.47 172.31 114.93 72.45 

 

From the results above, Table 6 which shows the critical temperature values of the buckling of the porous 

conical shell with the SS boundary condition, we comprehend that by increasing aL R , the amount of critical 

temperature values of the buckling of the conical shell is reduced, which is based on a principle that the conical shell 

becomes longer, and its stability is reduced by increasing the amount of aL R .  

 

Table 8 

Critical temperature values of buckling of porous cone shell with SS boundary condition in terms of (KN). 

( )crT K
 

SS , L/Ra=1 , Ra/h=100 , e0=0.5 , h=0.01m , Dist. 1 

30   7

1 3
0 10 ( )

N
K

m
   7

1 3
2 10 ( )

N
K

m
   7

1 3
4 10 ( )

N
K

m
   7

1 3
6 10 ( )

N
K

m
   

5

2 0 10 ( )K N m   345.45 351.68 357.78 363.77 

5

2 2 10 ( )K N m   357.25 363.48 369.58 375.56 

5

2 4 10 ( )K N m   369.08 375.30 381.40 387.39 

5

2 6 10 ( )K N m   380.93 387.15 393.26 399.24 

 
Based on the results above, Table 7, which shows the critical temperature values of the buckling of the porous 

conical shell with the SS boundary condition, we realize that the critical temperature values of the buckling of the 

conical shell increase by increasing the elastic foundation coefficient values, which is due to the fact that the elastic 

foundation coefficient of the conical shell gets harder in material terms and is added to its stability by increasing the 

values. 

 

5    CONCLUSIONS 

1.   By increasing the amount of porosity coefficient (e0) in the conical shell, the amount of critical buckling 

force decreases and the amount of critical buckling temperature increases. 

2.  The critical buckling temperature values in the second type distribution are less than the first type 

distribution. 

3.  As the angle of the apex of the cone in the conical shell increases, the critical buckling temperature 

decreases. 

4.    By increasing the value of  Ra/h the critical buckling temperature of the conical shell decreases. 

5.  By increasing the values of L/Ra , the critical temperature values of the buckling of the conical shell decrease. 
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