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 ABSTRACT 

 The coupled damage/plasticity model for meso-level which is ply-

level in case of Uni-Directional (UD) Fiber Reinforced Polymers 

(FRPs) is implemented. The mathematical formulations, 

particularly the plasticity part, are discussed in a comprehensive 

manner. The plastic potential is defined in effective stress space 

and the damage evolution is based on the theory of irreversible 

thermodynamics. The model which is illustrated here has been 

implemented by different authors previously but, the complete pre-

requisite algorithm ingredients used in the implicit scheme 

implementation are not available in the literature. This leads to the 

complexity in its implementation. Furthermore, this model is not 

available as a built-in material constitutive law in the commercial 

Finite Element Method (FEM) softwares. To facilitate the 

implementation and understanding, all the mathematical 

formulations are presented in great detail. In addition, the 

elastoplastic consistent operator needed for implementation in the 

implicit solution scheme is also derived. The model is formularized 

in incremental form to be used in the Return Mapping Algorithm 

(RMA). The quasi-static load carrying capability and non-linearity 

caused by the collaborative effect of damage and plasticity is 

predicted with User MATerial (UMAT) subroutine which solves 

the FEM problem with implicit techniques in ABAQUS. 

                                 © 2019 IAU, Arak Branch. All rights reserved. 

 Keywords: Continuum damage mechanics; Plasticity/damage 
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1    INTRODUCTION 

 OMPOSITES play an important role in the various industrial applications replacing the metals due to its 

better mechanical and structural functionalities. The mechanical behavior prediction of composites is very 
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important in order to foresee the in-service performance of the structures. This virtual assessment of the mechanical 

behavior not only accelerates the design phase but also reduces the experimentation, and ultimately the cost of the 

product to the end user. However, anisotropic and heterogeneous nature of FRPs accompanied by complex failure 

and multi-damage modes has posed the mechanical behavior prediction a challenging task. Since the introduction of 

the advanced composites like FRPs, researchers have successfully developed mechanical behavior and failure 

prediction models based on the coupling of Continuum Damage Mechanics (CDM) and plasticity. These models 

possess some inherent advantages like the prediction of residual strength and stiffness as a function of load. The 

model developed by Ladevèze et al. [1] at the ply level is one of such models aimed to predict the mechanical 

response of continuous FRPs composites. Models that are based on the coupled damage/plasticity approach are 

capable to describe the non-linearity with higher precision that is due to the in-elastic strain and micro-damage 

induced in FRPs as compared to the elastic damage models. Since the nature of the composite structure is to 

accumulate damage continuously before the final collapse so the application of failure criteria alone does not seem 

sufficient until and unless accompanied by damage evolution as a continuous state variable [2,3]. Failure initiation 

and complete progression/evolution until final rupture shall be incorporated in the model in order to obtain an 

efficient, reliable and accurate prediction tool [4].  

CDM based approach is well-suited for the intra-laminar failure and damage prediction due to the fact that it 

considers each micro-damage mode initiation/evolution and their interaction along with the corresponding 

degradation in the mechanical behavior. In other words, it conceptualizes the degradation in the elastic properties of 

a single lamina, intra-ply level, due to the formation and their interaction of the diffused micro-cracks and de-

cohesion of fiber/matrix before the localization and conversion of the micro-cracks into a single macro-crack [5]. It 

also assumes the possible intermediate states for the damage corresponding to the magnitude of the loading and 

hence treating the damage as a continuous variable [6]. Employing damage as a continuous variable enables to 

predict the residual mechanical properties at a particular load level: for instance, residual strength or residual 

stiffness at a specific load level in quasi-static loading or corresponding to a load cycle in fatigue loading prior to the 

catastrophic collapse of the structure [7]. Ladevèze model [1] is of paramount importance in composite community 

for the failure analysis of FRPs due to its excellent prediction capability and robustness in terms of any arbitrary 

stacking sequence and orientation of the fibers for the quasi-static loading. In addition, this model has been 

employed successfully for impact and fatigue loading in UD FRPs as well as textile composites [5,8-11]. 

Nevertheless, this model is not available as a built-in material constitutive law in commercial FEM codes such as 

ABAQUS and ANSYS to the design engineers for the design and analysis of FRPs composites. The complete pre-

requisite algorithm ingredient formulation required is not available in the literature that escalates the complexity in 

implementation specifically the plasticity part. Therefore, the present work is aimed to present the complete 

formulation along with the consistent operator required for the FEM implementation in the commercial code 

ABAQUS. After presenting the detailed formulation, the model is implemented in an implicit solver with user 

customized material behavior capability in ABAQUS known as UMAT.  

