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 ABSTRACT 

 Vibration analysis of vessels conveying blood flow embedded in 

viscous fluid is studied based on the modified strain gradient theory. 

The viscoelastic vessels are simulated as a non-classical Euler-

Bernoulli beam theory. Employing Hamilton’s principle, the governing 

equations for size-dependent vessels are derived. The Galerkin method 

is used in order to transform the resulting equations into general 

eigenvalue equations. The effects of the blood flow profile and its 

modification factors, red blood cells (RBCs) and hematocrit are 

considered in the blood flow. Besides, the influences of the 

constitutional material gradient scale, blood flow, internal pressure, 

structural damping coefficient, viscous fluid substrate and various 

boundary conditions on the natural frequencies and critical buckling 

velocities are studied. It is revealed that as the hematocrit, fluid 

viscosity of substrate, internal pressure and mass ratio increase, the 

natural frequencies and critical buckling velocities decrease. 

Furthermore, the results indicated that the strain gradient theory 

predicts the highest natural frequencies and critical buckling velocities 

among others. The results are compared with those available in the 

literature and good agreement has been observed. 

                     © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HERE is a tremendous growing need of synthetic small diameter grafts that have high long-term patency rate. 

Vascular community is hardly trying to remove the limitations and obstacles for making synthetic grafts [1]. 

One of the most usable tools for the future surgeries is the artificial blood vessels. By using artificial blood vessels 

many of the surgical problems would solved. Therefore, knowing all about the hidden scientific aspects of the blood 

vessels are essential. If a blood vessel fails or raptures fatal consequences such as strokes or physiological 

dysfunctions may follow. In this study, the mechanical behavior of the micro blood vessels and the effects of blood 

flow through it has illuminated. Numerous experimental and theoretical studies have been conducted to predict the 

behavior of the blood vessels [2-9]. Mechanical stability of the blood vessels and arteries, especially blood vessels 
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buckling, are the most interesting issues to the researchers. There are terms that should be considered in order to 

predict the stability condition of a blood vessel. Surrounding tissues, blood pressure and vessel’s axial tension are 

some terms that should be calculated in the equations [10]. Han [3] studied the buckling behavior of a blood vessel 

by considering a soft surrounding tissue support and a static blood pressure. After a while, Liu and Han [11] 

analyzed the buckling behavior of a blood vessel by the means of pulsatile blood pressure that is more accurate and 

more real. They have concluded that the maximum buckling pressure in the static state and the pulsatile state 

approximately have the same values. Khalafvand and Han [12] performed a fluid structure interaction (FSI) study to 

clarify the buckling and post buckling behavior of the blood vessels. Recently, Hosseini and Paparisabet [13] have 

shown that the blood flow and suspension particles thorough it have effects on the buckling behavior of the blood 

vessels. Another factor that has effect on the stability condition and the vibrational behavior is the blood flow. Blood 

flow has been the subject of numerous studies during the past decades [14-16]. Many try to model the blood flow 

through the blood vessels. The Refs. [17-19] assumed the blood flow as a single-phase homogeneous Newtonian 

viscous fluid, a classical approach that did not consider the red blood cells (RBCs). This approach was 

approximately suitable for the big blood vessels such as aorta but it does not adequate for the small blood vessels 

(blood vessel’s diameter less than 1000 micrometer). By passing time, it has revealed that the RBCs have a vital role 

in the circulatory system and experimental data has shown that the red blood cells have a substantial part in the 

blood flow profile especially in the small blood vessels [20]. Therefore, researchers have considered a two-phase 

fluid for the blood flow [17, 21, 22]. A peripheral layer that consists of plasma and it does not have any other 

particles and a central region or core that is a mixture of the plasma and suspension particles [3]. These suspension 

particles are called erythrocytes (small spherical nonflexible particles). It should be mentioned that particles are 

composed of RBCs, white blood cells and platelets. Given the small size of platelets and less substantially numerous 

number of white blood cells in comparison with the size and the number of red blood cells respectively, we assume 

all the suspension particles as RBCs. As it mentioned before, central core region is made of the erythrocytes and 

plasma. Therefore, the viscosity of the plasma layer and the central core region are different from each other [17]. 

