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 ABSTRACT 

 In this paper, semi-exact methods are introduced for estimating the 

distribution of tangential displacement and shear stress in non-

uniform rotating disks. At high variable angular velocities, the effect 

of shear stress on Von Mises stress is important and must be 

considered in calculations. Therefore, He’s homotopic perturbation 

method (HPM) and Adomian’s decomposition method (ADM) is 

implemented for solving equilibrium equation of rotating disk in 

tangential direction under variable mechanical loading. The results 

obtained by these methods are then verified by the exact solution and 

finite difference method. The comparison among HPM and ADM 

results shows that although the numerical results are the same 

approximately but HPM is much easier, straighter and efficient than 

ADM. Numerical calculations for different ranges of thickness 

parameters, boundary conditions and angular accelerations are 

carried out. It is shown that with considering disk profile variable, 

level of displacement and stress in tangential direction are not always 

reduced and type of changing the thickness along the radius of disk 

and boundary condition are an important factor in this case. Finally, 

the optimum disk profile is selected based on the tangential 

displacement-shear stress distribution. The presented algorithm is 

useful for the analysis of rotating disk with any arbitrary function 

form of thickness and density that it is impossible to find exact 

solutions.                    © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Non-uniform thickness and density disk; Homotopic 

perturbation method; Adomian’s decomposition method; Shear 

stress; Optimum profile.   

1    INTRODUCTION 

 ROTATING disk is an important structural component in varied engineering machinery and systems as gas 

turbine engines, gears, flywheel systems, turbo pumps, turbo generators, and centrifugal compressors turbo and 

flywheel [1-4]. The angular velocity of rotating disk is always constant during normal work. But with increasing 

applications of machiniery with high variable angular velocity, it will change over the time and the disk may have an 
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angular acceleration during the start or stop process of the machine and can have significant effects on the strength 

and safety of the disks. For example, in the starting process of centrifugal compressors, turbo until it reaches steady 

state, disks and rotating parts are under angular acceleration producing tangential displacement and shear stress as 

well as radial and tangential stresses. If the shear stress goes beyond permissible limits, it can have damaging effects 

on the disk and related components. Obviously, they will have influences on the displacements and stresses 

distributions in rotating disk. Therefore, studies of rotating circular disks with angular accelerations as mechanical 

loading are necessary for achieving optimal design specifications and to reduce the overall weight and costs, 

particularly in aerospace industry. As an example, one of the applications of studying tangential displacement-shear 

stress distributions is estimation of best thickness parameter having optimum and minimum shear stress and 

tangential displacement. Other important application of studying rotating disk under angular acceleration is correct 

prediction of equivalent von Mises stress. The von Mises equivalent stress is used as a criterion for determining the 

elastic limit angular acceleration. Elastic limit angular acceleration ( *

e ) are occurs when the von Mises stress as 

equivalent stress reaches to yield strength of the material of disk. For rotating disks that are in plane stress 

conditions, von Mises stress as a criterion for initiating plastic deformations are calculated based on the following 

relationship: 
 

2 2 23eq r r r             

 

In this relation, 
r and  are radial and tangential components of the normal stresses, 

r is the in-plane shear 

stress and 
eq  is equivalent von Mises stress. It is known that if tangential deformation is eliminated (angular 

acceleration are zero), von Mises stress is obtained from the following equation. In this case the radial and tangential 

stresses are the principal stresses. 

 
2 2

eq r r                 

 

Most of research work in the field of rotating disk is focused on the finite element simulations and numerical 

solutions of rotating disks with uniform and specifically variable thickness and density under constant angular 

velocity [1-20]. The elastic solution of rotating disks with uniform thickness can be found in many standard and 

advanced textbooks [21-24]. As a previous research shows, numerical methods are not very accurate and sometimes 

have high error rates. Finite element solutions also require commercial software and are costly. Based on the need 

for high precision solutions, to the knowledge of author no research work has been presented for analysis of 

mechanical behavior in a rotating disk under angular acceleration loading with semi-exact methods. Therefore in 

this paper, for the first time HPM and ADM are used to obtaining displacement-stress distribution in tangential 

direction of rotating disk. The proposed algorithm that included this semi-exact method can successfully handle the 

problem of a rotating disk in general form (any type of thickness and density function) under mechanical loading 

and could be extended to analysis more complicated problems of combined loading cases such as thermo-

mechanical loadings. Generally, analysis of actual engineering problems includes solution of nonlinear differential 

equations. These differential equations cannot be solved clearly and usually attempts to find their exact solution 

fails. One of the well-known methods for solve these differential equations is Perturbation method (PM). This 

method is based on the existence of perturbation quantity for solves these problems. In order to overcome the 

problems associated with finding the small parameter, different new methods have been proposed to eliminate the 

small parameter, For example, the homotopic perturbation method [25-29] and Adomian’s decomposition method 