2    LADEVEZE DAMAGE / PLASTICITY COUPLED MODEL  

In CDM, all the micro-damages/voids are smeared-out or homogenized over the continuum and a new medium is 

assumed having the degraded stiffness. This methodology was first proposed by Kachanov investigating the creep 

analysis of isotropic materials [12]. It is based on the theory of irreversible thermodynamic process considering     

internal state variables. These internal state variables can be expressed by a set of scalar or in tensorial notion with 

their conjugate driving force variables [13]. The choice of the state variables depends on the material damage 

modes. These memorize the history that what happened to the material throughout the loading range [7].  

2.1 Plane stress anisotropic damage constitutive law 

FRPs based composites fail in a variety of mechanisms which ranging from micro-level to macro-level. The 

common micro-level failure mechanisms comprise of fiber fracture, fiber micro-buckling (kinking) in compression, 

fiber/matrix debonding, matrix micro-cracking [14].These micro-level failures in the layers then act as a foundation 

for the subsequent meso-level (e.g. transverse matrix cracking in a ply) and macro-level failure on laminate level 

such as delamination [5]. The strain energy of the damage orthotropic material denoted by DE can be expressed 

based on the plane stress assumption as [8,1]: 
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where E 0

11
, E 0

22
,G 0

12
, 12

denote the virgin material (undamaged) in-plane elastic constants. No degradation is 

assumed in the Poisson ratios 12
. And, d1

, d 2
, d12

are the scalar damage state variables in fiber direction, transverse 

direction and in-plane shear that degrade the virgin material elastic constants in the respective directions 

proportional to the state of stress. Based on the plane stress assumption the components of stress tensor are denoted 

as
11σ ,

22σ and 12
. In case of transverse compression, it is assumed that cracks are closed. Therefore, crack closure 

can be defined as: 
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The damage orthotropic elastic constitutive law is thus obtained: 
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where σ and e
ε are stress and elastic strain tensors respectively which are treated as vectors in Voigt notation due to 

symmetry. e is the compliance matrix for the case of orthotropic material in plane stress case is presented in terms 

of elastic constants as: 
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The associated conjugate thermodynamic force variables denoted by Y 2
and Y 12

of the anisotropic damaged 2
and 

d12
are determined from the Helmholtz free energy density  . These thermodynamic forces are basically the driving 

forces which accumulate the damage as the external loading on the structure is increased.  
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A linear coupling of the two conjugate forces is necessary to obtain an equivalent thermodynamic force Y t( )  to 

be used in the damage accumulation [1]: 

 



845                                   I. Ud Din et.al.    

© 2019 IAU, Arak Branch 

 12 2( ) max ( ) ( )
s t

Y t Y s bY s


   (7) 

 

 
s t

Y t Y s


2 2( ) max ( )  (8) 

 

Here b is the shear and transverse damage coupling parameter and is determined experimentally. The damage 

evolution laws for the shear and transverse loading are determined by fitting the data points from the hysteresis 

loading-unloading stress-strain curve knowing the damage variables at each cycle and the corresponding stress level 

in pure shear laminate [(±45°)]2s and angle-ply [(±67.5°)]2s as proposed in [1]. A linear damage evolution law can be 

obtained as given below:  
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It shall be noted that the damage evolution in d1
is accomplished with the help of Eq.(25) proposed in [8].

 
Though 

for the sake of completeness, the model parameters are briefly discussed here but the  detailed description, physical 

meaning and experimental identification in the current formulations can be found in [1,8,15].Y 2(0)
and Y 12(0) are the 

threshold values of the thermodynamic forces at which intra-laminar micro-damage commences in the transverse 

and in-plane shear loading respectively. Moreover,
cY 12( )

,
sY are the critical values of the thermodynamic forces in 

the shear and transverse direction, respectively, where the damage accumulation achieves its saturation. So, the 

material is regarded as damaged completely and it cannot sustain additional loading beyond the damage saturation 

values.    