Blood viscosity depends on the hematocrit, i.e., the volume fraction of suspension particles to total blood volume 

[17]. Because of the difference between the various phase’s viscosity, the blood flow velocity is differs from one 

phase to another. Blood vessels can be simulated as the pipes conveying fluid. Many researchers have investigated 

over the macro pipes conveying fluid and the governing equations are extracted [23-27]. Due to the recent 

technological enhancements micro scale pipes such as: fluid storage, drug delivery and micro-and nano- fluidic 

devices are more usable and operational. In the last two decades, experimental studies have performed about size-

dependent deformation behavior of microstructures; the reader is referred to Refs. [28-31]. They have shown that 

classical continuum mechanics is not capable of predicting sized-effect on the mechanical behaviors and the sized- 

effect plays a substantial role in microstructures. Therefore, size-dependent continuum theories such as Eringen’s 

nonlocal elasticity, modified couple stress elasticity and modified strain gradient elasticity theories have been 

developed [32-34]. The modified strain gradient theory is one of the higher-order continuum theories, which 

considers the antisymmetric and symmetric parts of the higher order deformation gradients. In this regard, recent 

developments in the vibrational behavior of interaction between fluid and structure can be pursued in the work of 

Hosseini and Sadeghi-Goughari [35], Bahaadini et al. [36-45], Bahaadini and Saidi [46-49], Saidi et al. [50], 

Mohammadi et al. [51], Cabrera-Miranda and Paik [52], Farajpour et al. [53], Amiri et al. [54], Ebrahimi et al. [55], 

Mohammadimehr and Mehrabi [56], Arani et al. [27, 57, 58], Atashafroz et al. [59], Hosseini et al. [60-62] and 

Arani and Soleymani [63-65]. Up to now, numerous studies have been implemented to investigate the static 

mechanical behavior of the blood vessels.  

In this study, the modified strain gradient beam model is considered to analyze the vibration of the viscoelastic 

vessels conveying blood flow and embedded in the viscous fluid. The governing equation of motion and related 

boundary conditions are obtained via variational Hamilton’s principle. Using Galerkin’s approximate method, the 

partial differential equations are converted to ordinary differential equations. In numerical analysis, the effects of 

internal length scale, viscoelastic structural damping coefficient and other physically parameters such as hematocrit, 

internal pressure, blood flow profile and the RBCs diameter on the frequencies and critical blood velocities of the 

blood vessels are investigated. This literature is drawing a better point of view for an uprising issue. 

2    MATHEMATICAL MODELING 

A schematic configuration of the micro blood vessel conveying blood flow and embedded in viscous fluid is 

illustrated in Fig.1. The micro vessel has the length L, inner radius Ri , outer radius Ro and radius of mixture phase 
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R1 as shown in Fig.1. It is assumed that the mass per unit length of the micro vessel and that of the blood flow has 

been defined by mv and mb, respectively.  

 

 

 

 

 

 

 

 

 

Fig.1 

Schematic of the blood-conveying vessel. 

2.1 Modified strain gradient theory  

According to the modified strain gradient theory, the strain energy density is a function of the higher-order 

deformation gradients like symmetric strain tensor, dilatation gradient vector, deviatoric stretch gradient tensor and 

symmetric rotation gradient tensor [34]. Consequently, the stored strain energy eE  in a continuum made of an 

isotropic linear elastic material occupying region V can be written with infinitesimal deformations as: 
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In which, classical stress tensor  and higher-order stress tensors p, τ
(1)

 and m can be formulated as below [66]:  
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The parameters  and G denote the bulk and the shear modules in the constitutive equation of the classical 

stress ij
 , respectively. Also, 0

l , 1
l  and 2

l  stand for three independent material length scale parameters related to 

dilatation, deviatoric stretch and rotation gradients, respectively. Also, the components of the classical strain tensor ε 

, the dilatation gradient vector γ , the deviatoric stretch gradient tensor η
(1)

 and the symmetric rotation gradient 

tensor χ are represented by ij, i, ijk
(1)

 and ij respectively and they are defined as following:  
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1
( ( ))

2
i i

curl u 

      
(3e) 

 

Here i
u is the component of displacement vector in i

x  direction, i
  

 
is the infinitesimal rotation vector   and 

ij
  is the Kronecker delta function.  

