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 ABSTRACT 

 Reflection and transmission of plane waves between two initially 

stressed thermoelastic half-spaces with orthotropic type of 

anisotropy is studied. Incidence of a SV-type wave from the lower 

half-space is considered and the amplitude ratios of the reflected 

and transmitted SV-wave, P-wave and thermal wave are obtained 

by using appropriate boundary conditions. Numerical computation 

for a particular model is performed and graphs are plotted to study 

the effect of angle of incidence of the wave and the initial stress 

parameters of the half-spaces. From the graphical results, it is 

found that the modulus of reflection and transmission coefficients 

of the thermal wave is very less in comparison to reflection and 

transmission coefficients of P- and SV-waves. It is also observed 

that for vertical incidence of SV-wave we have only reflected and 

refracted SV-waves and there is no reflected or refracted P and 

thermal waves, whereas for horizontal incidence of SV-wave, there 

exists only reflected SV-wave and no other reflected or transmitted 

wave exists. Moreover, it is found that all the reflection and 

transmission coefficients are strongly affected by the initial stress 

parameters of the both half-spaces. 

                                 © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE study of reflection and refraction of seismic waves at the interface between two different elastic media is of 

great importance to seismologist and geophysicist. The seismic waves propagating through the Earth travel 

through different layers and interfaces. The velocities of these waves are influenced by the properties of the layers 

through which it travel, and whenever these waves comes across the discontinuities between different layers, the 

phenomena of reflection and refraction take place. The signals of reflected waves are not only helpful in providing 

information about the internal structures of the Earth but are also helpful in exploration of valuable materials such as 
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minerals, crystals, metals, oil, etc. The technique of wave propagation is one of the most suitable in terms of time 

saving and economy. Therefore, the problems of seismic wave propagation and their reflection and refraction are of 

great help to geophysicists, engineers in mineral companies and future researchers in the pertinent area. Moreover, 

these studies are useful in earthquake engineering, non-destructive evaluation, signal processing, sound system and 

wireless communication.  

The presence of initial stresses in solid materials can have a substantial effect on their subsequent reaction to 

applied loads that is very different from the corresponding reaction in the initial stresses free case. The stresses 

which exist in an elastic body even though external forces are absent are named as initial stresses and the body is 

said to be in the state of initial stress. Rock mechanics, mechanics of materials and structural elements, geophysics, 

seismology, mechanics of composites and similar fields are fundamental scientific areas in which it is necessary to 

study the effect of initial stresses or strains as applied to elastic waves. The fact that the Earth is in a state of high 

initial stress was first predicted by Love [1]. Due to atmospheric pressure, gravity variation, creep, difference in 

temperature, large initial stresses may exist inside the Earth. The high stress developed below the Earth’s surface 

due to gravity has a strong influence on the propagation of elastic waves generated due to earthquake, explorations 

and impacts. Thus, it is necessary to study the properties of wave propagation in the presence of initial stress. Biot 

[2] showed that the elastic wave propagation in the presence of initial stress was different from the case of absence 

of initial stress and could not be described with the classical linear theory of elasticity and stress-dependent elastic 

coefficients. Biot [3] described the theory of incremental deformation in his well-known book “Mechanics of 

Incremental Deformations” and later many researchers applied this theory to study the propagation of elastic waves 

in pre-stressed elastic bodies. Dey and Addy [4] studied reflection of P- and SV-waves from free surface of an 

elastic half-space under initial stress. Chattopadhyay et al. [5] discussed the reflection of P- and SV-waves at free 

surface of an initially stressed sandy medium. Dey et al. [6] investigated reflection and refraction of P waves under 

initial stress. However, in none of the above work effect of temperature field was considered. Sinha and Sinha [7] 

and Sinha and Elsibai [8] studied reflection of thermoelastic waves from the free surface of a solid half-space 

considering one and two relaxation times, respectively. Sinha and Elsibai [9] discussed reflection and refraction of 

thermoelastic waves at an interface of two semi-infinite media with two relaxation times. Abd-Alla and Al-Dawy 