(ADM) [30-32]. Homotopy perturbation method yields a very rapid convergence of the solution series in the most 

cases [25-29]. Adomian proposed a new method for solving linear and nonlinear equations. In this method the 

solution of a functional equation is considered as the sum of an infinite series which converges rapidly to the 

accurate solutions [30-32]. One of the first researchers to work on the theoretical treatment of elastic-plastic rotating 

disks is Gamer [1] and after that this researches continues in different aspects to this day [1-19]. Gamer presented 

exact solution for the elastic–plastic response of a rotating solid disk with uniform thickness. Following on Gamer 

works; the fully plastic state of solid disk with variable thickness was investigated by Guven [2-4]. Eraslan carried 

out numerical studies on the elastic-plastic mechanical behavior of annular disks with different thickness profiles 

including hyperbolic, exponential and power forms under different boundary conditions [5-9]. Hojjat et al. also have 

done a variety of researches on rotating disks [10-15]. They studied the elastic behavior of rotating disks by 

variational iteration method [10], variable material property method [11], Adomian’s decomposition [12] and 

homotopic perturbation methods [12]. In these researches thickness and density function is considered non-uniform 
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and after verifying process, parametric studies are done for different value of thickness and density parameters [10-

12].They presented plastic analysis of rotating disks by assuming linear strain hardening model for material behavior 

in plastic region by HPM [13] and variable material property method [12]. In all of these researches constant 

mechanical loading are imposed to rotating disks. Hojjati et al. considered functionally graded rotating disks 

subjected to thermo-mechanical loadings by variable material properties, Runge–Kutta's and finite element methods 

[14]. In optimization field, Jafari et al. presented classical and modern optimization methods in minimum weight 

design of elastic rotating disk with variable thickness and density. They have used Karush-Kuhn-Tucker, simulated 

annealing (SA) and particle swarm methods (PSO) and found that performance of PSO and SA methods are simpler 

and supply more flexibility [15]. Among the latest researches, Alashti et al. studied plastic behavior of a rotating 

disk with non-uniform thickness under constant angular velocity by considering the ductile damage models in 

simulations [16]. Zheng et al. presented stress analysis in functionally graded rotating disks with non-uniform 

thickness and variable angular velocity by finite difference method [17]. Newly, Thermo-elastic analysis of a 

functionally graded rotating hollow circular disk with variable thickness and angular velocity are done by Salehian 

et al. by galerkin method [18].Shlyannikov et al. is focusing on the crack growth rate for rotating disk in gas turbine 

engine compressor based on the nonlinear fracture mechanics [19]. Nayak et al. is employed variational iteration 

method for elastic-plastic analysis of thermo-mechanically loaded FGM disks [20]. 

As a result of this introduction, can stated that in a large number of studies, the assumption is that the angular 

velocity is constant. Because of the importance of variable angular velocities on one hand and the accuracy of semi-

exact solution on other hand, tangential displacement and shear stress distributions is studied in this paper by HPM 

and ADM for boundary conditions that exits in real work environments. The results are compared with the exact 

solution for uniform disk and the results of non-uniform disk are verified by finite difference method. The optimal 

solution method among the HPM and ADM based on the computational time, size and cost are selected. This result 

can be used in the analysis of plastic deformations. The material is assumed to follow an elastic-strain hardening 

behavior with von Mises yield criterion. Therefore, the angular acceleration has been selected to limit the maximum 

stress below the yield limit of the material. Finally, parametric study is done for different ranges of thickness 

parameters, boundary conditions and angular accelerations. Also, the optimum thickness parameter having minimum 

shear stress and tangential displacement is selected. The material of the disk is considered as Inconel-718 alloy that 

is having density varying according to special function along the radius of the disk. The disk is assumed to be 

different boundary conditions:  

- Radially constrained-free at the inner and outer surfaces of disk: In this case the disk with new thickness 

and density function are considered under angular acceleration. 

- Radially constrained-guided at the inner and outer surfaces of disk: in this case for the first time the disk 

with this boundary condition are studied under angular acceleration. 

As shown in Fig.1, in each of these boundary conditions, the angular acceleration is transmitted from the rigid 

shaft to the annular disk. 
 