The effective stress tensor σ can be found from the nominal Cauchy stress tensor σ using the damage effect 

tensor that in case of reinforced materials with stiff and strong fibers can be accurately represented by a second 

order tensor in which the principal directions are aligned with the material direction: 

 
σ σ :  (11) 
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2.2 Plasticity modeling  

In case of the coupled plasticity/damage model, the plastic potential shall be expressed in the effective stress space 

[16].Therefore, the plasticity potential used by Ladevèze et al , Eq.(12), is rendered in the quadratic form as given in 

Eq.(13). It is noteworthy that the quadratic form is easier and compact to implement with respect to the algorithm 

ingredients formulation derivation as extensively discussed in [17] for the generalized elastoplastic models with 

some particularizations for special cases. The elastoplastic formulation in [17] was extended to elastoplastic coupled 

damage model by the authors in [18] for a novel coupled elastoplatic damage model for FRPs composites. In the 

present work, a similar approach for the coupled damage/plasticity is followed as illustrated in [18]. The quadratic 

formulation as presented here for the damage/plasticity coupled model is very efficient to tailor to other plasticity 

functions and damage effect tensors accordingly by only changing the mapping matrices involved. This research 

work is intended with aim to facilitate the implementation of Ladevèze model developed in [1].  

 

     yf p a p   σ
2 2 2

12 22, 0    (12) 

 



FEM Implementation of the Coupled Elastoplastic/Damage….                                   846 
 

© 2019 IAU, Arak Branch 
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Here  y p  is the evolving yield limit which increases as the plastic strain p increases with load in case of 

strain hardening,0
is the initial yield limit,  is the hardening law coefficient and is the isotropic hardening law 

exponent. They are correlated here as the power law i.e  y p p  0 .The parameter that establishes coupling 

between the transverse plasticity and in-plane shear plasticity is denoted by a. The mapping matrix that depends 

only on the constant  a of the plasticity potential of the model is noted by and can be read as: 

 

2 a

 
 
 
  

2

0 0 0

  0 0

0 0 1

=   

2.2.1 Return mapping algorithm (RMA) 

For the implementation of the model in FEM, the RMA [19] is followed which is a standard iterative problem to 

find the shortest distance between a point (trial state) and a convex set specified by the plasticity potential Eq.(13). 

The necessary steps for the implementation in ABAQUS UMAT are elaborated here. 

Step 1:  

Initial conditions at the start of the FEM increment: 
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Trial stress based on the elastic constitutive law: 
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is the elastic stiffness tensor for the transversely isotropic UD ply: 
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Step 3: 

If  ( ), 0nF p tr

(n+1)
σ  then the FEM increment is elastic and update the following quantities in UMAT: 
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Otherwise, the current loading step is plastic and the plasticity potential is now based on the corrected stress 

tensor which is unknown for the moment:    
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, : :
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Step 4: 

Find the Lagrange multiplicator using Newton-Raphson iterative scheme. It is required to derive the returned 

stress tensor (corrected stress tensor) in terms of the trial stress tensor. Therefore based on the elastic constitutive 

law we get:  
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is the differential in plastic strain vector and is given by: :p p

(n+1) (n+1)
dε dε  where  is the damage 

effect tensor defined previously in Eq.(11). The effective plastic strain increment is determined by the flow rule 

i.e
F







p
dε

σ
 where   is the Lagrange’s plastic multiplicator. It is important to note that when the plasticity 

function in Eq.(12) is used, then dp  . However, in case of quadratic plasticity function, these two quantities are 

not equal. Therefore, equating the plastic work to the equivalent plastic work, the expression for accumulated plastic 

strain can be obtained. Eq.(17) describes the accumulated plastic strain and its matrix notation counterpart. 
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It shall be noted that 12d   is the differential in the engineering shear strain  12 122 pd d   and is the mapping 

matrix referred below: 

 

2

0 0 0

1
0 0

0 0 1

a

 
 
 
 
 
 

 
 

 

The normal vector
F

n to the scalar-valued plastic domain having the same principal axes to that of σ is defined 

as: . 
F

 


F
n σ

σ
. The effective plastic strain is then read as: .p

dε  . Eq.(17) can be represented in terms 

of the returned stress tensor: 
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Put the above expression in Eq.(16), the returned stress tensor can be computed in terms of the trial stress tensor: 
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Here is the identity matrix. Eq.(15) finally renders as: 
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The accumulated plastic strain in the above expression is    ( 1) ( ) ( 1) ( 1). . . . .
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As the 

only unknown in Eq.(20) is the Lagrange’s plastic multiplicator  which can be solved using Newton-Raphson 

iterative scheme for finding the approximate roots of the non-linear equation. 