[10] studied reflection of SV-waves in a generalized thermoelastic medium. Kumar and Singh [11] investigated 

reflection and transmission of plane waves at an imperfectly bounded interface of two generalized thermoelastic 

half-spaces. Singh et al. [12] studied reflection and transmission of P- and SV-waves at an interface between two 

dissimilar thermoelastic solids with diffusion. However, none of the above researchers considered the effect of 

initial stress. Montanaro [13] employed Biot’s theory to investigate isotropic linear thermoelasticity with hydrostatic 

initial stress. Singh et al. [14] applied Lord-Shulman theory to study reflection of generalized thermoelastic waves 

from free surface of a half-space under hydrostatic initial stress. Othman and Song [15] used Green and Naghdi 

theory to investigate reflection of plane waves from a free surface of a generalized thermoelastic half-space under 

hydrostatic initial stress. Singh et al. [16] studied reflection and refraction of thermoelastic waves at an interface 

between two solid half-spaces under hydrostatic initial stress. A good amount of information regarding reflection 

and refraction of waves in initially stressed thermoelastic medium can be gained by the works of Chakraborty and 

Singh [17], Singh and Chakraborty [18, 19], however the above investigations were done for isotropic medium. 

Kumar and Kumar [20] investigated wave propagation in orthotropic generalized thermoelastic half-space with 

voids under initial stress. Abd-Alla et al. [21] studied propagation of Rayleigh waves in generalized magneto-

thermoelastic orthotropic material under the effect of initial stress and gravity field. Ahmed and Abo-Dahab [22] 

discussed the effect of gravity and initial stress on the propagation of Rayleigh and Stoneley waves in a 

thermoelastic orthotropic granular layer over a thermoelastic orthotropic granular half-space. Pal et al. [23] 

investigated plane wave propagation in inhomogeneous anisotropic generalized thermoelastic medium with two 

relaxation times. Works of Sharma [24, 25], Gupta and Gupta [26], Sharma and Kaur [27], Kakar and Kakar [28], 

Kumar et al. [29], Sur and Kanoria [30-33], Karmakar et al. [34], Prasad et al. [35], Kumar and Kaur [36], Sur et al. 

[37, 38], Purkait et al. [39] may also be cited who have studied propagation of waves and related phenomena in 

anisotropic, thermoelastic and initially stressed medium with different geometry.  

In this problem, an attempt is made to investigate reflection and transmission phenomena due to incidence of a 

plane SV- wave at a plane interface between two homogeneous orthotropic thermoelastic solid half-spaces under the 

effect of initial stress. Due to incidence of a SV-wave three reflected waves, namely P-wave, SV-wave and thermal 

wave, and same type of three refracted waves are generated. Applying appropriate boundary conditions, amplitude 

ratios corresponding to the three reflected and three refracted components are calculated and graphs of these ratios 

are plotted against the angle of incidence for different set of values of the initial stress parameters of the half-spaces. 

It is found that the amplitude ratios corresponding to all the reflected and refracted waves are strongly affected by 

the angle of incidence of the wave and the initial stress present in the medium. 
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2    FORMULATION OF THE PROBLEM 

Two orthotropic solid half-spaces both of which are homogeneous and at uniform absolute temperature in the 

undisturbed state, separated by a plane interface 0z   are considered. Both the half-spaces are in the state of initial 

stress. A plane SV-wave travelling through the lower half-space (medium M) is incident at the interface and is 

partially reflected as one SV-wave (rotational wave), one P-wave (dilatational wave) and one thermal wave 

(dilatational wave). Rest of the wave continues to travel in the upper half-space (medium M  ) after refraction, as 

one SV-wave, one P-wave and one thermal wave (Fig. 1). We shall calculate the amplitude ratios corresponding to 

the three reflected and three refracted components. 

Since we are dealing a two-dimensional problem, we restrict our analysis to plane strain parallel to oxz - plane. 

Hence, all the field variables depend only on space coordinates x, z and time t, and are independent of coordinate y. 