 
(a) 

 
(b) 

Fig.1 

a) Radially constrained-guided. b) Radially constrained-free. 

2    DISK THICKNESS PROFILE AND MATERIAL PROPERTIES   

The disk is symmetric with respect to the mid plane and its profile is assumed to vary as a function of radius (r) 

[1,2]: 
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  0 ( )
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         (1) 

 

where  is geometric parameters ( 1 1   ),
er is the outer radius of the disk and h  is the thickness of the disk at 

er r . In Eq. (1), the thickness of disk decreases parabolically with increasing in the radius of disk when 1 0   . 

If 0 1   is considered, the thickness of disk varies linearly in radial direction. For 0   the thickness of disk 

along the radius is constant. The disk thickness variations for different values of   are shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Disk profile for different thickness parameter .  

 

The material of the disk is selected as Inconel-718 having density varying according to Eq. (2). The material with 

this kind of continuous density change can be considered as functionally graded material (FGM).  

 

  2 3

0 1 2 3r r r r                (2) 

 

where,

 

0 1 2 33 4 5 6
7800 , 10 , 100 , 1000

kg kg kg kg

m m m m
       . 

It is clear that a uniform thickness and density disk is obtained by setting 0   in Eq. (1) and 0r   in Eq. (2), 

respectively. In this work, an elastic–linear hardening [2] model is used for modeling the stress–strain behavior of 

the disk material: 

 

1

t

( )
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  


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
  


    

 

 

        

 

       (3) 

 

where  and t  are the yield strength of the material and tangent modulus, respectively. Table 1 shows the 

geometry and material properties used for the disks studied in this research. 
 

Table 1 

Geometry and material properties and angular velocity constant of rotating disks. 

Outer radius of disk    
er (m) 0.8 

Inner radius of disk 
ir (m) 0.1 

Thickness at  er r  
0h (m) 0.1 

Young's modulus E (GPa) 200 

Poisson's ratio   0.3 

Shear modulus G (GPa) 77 

Tangent modulus 
tE (GPa) 80 

Yield strength of material  (MPa) 300 
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3    THEORETICAL BACKGROUND   

3.1 Governing equation of rotating disk 

In this section, assuming that the disk is thin, having a variable thickness which is a function of r , and it is rotating 

with a constant angular acceleration, around the z-axis. Fig.3 shows an element of the disk with all in-plane tractions 

in the radial (r) and tangential ( ) directions of coordinate system located at the center of the disk. The equations of 

equilibrium in relative directions can be indicated as [1, 2]: 

 

        2 2 ( )r
r

dd
h r r h r h r r r h r

dr d





   


     

         

       (4) 

 

      2 ( )r r

d
h r r h r r r h r

dr
        

         

       (5) 

 

where,  r is the distribution function of density, 

 

  is the angular velocity and   is the angular acceleration of 

the disk. Otherwise, 
r and 

 are radial and tangential components of the normal stresses and 
r is the in-plane 

shear stress. Due to the rotational symmetry of the problem, displacements fields are functions of r  only and Eqs. 

(4-5) can be further simplified to: 

 

      2 2 ( )r

d
h r r h r r r h r

dr
       

         

       (6) 

 

      2( ) ( ) ( )r r

d
r h r r r h r r r h r

dr
        

         

       (7) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Acting forces on an element of disk. 

 

In the plane stress and small deflection condition assumed for this analysis, the stress-strain relations are [2]: 

 

     2
[ ]

1
r r

E
r r v r

v
   


         

       (8) 

 

     2
[ ]

1
r

E
r r v r

v
    


         

       (9) 

 

 r rr G            (10) 

 

and the strain-displacement relations after considering the rotational symmetry condition can be presented as [2]: 

 

 
( )r

r

du r
r

dr
            

        (11) 
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   
( )( ) 1 ( )
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
  


             

        (12) 
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 r r

du r u r du r u rdu r
r Rotational symmetry r

r d dr r dr r

   
  


               

        (13) 

 

with substitution of Eqs. (8-10 and 11-13) in relations (6 and 7), yields the following governing equation in the term 

of radial (
ru ) and tangential (u

) displacements in relative direction: 

 

 

   

 

 
 

   2 22

2 2

1( ) 1 1 1
[ ]

rr
r

v r rdh r du r dh rd u r v
u r

dr r h r dr dr r h r r dr E

  
      
 

 
         

        (14) 
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 

 
 