The displacements of an arbitrary point along the x-, y- and z-axes based on the Euler-Bernoulli beam theory can 

be expressed as follow: 
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where ( , )w x t  stands for the lateral deflection. Substituting Eq. (4) into Eq. (3a) the non-zero components of the 

strain-displacement relations can be expressed as:  
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By inserting Eqs. (4) and (5) into Eqs. (3), the non-zero components of 
i
 , (1)

ijk
  and 

ij
  can be obtained as: 
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Afterward, by substituting Eqs. (5) and (6) into Eqs. (2), the non-zero higher order stress components can be 

obtained as:  
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Based on the above-mentioned relations, the strain energy of micro vessel can be expressed as:  
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In which I and A are the respective moment of inertia and the cross-sectional area of the micro vessel. Assuming 

continuously connected foundation, the effect of the external viscous fluid were studied by Ghavanloo and 

Fazelzadeh [67]. The surface traction virtual work of the surrounding viscous fluid around the blood vessel, q is 

given by 
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It should be noted that the parameter c0 is positive (0< <1). Here, Ro is micro blood vessel (MBV) outer radius 

and h1 is the distance from the centerline to the position where the induced viscous surrounding flow vanished. To 

couple the elastic deformation of the MBV and the viscous flow of the external fluid, we assume that the surface 

traction of the external fluid along the interface is equal to external force exerted on the MBV. 

Moreover, the work done by the internal pressure p can be obtained: 
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The first vibrational of kinetic energy of micro vessel and blood are demonstrated in the following 
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In which mb and u  denote mass per unit length of blood and blood velocity, respectively.   

2.2 Modification factors 

The non-uniformity of the blood flow distribution is considered by modification factors. Therefore, the Centrifugal 

force term and the Coriolis term of equation is driven by the assist of mean velocity u  and blood mass per the unit 

length mb as:  
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where 
1

  and 
2

 are modification factors. These modification factors are used into the governing equation in order 

to calculate the non-uniformity of blood flow distributions.  

For finding the modification factors (from Eqs. (15, 16)), four terms should be calculated, namely 22 ru dr  , 

2 ru dr  , u and mb, as: 
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In which, r and x are radial and axial coordinates respectively, and 
central fluid

u and 
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u  are the axial velocity of 

blood and particle in core region  1
0 r R  , respectively. Also,  
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cc
  is the central core region density, and 
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  is the particle density.  
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In which 45%b
m  is a blood mass, which has 45% hematocrit. The Hamilton’s principle for vessels containing 

blood flow is given by Benjamin [69] 
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By substituting Eqs. (8)-(12) into Eq. (21) and based on Kelvin-Vogit viscoelastic model with structural damping 

coefficient  , Young’s modulus E and shear modulus G are replaced with the operator E(1+ / t  ) and 

G(1+ / t  ), respectively [67], the non-classical governing equation of motion is derived as: 
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In addition, the boundary conditions obtained from Hamilton’s principle for micro vessel conveying blood is 

written as: 

For Pinned-Pinned condition at X=0, 1, W=0, 
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For Clamped-Pinned condition at X=0 , W=0, 
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at X=1, W=0,  
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For Clamped-Clamped condition at X=0, 1, W=0, 
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3    SOLUTION PROCEDURES    

3.1 Galerkin approach  

In this section, the extended Galerkin approach is used to solve the governing equation and boundary conditions. In 

this technique, we must choose weighting functions that are only essential to satisfy boundary conditions. The 

normalized transverse displacement W is approximated as: 

 

     
1

,
n

r r

r

W X T q T X



     

 (24) 

 

where  rq T  and n are the generalized coordinates and the number of modes, respectively. Also,  r X  represents 

free vibration natural modes of bending which are expressed as [70]: 

 

  1 2 3 4r r r r rX C sin X C cos X C sinh X C cosh X      

     

 (25) 

 

where r  represents rth dimensionless eigenvalue of the rth flexural mode   r X   and  1 2 3 4C ,C ,C ,C   are 

constant coefficients which are obtained from the boundary conditions. By substituting the displacement field in the 
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governing equation and using extended Galerkin method, the discretized form of the governing equation of motion 

for the micro vessel conveying blood flow can be obtain as: 

 

               0M q T C q T K q T  

     

 (26) 

 

where   q T  is the vector of generalized coordinates and the dot notation refers to derivative with respect to time. 