For convenience, we shall use notation of prime in all quantities corresponding to the medium M  . 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometry of the problem. 

3    BASIC EQUATIONS AND SOLUTIONS 

The dynamical equations of motion for a plane strain under initial compressive stress P  in x- direction in absence of 

heat source and body forces are given by Biot [3]: 
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(1) 

 

where  

    

ij ij jiw u u   (2) 

 

 , ,u v w  are displacement components, ij  are incremental stress components,   is the density of the medium, 

P is the compressive initial stress.  

Eq. (1) in two dimensions ( , )x z  reduces to 
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The modified heat conduction equation is given by 
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where s is the specific heat per unit mass, 0T  is the initial temperature, T is the absolute temperature, ( , , )u u v w  

is the displacement vector, 1  and 2  are thermal expansion coefficients, ij  is Kronecker delta, 1  and 2  are 

thermal conductivities, 1t  and 2t  are mechanical relaxation times.  

The stress-strain relations are given by  
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where  
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Moreover, ijc are the stiffness constants.  

Using Eqs. (5) and (2) in Eq. (3), we get 
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In the present problem, we shall use Classical-dynamical theory in which 1 2 0t t  , 0ij  , so Eqs. (4),(7a) 

and (7b) reduce to  
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We introduce displacement potentials and   as: 
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Using Eq. (10) in Eq. (9a), we get 
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Using Eq. (10) in Eq. (9b), we get 
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Using Eq. (10) in Eq. (8), we get 
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when we put Eq. (10) into Eq. (9a) and simplify, Eqs. (11a) and (11b) are obtained by integrating partially with 

respect to x and z , respectively. Similarly, using Eq. (10) in Eq. (9b), Eqs. (12a) and (12b) are obtained by 

integrating partially with respect to z  and x, respectively. Thus Eqs. (11a) and (12a) involving scalar potential   

represent dilatational waves along x- axis and z- axis, respectively and Eqs. (11b) and (12b) involving vector 

potential   represent rotational waves along z- axis and x- axis, respectively. 

 We shall consider Eqs. (11a) and (12b) which represents dilatational and rotational waves propagating along x-

axis. So, the equations for dilatational and rotational waves propagating along x axis in terms of potential functions 

  and   are given by 
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Observing Eqs. (13), (15a) and (15b), we find that dilatational waves are affected by the presence of the 

temperature field but the rotational wave is independent of the temperature field. 

For a harmonic wave propagating along the x- direction, with the wave normal in xz- plane, making an angle   

with the z- axis, we can assume the solution of Eqs. (13), (15a) and (15b) as follows: 
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where k and l are the wave numbers of the dilatational and rotational waves, respectively and   is the angular 

frequency. 

Using Eqs. (16a) and (16b) in Eq. (15a), we get 
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and using Eqs. (16a) and (16b) in Eq. (13) gives 
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Eqs. (17a) and (17b) will be simultaneously satisfied only if the determinant of their coefficients vanishes. 

Equating to zero the determinant of coefficients of Eqs. (17a) and (17b) yields 

 

 4 2 0V i V i       
   

 (19) 

 

where 

                

  13 442 2

11

2
1 2 sin 2 cos

c c

c
    

 
    

     
 , 1

2
1c







 

, 
2
1c


  , 

1

V
kc


  (20) 

 

Eq. (19) is quadratic in 2V , which indicates that two types of dilatational waves would travel in the medium M , 

namely P-wave and thermal wave, travelling with two different velocities. We take the roots of Eq. (19) as 1
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gives the velocity of SV-wave in dimensionless form. 1k , 2k  and l are the wave vectors of the P-wave, thermal 

wave and SV-wave, respectively.  

when a SV-wave travelling through the lower half-space is incident at the interface 0z   at angle   with the 

negative z- axis, we get reflected P-wave, thermal wave and SV-wave making angles 1 , 2  and  , respectively 

with the negative z- axis in the medium M and refracted P-wave, thermal wave and SV-wave making angles 1  , 2   

and   ,  respectively with the positive z- axis in the medium M  . Using the symbol of prime for the quantities 

corresponding to the medium M  , we have 
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The angles  , 1 , 2 ,   , 1  , 2    and the corresponding wave vectors l, 1k , 2k , l  , 1k  , 2k   are related by 
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  (22) 