 2

2 2
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dh r du r dh r r rd u r
u r

dr r h r dr dr r h r r dr G




  
      
 

 
         

        (15) 

 

where, G

 

 is shear modulus and   is a poisson ratio. Many researchers have studied eq. (14) and hence only Eq. (15) 

investigated here. For mention, in references [10, 12], it has been shown that the semi-exact solution of the Eq. (14) 

by HPM, VIM,ADM and Runge-Kutta method are in excellent agreement for thickness and density 

profile    
0 1 0 1

( ) , ( )n m

n m

r r
h r h r

b b
 

 

   

  . In this study, new thickness and density profiles are assumed; 

HPM and ADM are implemented for solving equilibrium Eqs. (15). 

3.2 Homotopic perturbation method (HPM) [12] 

Let us consider the following differential equation and boundary condition for presenting HPM [25-29]: 

 

( ) ( ) 0 , ,A u f r r            (16) 

 

( , / ) 0 ,                   ,B u u n r             (17) 

 

In this relations, u

 

 is the unknown function, A

 

 is a general differential operator, B

 

 is a boundary operator, 

 

( )f r  is a known analytic functional, and   is the boundary of the domain . One of the most important steps in 

solving differential equation by HPM is to find the linear and nonlinear parts of the function A. Therefore in Eq. (16) 

function A can be separated into two parts L  and  N. In this definition, L is a linear part whereas N  is a nonlinear 

part. Then, Eq. (16) can be rewritten as: 

 
( ) ( ) ( ) 0.L u N u f r            (18) 

 

Homotopic perturbation structure is created as the following equation: 

 

( , ) ( ) ( ) ( ) [ ( ) ( )] 0H v p L v L u pL u p N v f r               (19) 

 

wherev  is a characteristic variable in HPM by below definition: 

 

( , ) : [0,1]v r p R           (20) 

 

In Eq. (19), [0,1]p  is an embedding parameter and u is the first approximation that satisfies the boundary 

condition in Eq. (17).For 0p  and 1p  , Eq. (19) reduces to the following equations respectively:   

 



Tangential Displacement and Shear Stress Distribution….                                     835 

 

© 2020 IAU, Arak Branch 

( ,0) ( ) ( ) 0H v L v L u    ,  
 ( ,  1) ( ) ( ) 0H v A v f r            (21) 

 

This relation shows that ( ) ( )L v L u and ( ) ( )A v f r . This information is used to write Eq. (19). To start 

solving process, Eq. (19) is arranged according to the different powers of p-terms ( 0 1 2, , , ..p p p  ). Each coefficient 

of p-terms is a differential equation in term of variable v  that must be solved. After this stage, the process of 

changes in p
 
from zero to unity is that of ( , )v r p  changing from u to ( )u r .We consider v, as following: 

 
2 3

0 1 2 3 ....v v pv p v p v       
 
         (22) 

 

In addition, the best approximation for solution is: 

 

1 1 2lim   ......pu v v v v       
 
         (23) 

 

The above convergence is discussed in [26-30]. 

3.3 Adomian’s decomposition method [12] 

In order to begin the FDM, general form of differential equation must be considered as Fu g . In this relation, u is 

the unknown function and at the end of ADM algorithm its change function must be calculated. Also F represents a 

general nonlinear differential operating consisting of both linear and nonlinear terms of unknown variable u. 

Moreover, the g function is part of the differential equation where the unknown variable u does not exist. The linear 

terms are further decomposed to L R , where L  is easily invertible (usually the highest-order derivative) and R  is 

the remaining terms of linear operator. The nonlinear term is represented by N. The general equation of Fu g  now 

can be rewritten as [30-32]: 

 

Lu Nu Ru g     
 
         (24) 

 

The nonlinear operator [ ]Nu  can be decomposed by an infinite series of polynomials given by, 

 

1

0

0( , , ., )n n

n

Nu A u u u




    
 
 

         

        (25) 

 

where
0 1( , , ., )n nA u u u  are the appropriate Adomian’s polynomials defined by, 

 

0

1
[ ( )], 0

! k

n
k

n kn

d
A N u n

n d


 



    
 
 

         

        (26) 

 

Assuming that the inverse operator 1L exists and it can be taken as the definite integral with respect to r  from 

0r  to r , 

 

 
0

1 .

r

r

L dr     
 
 

         

        (27) 

 

If L is a second-order operator, 

 

1L  is a twofold indefinite integral, 

 

 1 (0)
0

u
L Lu u u r

r





      
 
          

        (28) 

 