2.2.1.1 Newton-raphson iterative scheme 

The thk guess for the solution of   is obtained as: ( ) ( 1) ( )k k kd     where ( )kd is given as follows: 
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 The differentiation of Eq.(20) with respect to   is needed for the Newton-Raphson iterative scheme in Eq.(21). 

Following are the complete derivatives needed for UMAT:  
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2.2.1.2 Algorithm consistent operator 

For implementation of the above model in ABAQUS UMAT, the elastoplastic consistent tangent operator is 

required to determine in order to achieve convergence. Therefore, following [17] , the elastoplastic consistent 

tangent matrix denoted by ep (Consistent Jacobian:




(n+1)
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) is formularized following the procedure in [17,18]. 
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1
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


 

It is emphasized that the above operator is non-symmetric.  

Therefore, a non-symmetric solver shall be invoked during defining the step in ABAQUS. It is worth mentioning 

that the quadratic formulation as presented above is very efficient to use in case of other plasticity functions or 
damage effect tensors by only changing the mapping matrices and accordingly. 
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3    FEM IMPLEMENTATION  

The detailed formulation of Ladevèze model presented in the preceding section has been implemented in ABAQUS 

using the user defined subroutines UMAT. The sequence of the implementation has been outlined in the flow chart 

referred inFig.1. 

 

 

Fig.1 

UMAT subroutine implementation. 
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n n

1

( 1) ( 1). .


     

  
 

 

Damage evolution:  (a) Determine thermodynamic forces using Eqs. (5) and (6)
 

                                     (b)  Find d1  , d 2  and d12 using Eqs. (25), (9) and (10) 

  
 

(a) Calculate effective and nominal plastic strain tensor update based on the flow 

rules pd . .    

(b) Determine the elastic strain tensor e

n( 1)    

  
 

 

Calculate effective and nominal stress tensor: 

 e e

n n( 1) ( 1):   ,
n n

1

( 1) ( 1)



     

 

 Update the consistant 

Jacobian ep  Eq.(24)   

 Update all the state variables 
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4    RESULTS AND DISCUSSION  

4.1 Elastic properties and model parameters   

In the current work, material data reported in [8] were used to predict the results and compared with the experiments 

[20,21]. The elastic properties for Carbon Fiber Reinforced Polymers (CFRPs) and the strengths are presented in  

Table 1., where TX , S12 ,
f

11 represent tensile failure strength in fiber direction, in-plane failure shear strength and 

failure strain in fiber direction respectively. The model specific parameters required for the Ladevèze model 

implementation are listed in Table 2., which were briefly discussed previously. Same lay-ups and dimensions of the 

composite coupons were used in the FEM simulation as were analyzed in [8] and are given in Table 3. A linear 

quadrilateral shell element S4R was used in all the simulations in the current work having element mesh size of 1 

mm. On integration point was selected in the thickness direction based on the assumption that damage is same in 

out-of-plane direction in a single ply.  Moreover, quarter symmetric geometry was modeled in ABAQUS to reduce 

the finite element domain and cost of computation.  

 
Table 1 

Elastic properties for the CFRP [8]. 

   E 0

11  (MPa) 
  

E 0

22  (MPa) 
    

G 0

12  (MPa)       12  
   TX (MPa)  

  
S12 (MPa) 

   
f

11  (%)
  

139000 10900 6000 0.32 2170 83 1.48 

 
Table 2 

Ladevèze model identification parameters[8]. 

Parameter Symbol Value (CFRP) 

Shear damage initiation threshold Y 12(0)  MPa0.048  

Shear damage saturation level 
cY 12( )  MPa3.10  

Transvers damage initiation threshold Y 2(0)  MPa0.07  

Transvers damage saturation level 
cY 2( )  MPa2.75  

Transvers brittle damage threshold 
sY  MPa0.565  

Transverse-shear damage coupler b 0.53 

Transverse-shear plasticity coupler a2  0.54 

Initial yield limit 
0  21.59 MPa 

isotropic hardening law coefficient   558 MPa 

isotropic hardening law exponent 
 0.38 

 
Table3 

Laminate configurations [8]. 

Stacking sequence  L (mm) w (mm) t (mm) 

[0°]8 250 15 1 

[90°]16 175 25 2 

[±45°]2s 250 25 1 

4.2 Model Prediction   

Most of the UD FRPs with epoxy matrix behaves as linear-elastic with brittle fracture when the tensile load is 

applied along the fiber axis as the experiments showed in [8,22]. However, this behavior is also influenced by the 

fiber volume fraction, matrix material, fiber material and manufacturing processes reported in [14]. Thus excluding 

the plasticity in fiber direction, the failure criterion is simply either based on maximum normal stress theory or 

maximum strain theory which is not affected by the damage accumulation in the matrix. In the current model, the 

ultimate longitudinal failure strain is used proposed in [8,21]. 