 

Eq. (22) in terms of dimensionless velocities V ’s can be written as: 
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In medium M, the displacement potentials and temperature may be taken in the following form: 

 

       1 1 1 1 2 2 2 2exp sin cos exp sin cosA i k x z t A i k x z t           
   

  (24a) 

 

       0 1exp sin cos exp sin cosB i l x z t B i l x z t           
   

  (24b) 

 

       1 1 1 1 2 2 2 2exp sin cos exp sin cosT D i k x z t D i k x z t          
   

  (24c) 

 

In medium M  , the displacement potentials and temperature may be taken in the following form: 

 

       1 1 1 1 2 2 2 2exp sin cos exp sin cosA i k x z t A i k x z t                   
   

  (25a) 

 

   1 exp sin cosB i l x z t         
   

  (25b) 

 

       1 1 1 1 2 2 2 2exp sin cos exp sin cosT D i k x z t D i k x z t                  
   

  (25c) 

 

Using Eqs. (24a) and (24c) in Eq. (13), the values of the coefficients 
1D  and 

2D  in terms of 
1A  and 

2A  can be 

written as: 

 
2

1 12
1 1

D A
V i

 

 


    
and

  
 

2

2 22
1 2

D A
V i

 

 



 (26) 

 

Similarly, we can obtain  

 

  

2

1 12
1 1

D A
V i

  

 

 
 

      
and

  
 

2

2 22
1 2

D A
V i

  

 

 
 

  
 (27) 

 

Using Eqs. (26) and (27) in Eqs. (24c) and (25c) respectively, we get  

 

       
2 2

1 1 1 1 2 2 2 22 2
1 11 2

exp sin cos exp sin cosT A i k x z t A i k x z t
V i V i

   
     

  
     

 
     

 (28) 

 

and                        

 

       
2 2

1 1 1 1 2 2 2 22 2
1 11 2

exp sin cos exp sin cosT A i k x z t A i k x z t
V i V i

   
     

  

   
             

     
     

 (29) 

4    BOUNDARY CONDITIONS AND REFLECTION AND TRANSMISSION COEFFICIENTS 

Following boundary conditions will hold at the interface 0z  : 

1. Continuity of tangential displacement i.e. u u   at 0z    which leads to 
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x z x z

       
  

        
at   0z    

 

2. Continuity of normal displacement i.e. w w    at 0z    which leads to 

 

    
z x z x

       
  

       
at   0z    

 

3. Continuity of tangential force per unit area i.e. xz xzPe Pe13 13       at 0z   which leads to 

 

      
   

2 2 2 2 2 2

44 442 2 2 2
2 2 2 2c P c P

x z x zx z x z

               
                     

at   0z    

 

4. Continuity of normal force per unit area i.e. 33 33    at 0z   which leads to 

 

   
2 2 2 2 2 2

13 33 13 33 3 13 33 13 33 32 2 2 2
c c c c T c c c c T

x z x zx z x z

     
 

       
             

      
       

  

 

5. Continuity of temperature gradient i.e.  
T T

z z

 


 
 at 0z   

6. Continuity of temperature i.e. T T    at  0z   

 

Using Eqs. (5), (22), (23), (24a), (24b), (25a), (25b), (28) and (29) in the above boundary conditions, we get the 

following system of six equations: 

 

1 2 1 2 1 1 0 1

0 0 0 0 0 1 0 0

sin sin sin sin cos cos cos
A A A A B cV B

B B B B B cV B
      

  
     

 
     

 (30a) 

 

0 1 0 2 1 0 1 1 0 2 1 1
1 2 1 2

1 0 2 0 1 1 0 1 2 0 0 0

cos cos cos cos sin sin sin
V A V A cV A cV A B B

V B V B cV B cV B B B
      

  
      

   
     

 (30b) 