 M ,  C  and  K
 
correspond to the mass, damping and stiffness matrices of micro vessel, respectively, with the 

following elements:  

 

     

             

   

           

   

1

00

1

1 00

1 2

2 00

, (1 ( 1))

, [ (1 ) 2

]

( , ) [ (1 )

]

r s

r s r s r s

r s

r s r s r s

r s

M r s X X dX

C r s g X X g X X u u X X

C X X dX

K r s X X X X u X X

P X X dX

   

         

 

        

 

  

        



        

 






     

 (27) 

 

The Eigen frequencies for this system are found by rewriting Eq. (26) in first order form and solving the 

associated eigenvalue problem numerically. The stability and instability zones and type of instability can be 

examined based on the sign and magnitude of the real and imaginary parts of the eigenvalues [71].  

4    RESULTS AND DISCUSSION   

4.1 Validation of the study 

In order to assess the validation of the current study, the numerical results are presented to compare with those 

available in the literature. The effects of the material length scales, surrounding tissues, axial tensions and blood 

flow profile are ignored in order to make a comparison. Therefore, Table 1 shows the dimensionless critical 

buckling velocity for a single phase blood flow that is reported by the current method, Paidoussis [72] and Ni et al. 

[73]. The results show an acceptable agreement. In another comparative study, the dimensionless critical buckling 

velocity is computed for the multi-phase blood flow. Table 2 shows a good agreement between this approach and 

those that reported by Hosseini and Paparisabet [13]. In addition, we can show the blood flow profile non-uniformity 

modification factor accuracy. When the blood flow assumed as a single phase fluid then the profile modification 

factor is equal to 1.333 which has the same value with that reported by Guo et al. [74] for the laminar flow in the 

circular pipes. In the last comparative study, the natural frequency versus the fluid velocity of the simply supported 

pipe is investigated without considering the influences of the blood flow effects, surrounding tissue and viscoelastic 

structural. As it can be observed in Fig.2, there is a very good agreement between the current method and those 

reported by Yin et al. [66].  

 

 

 

 

 

 

 

 

 

Fig.2 

First natural frequency versus the flow velocity for compared 

with Ref. [66] for P=0, C=0, g=0,
1 2

1   ,
0

1   and pinned-

pinned boundary condition. 
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Table 1 

Accuracy of the first dimensionless buckling flow velocity (Ud) of the classical pipe conveying fluid for different boundary 

conditions, without any surrounding support, blood flow and size effects. 

 Boundary conditions 

Pinned-Pinned Clamped-Pinned Clamped-Clamped 

Ni et al. [73] 3.1416 4.4934 6.2832 

Paidoussis [72]      4.49 2  

Present study 3.1416 4.4939 6.2836 

 

Table 2 

Comparison of the first dimensionless critical buckling flow velocity (Ud) for different boundary conditions, multi-phase blood 

flow, without surrounding support, hematocrit 40% and no size effect theories. 

 Boundary conditions 

Pinned-Pinned Clamped-Pinned Clamped-Clamped 

Hosseini and Paparisabet [13]  2.7465 3.9282 5.4929 

Present study 2.7493 3.9294 5.4982 

4.2 Numerical Results 

In this section, all calculations are considered for pressure gradient 367.5 /
dp

dyne mm
dx

  , Young modulus of 

vessel E=200 kPa, plasma density 1025 kg m
-3

, RBC density 1125 kg m
-3

, plasma viscosity 1.24 cp, central core 

viscosity 2.47 cp [3]. Furthermore, another physical parameters such as Poisson ratio, inner and outer radius are 

considered as v=0.5, 20 m and 25 m [75], respectively, and internal material length scales are l0= l1= l2 

=l=17.6 m [66]. 