851                                   I. Ud Din et.al.    

© 2019 IAU, Arak Branch 

i

i

i u u

u i

u

u

d

d d

d d

11 11 1

11 11

11 11 11 1 1

11 11

11

1 1

11

   then 0

else if  then 

else 1 (1 )
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  

 

 (25) 

 

In Eq.(25) i

11 is the failure strain of the laminate in the fiber direction which is 1.48% in the present case. Any 

arbitrary value of u

11 can be selected that must be greater than i

11 . The advantage of using this formulation for the 

fiber direction damage is that it avoids the numerical singularity problem and gives an asymptotic value of the 

damage rather than the abrupt loss of stiffness when the fiber strain reaches its failure strain. The predicted fiber-

direction quasi-static behavior is depicted in Fig.2 (a). 

 

 
(a) 

 
(b) 

Fig.2 

Numerical results comparison (a) Tension in fiber direction (b) Tension in Transverse direction. 

 

It can be noticed that this laminate behaves as linear elastic according to the experimental results taken from [8]. 

In addition, Fig.2 (b) demonstrates the transverse behavior to the fiber direction which is almost linear because 

plasticity is normally less dominated in this direction in CFRPs. Failure of FRPs in transverse tension loading is 

usually elastic and brittle.  

In contrary to the fiber direction and transverse direction, a pronounced non-linearity is demonstrated in Fig. 3. 

All the CFRPs and glass fiber reinforced polymers (GFRPs) exhibit such non-linearity when the loading angle is 

near to 45° and is the consequence of the collaborated effect of the diffused damage and matrix plasticity. The 

accuracy of the model is evident as compared to the experiment. An elasto-plastic model based on the same 

plasticity potential has also been plotted in Fig. 3 where no damage coupling was considered in the UMAT. 

Evidently, the role of the coupled damage model with plasticity is considered indispensible to seek accurate 

modeling tools in order to exploit the composite to its limits in industrial applications.     

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Shear stress-strain response. 
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In order to gauge the robustness of the model, any arbitrary orientation laminates can be selected as the test 

cases. In [1] angle-ply laminates of [67.5°, 22.5°]2s and [-12°, 78°]2s were used as test cases whereas the mechanical 

behavior of angle-ply laminates having orientation of [±55°]2s and [±80°]2s were studied in [9] apart from the 

laminate [±67.5°]2s which is also required for the determination of the transverse damage evolution law and both the 

plasticity and damage coupling parameters: a2 , b. In principle, the values of the aforementioned two coupling 

parameters shall be the same whether the [±67.5°]2s is used or any other angle-ply laminate is used in the 

experiments where there prevail non-zero shear and transverse stresses, but the [±67.5°]2s possesses some inherent 

edge over the others laminates. Both the transverse and shear stresses exist significantly in this laminate and thus 

produces a good coupling and at the same time gives less scatter in the data as emphasized in [1]. Despite the 

accuracy of the model, it requires unconventional testing for identification which is a drawback of this model as 

compared to the damage models based on the strength values and critical energy release rates for FRPs such as 

proposed in [16,18].   

5    CONCLUSIONS 

Keeping in view the importance and usefulness of the Ladevèze model in the composite community, a very 

comprehensive formulation of the model was presented. Particular attention was paid to the plasticity part of the 

model in quadratic form that is readily adaptable to use other plasticity potentials. The model was then implemented 

in the user material subroutines UMAT in ABAQUS with the derivation of the consistent elastoplastic operator. As 

based on the correlation of the prediction with the experimental results, it can be concluded that this model is 

comparatively an accurate and robust prediction tool. The limiting factor of the model is that when the base material 

(fiber, matrix) or the fiber volume fraction, and or the environmental conditions (temperature, humidity) are changed 

then the model identification parameters shall be determined experimentally for that new material system in new 

conditions. These model parameters need unconventional testing such as loading-unloading for the determination of 

the damage initiation and damage saturation which possesses the difficulty and somehow restrict this model to be 

introduced into the industrial environment. However, when the material is selected and once the parameters are 

extracted experimentally then this model is very appropriate to be used in the design offices for structure analysis of 

the FRPs.  
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