 
2 2 2

0 1 0 2 44 1 0 1
1 2 1

1 0 2 0 44 1 1 0
2 2

44 1 0 2 1 44 1 0 1
2

44 1 2 0 0 44 1 0

2
sin 2 sin 2 sin 2

2

2 2
sin 2 cos 2 cos 2

2 2

V A V A c P cV A

V B V B c P cV B

c P cV A B c P cV B

c P cV B B c P cV

  

  

                       
                             0

cos 2 ,

B



 
 

  
 
  

     
 

(30c) 

 

 

 

 

2 2 2
0 3 1 0 12 2

13 1 33 1 2
1 1 01

2 2 2
0 3 1 0 22 2

13 2 33 2 2
2 1 02

2 2 2
1 0 3 1 02 2

13 1 33 1 2
1 1 1 1

sin cos

sin cos

sin cos

V c V A
c c

V BV i

V c V A
c c

V BV i

cV c V
c c

cV V i

  
 

 

  
 

 

  
 

 

   
     

    
   

      
    

                

 

1 33 13

0
2 2 2

1 0 3 1 0 22 2
13 2 33 2 2

1 2 1 02

33 13 1 33 13 1

0 0

sin 2 ,
2

sin cos

sin 2 sin 2
2 2

A c c

B

cV c V A
c c

cV BV i

c c B c c B

B B



  
 

 

 

 
 
 
 
 
 

             
 

                         
           
     

     
 

(30d) 

 

0 1 0 2
1 22 2

1 1 0 1 2 01 2

1 0 1 1 0 2
1 22 2

1 1 1 0 1 1 2 01 2

cos cos

0,

cos cos

V A V A

V B V BV i V i
cV A cV A

cV B cV BV i V i

   
 

  
   

 
  

     
                                      

     
 

(30e) 
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1 2 1 2

2 2 2 2
1 0 1 0 1 0 1 01 2 1 2

0
A A A A

B B B BV i V i V i V i

       

      

            
                              

 (30f) 

                                               

Solving the above system of equations we can find the values of the amplitude ratios 1

0

A

B
, 2

0

A

B
, 1

0

A

B


, 2

0

A

B


, 1

0

B

B
 

and 1

0

B

B


. 1

0

A

B
, 2

0

A

B
 and 1

0

B

B
 are the amplitude ratio of the reflected P-wave, reflected thermal wave and reflected 

SV-wave, respectively, whereas 1

0

A

B

 , 2

0

A

B


  and 1

0

B

B


 are the amplitude ratio of the refracted P-wave, refracted 

thermal wave and refracted SV-wave, respectively. For numerical purpose, we shall use the approximate solution of 

Eq. (19). Solution of Eq. (19) can be written as: 

 

   
22 1

4
2

V i i i             
 

     
  

 

For most of the elastic materials, 1  1

2
1c






 
 

 
 and 1 

2
1c




 
 

 
, so by using approximation, the 

roots of above equation can be obtained as: 

 

1 2
1 1 1

2
V i

 


 
   

            

and
  

1 2

1 2 1 2
2 1V i





 

  
 

  

 

Similarly, for the medium M  , we can write 

 

   

1 2
1 1 1

2
V i

 


 

                 

and
   

1 2

1 2 1 2
2 1V i






     
  

5    NUMERICAL RESULTS AND DISCUSSION 

In order to examine the effect of initial stress on the behaviour of reflection and transmission of P-wave, thermal 

wave and SV-wave, we have plotted graphs for the modulus of reflection and transmission coefficients versus angle 

of incidence for different set of values of initial stress parameters   and     11 112 and 2P c P c      . For 

numerical purpose, materials chosen for the lower and upper half-spaces are magnesium and cobalt, respectively, 

physical data for which are given by: 

 

For the lower half-space M (Magnesium): 

 
10

11 5.974 10 2c N/m 

  

,

  

10
12 2.624 10 2c N/m 

 