Fig. 3 demonstrates the dimensionless eigenvalues versus the dimensionless blood flow velocity based on the 

MSGT for the various boundary conditions. The parameters hematocrit (40%), structural damping 

coefficient 0g  , compressive pressure 0.1
cr

P P  and external viscous fluid 0C   are considered. Here Pcr is 

critical buckling pressure introduced in [13] as
2

2cr

EI
P

L


 , 

2

2(0.7 )
cr

EI
P

L


  and 

2

2(0.5 )
cr

EI
P

L


  for Pinned-

Pinned, Clamped-Pinned and Clamped-Clamped boundary conditions, respectively. The results of this section have 

revealed variation of imaginary and real parts of eigenvalue and critical blood velocity. Imaginary part of 
eigenvalue, Im(Ω), represents the natural frequency of micro blood vessel while real part of eigenvalue, Re(Ω), 

relates to the system decaying rate and indicates it’s stability. The positive values of the real part express the 

unstable oscillations and the negative values means that the system is stable. The blood flow vessel velocity in 
which the Im(Ω)= Re(Ω) =0 is known as the critical blood flow velocity and the micro blood vessel loses its stability 

by buckling. Figs. 3(a) and 3(b), respectively, reveal the imaginary and real parts of the dimensionless eigenvalues 

of micro blood vessel. In the eigenvalues analysis, it is observed that the micro blood vessel buckles at the first 

mode and loses stability at the critical blood flow velocity
d

U . It is shown by the Fig. 3(a) that due to its higher 

stiffness, the clamped-clamped boundary condition has a higher dimensionless natural frequency in comparison to 

other two boundary conditions.  

 

 
(a) 

 
(b)  

Fig.3 

First non-dimensional eigenvalues of the micro vessel as a function of the blood velocity for C=0, g=0, P=0.1Pcr, 

hematocrit=40% and different boundary conditions : (a) imaginary parts, (b) real parts. 
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Fig. 4 displays the dimensionless natural frequency due to the dimensionless internal pressures according to the 

various theories for 0g  , 0C  , U=3 and hematocrit=20% and 40%. This figure shows that the imaginary part 

of the dimensionless eigenvalues goes higher as the non-classical theories are deployed for pinned-pinned boundary 

condition. For instance, the MSGT shows higher dimensionless eigenvalues and critical buckling pressure than the 

MCST. Another interesting fact is that the blood hematocrits have considerable effects on the dimensionless natural 

frequencies and critical buckling pressures. It is visible from the figure, as the blood hematocrit increases the 

dimensionless natural frequencies and critical buckling pressures decrease and this phenomenon is regardless of the 

theories.  

 

 
(a) 

 
(b)  

Fig.4 

First non-dimensional eigenvalues of the pinned-pinned micro vessel versus the internal pressure for C=0, g=0, U=3 and 

different hematocrits: (a) imaginary parts, (b) real parts. 

 

The effect of different radius of vessels on the eigenvalues and critical buckling velocity of a clamped-clamped 

MBV conveying blood is examined in the Fig. 5 for 0C  , 0g  , 0.1
cr

P P , and hematocrit=40%.The 

critical buckling blood flow velocity and its sensitivity to geometric parameters of a MBV is of great importance. It 

is observed that the natural frequency and critical buckling velocity decrease with increase in the MBV radius. In 

other words, by taking constant thickness, the MBV with smaller radius buckle at higher blood flow velocity.  

 

 
(a) 

 
(b)  

Fig.5 

First non-dimensional eigenvalues of the clamped-clamped micro vessel versus the blood velocity for C=0, g=0, P=0.1Pcr, 

hematocrit=40% and different Ri and Ro: (a) imaginary parts, (b) real parts. 

 

Figs 6 (a) and 6(b) explain the lowest frequencies and decaying rates of clamped-clamped micro blood vessels as 

a function of the external viscous fluid, respectively, for selected values of 0.001g  , U=3, 0.1
cr

P P  and 

different blood hematocrit 20% and 40%. It is revealed that by the increasing of fluid viscosity, the natural 

frequency decreases, while the decaying rate remain negative, so the amplitude decrements with time and the 

vibration of the micro blood vessel is damped. Moreover, it is found that by increasing fluid viscosity, the natural 

frequency becomes zero while the decaying rate is nonzero. This means that the micro blood vessel does not vibrate 

in the first mode for all theories. It is observed that the large values of hematocrit gives lower eigenvalues. In 

addition, it can be seen that eigenvalues obtained from the micro blood vessel including the MSGT are higher than 

those of the MCST and CT.  
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(a) 

 
(b)  

Fig.6 

First non-dimensional eigenvalues of the clamped-clamped micro vessel as a function of the viscosity fluid for g=0.001, 

P=0.1Pcr , U=3 and different hematocrits: (a) imaginary parts, (b) real parts. 

 

Fig. 7 explains the relation between the dimensionless critical buckling blood flow velocity and the mass ratio 

( 0
 ) for the various theories in clamped-pinned boundary condition when 10C  , 0.001g  and 0.1

cr
P P . 

The lines in this figure display the buckling boundary. It is found for the small values of mass ratio, the critical flow 

velocity decreases significantly. Another considerable fact is that the MSGT shows the higher buckling velocities 

rather than the two other theories. 

 

 

 

 

 

 

 

 

 

 

Fig.7 

The critical buckling blood flow velocity of the clamped-pinned 

micro vessel in term of 0
  for C=10, g=0.001, P=0.1Pcr. 

 

Fig. 8 demonstrates the relation between the dimensionless critical buckling velocity due to the dimensionless 

internal pressure for the various hematocrits and boundary conditions. It is shown that the clamped-clamped 

boundary condition represents the higher dimensionless critical buckling velocities, which is associated with 
increase of the system stability. It is clear that as the P/Pcr is increases, the critical buckling velocity decreases. 

 

 

 

 

 

 

 

 

 

Fig.8 

The critical buckling blood flow velocity of the micro vessel in 

term of the internal pressure for C=10, g=0.001 and different 

hematocrits based on the MSGT. 

 

To better illustrate the effects of hematocrit on the natural frequency of clamped-clamped MBV, similar 

calculation is also implemented, and the corresponding result is plotted in Fig. 9 for 0.1
cr

P P , 0.001g  , 

10C   and the MSGT. It is revealed that by increasing the value of hematocrit, the natural frequency and critical 

buckling blood flow velocity of the system decrease. This is due to the fact that by increasing hematocrit in blood, 
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the modification factors are incremented, and therefore, the centrifugal and Coriolis forces thorough the blood vessel 

increases and this reasons a decrease in natural frequency and critical blood velocities.  

 

 
(a) 

 
(b)  

Fig.9 

The effect of the hematocrit on the dimensionless (a) natural frequency for U=2 and (b) critical buckling blood velocity of a 

clamped-clamped MBV, when P=0.1Pcr, C=10, g=0.001 and MSGT. 

5    CONCLUSION 

In this paper, the mechanical behavior of the vessels conveying blood flow resting on viscous fluid based on the 

MSGT was investigated. The non-uniformity of the various blood flow phases was considered by modification 

factors. Non-classical beam theories were deployed in order to make much accurate model of the micro blood 

vessels. Meanwhile, surrounding tissues were modeled by the means of a viscous fluid that embraces the blood 

vessel. This kind of support model is much more realistic and much more easer to face in the experimental events. 

Lastly, using the Galerkin method, various numerical results were examined to obtain the effects of length scale 

parameter, blood flow, internal pressure, structural damping coefficient, viscous fluid substrate and boundary 

conditions on the mechanical behaviors of system. The results show that the hematocrit has a considerable effect on 

the natural frequencies, critical blood flow velocities and buckling internal pressure. In addition, it was shown that 

the MSGT revealed the highest natural frequency, critical blood flow velocity and buckling internal pressure among 

other theories. Moreover, it is illustrated that the clamped-clamped boundary condition predicts the highest natural 

frequency in compression to the other boundary conditions. At last, we hope this literature slightly enlighten the 

future path for the revolutionary surgeries techniques.   
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