,
  

10
13 2.170 10 2c N/m  ,    10

33 6.170 10 2c N/m  , 

10
44 1.639 10 2c N/m  ,  1740 3kg/m  ,  1040 -1 -1s JKg K ,  1 2 170 -1 -1Wm k   , 

6
1 2 24.80 10 -1K     , 0 298T K  

 

  

For the upper half-space M   (cobalt): 

 
11

11 3.071 10 2c N/m  

  

,

  

11 2
12 1.650 10c N/m  

 

,
  

11
13 1.027 10 2c N/m   ,    11 2

33 3.581 10c N/m   , 

11
44 0.755 10 2c N/m   ,  8836 3kg/m  ,  427 -1 -1s JKg K  ,  1 2 69 -1 -1Wm k    , 

6
1 2 13.00 10 -1K      , 0 298T K   

 

 

Moreover 2 100 MHz   . 
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Figs. 2-4 show the variation of modulus of reflection and transmission coefficients with angle of incidence for 

different set of values of initial stress parameters   and  . Figs. 2(a), 3(a) and 4(a) show the variation of modulus 

of reflection coefficients of P-wave, thermal wave and SV-wave, respectively with the angle of incidence, whereas 

Figs. 2(b), 3(b) and 4(b) show the variation of modulus of transmission coefficients of P wave, thermal wave and 

SV-wave, respectively. In the figures, we have used the symbols 1R , 2R  and 3R  to denote the modulus of 

reflection coefficients of P- wave, thermal wave and SV-wave, whereas symbols 1T , 2T  and 3T  have been used to 

denote the modulus of transmission coefficients of the corresponding waves. Curve labeled as 1, 2 and 3 

corresponds to  , (0.46,0.0805)    ,  , (0.48,0.0840)     and  , (0.50,0.0875)    . The above values are 

taken in such a manner that 0.9P P  . From Figs. 2, 3 and 4 we observe that the modulus of reflection and 

transmission coefficients of the thermal wave is very less in comparison to reflection and transmission coefficients 

of P- and SV-waves. Observing all the figures, we find that for vertical incidence of SV-wave (i.e. 0  ) we have 

only reflected SV-wave and transmitted SV-wave and there is no reflected and transmitted P and thermal waves. For 

horizontal incidence of SV-wave (i.e. 90  ), we have only reflected SV-wave and no other reflected or 

transmitted waves exist. From all the figures, we observe that reflection and transmission coefficients are strongly 

affected by the initial stress parameter. There are two critical angles of incidence for all the reflection and 

transmission coefficients and these angles vary with the initial stress parameter. 

 

 
(a) 

 
(b) 

Fig.2 

Variation of modulus of reflection and transmission coefficients of P-wave. 

  

 
(a) 

 
(b) 

Fig.3 

Variation of modulus of reflection and transmission coefficients ( 32 10R  , 42 10T  ) of thermal wave. 
  

 
(a) 

 
(b) 

Fig.4 

Variation of modulus of reflection and transmission coefficients of SV-wave. 
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6    CONCLUSIONS 

Reflection and transmission phenomena due to incidence of a plane SV-wave at a plane interface between two 

homogeneous orthotropic thermoelastic solid half-spaces under the effect of initial stress is studied in this problem. 

Due to incidence of a SV wave three reflected waves, namely P-wave, SV-wave and thermal wave, and same type of 

three refracted waves are generated. Applying appropriate boundary conditions, amplitude ratios corresponding to 

the three reflected, three refracted components are calculated, and graphs of these ratios are plotted against the angle 

of incidence for different set of values of initial stress parameters of the half-spaces. It is found that: 

1. The modulus of reflection and transmission coefficients of the thermal wave is very less in comparison to 

reflection and transmission coefficients of the P- and SV-waves.  

2. For vertical incidence of SV-wave, we have only reflected and refracted SV-waves and there does not exist 

reflected or refracted P- and thermal waves. 

3. For horizontal incidence of SV-wave, we have only reflected SV-wave and no other reflected or transmitted 

wave exists. 

4. All the reflection and transmission coefficients are strongly affected by the initial stress parameters of the 

both half-spaces. 
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