Solving Eq. (24) for Lu and multiplying 1L  on both sides gives: 



836                                 S. Jafari                         
 
 

© 2020 IAU, Arak Branch 

 1 1 1 1( )L Lu L g L Ru L Nu        
 
         (29) 

 

Comparing Eqs. (28) and (29) gives: 

 

 1 1( ) ( )u f r L Ru L Nu      
 
         (30) 

 

where 

 

   1 2( )f r f r f r    
 
         (31) 

 

Just as seen in Eq. (31), 

 

 f r  is decomposed to two parts:  1f r and 
2 ( )f r .  1f r is the part corresponding to 

the function g  in original differential equation and 
2 ( )f r arises from the prescribed initial or boundary conditions. 

The standard Adomian method defines the solution ( )u r  by the series: 

 

0

( ) ( )
n

nu r u r




   
 
 

         

        (32) 

 

where the components 
0 1 2, , , ..u u u  are usually determined by using recursive relation: 

 

0( ) ( )u r f r   

     1 1

1 , 0n n nu r L Ru L Nu n 

      
 
 

         

        (33) 

 

with this relation, the components of ( )nu r  are easily obtained. This leads to the solution in a series form. The 

solution in a closed form follows immediately if an exact solution exists [30-32]. 

3.4 Finite difference method (FDM) [16] 

Finite difference method is one of the effective methods for numerical solution of differential equations. This 

method is one of the simplest and the oldest method to solve differential equations that are difficult or impossible to 

solve. The approximation of derivatives by finite difference plays a central role in FDM for numerical solution of 

differential equation. The accuracy of the solution depends on the chosen number of grid points. One can increase 

the accuracy of the solution to some desired degree by increasing the number of grid points. To solve differential 

equations with specified boundary conditions, we need to define a set of grid points in the variables interval that is 

divided into 1N  equal or non-equal parts. The derivatives of a function ( )f r are always approximated by central 

difference equations. However, derivatives for grid point in boundary conditions are written on the base of forward 

and backward finite difference form. Therefore, the firs derivative with respect to r in central-forward-backward 

difference form can be written as [34-35]: 
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r r i i
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r r i i
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r
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O h
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O h
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




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 


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
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
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        (34) 

 

while the second derivative of a function ( )f r with respect to r is: 
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        (35) 

 

Other finite difference forms of derivatives for a function ( )f r  are available in the references [34-35]. For each 

grid point in the interval [0,1], the differential equation is written in the finite difference form. In addition, the 

boundary conditions are written in this scheme. Finally, the set of linear algebraic equations can be obtained in the 

following matrix expression that must be solved using an appropriate method [35]. 

 

A U B    
 
         (36) 

 

For annular rotating disk finite difference scheme in radial direction and numbering of grid point are constructed 

as shown in Fig.4. At the end of the finite difference process, there are 2N   equations for the inner points and two 

equations for the inner and outer surface boundary condition of the disk. 

 

 

 

 

 

 

Fig.4 

Finite difference scheme in radial direction of rotating disk. 

4    SEMI_ EXACT SOLUTION   
 

In this section, we consider elastic annular rotating disks with variable thickness and density, under variable 

mechanical loading. Based on the goals of paper, the equilibrium equation in tangential direction (Eq. (15)) is 

solved. 

 

4.1Application of HPM 

To use HPM, Eqs. (1-2) are substituted into Eq. (15) and yields the following differential equation in term of 

unknown tangential displacement: 
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        (37) 

 

After separating the linear and nonlinear parts of this equation according to descriptions for Eq. (19), HPM can 

be applied as: 
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where  L v  is the linear part of the Eq. (37) and  0L u 
 is its initial approximation. With substituting Eqs. (38-40) 

into Eq. (19) and rearranging based on powers of p-terms, we have: 
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        (41) 
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        (43) 

 

To determine v function, the above equations are to be solved. Solving Eq. (41), we have: 
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         (44) 

 

Similarly solving Eqs. (42 - 43) yields the following results respectively: 
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         (46) 

 

Substitution of the above Eqs. (44-46) in Eq. (22) gives the equation for v and as 1p yields , then 

v yields u
. This means finding the answer for the governing equation of elastic rotating disk (i.e., Eq. (15)) in the 

general form of non-uniform thickness and density. The optimum number of HPM iteration considering the 

converged result is two. Therefore, the exact solution of ( )u r
is: 
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        (47) 

 

In this relation, 
1C  and 

2C  are integrations constant to be determined by applying boundary conditions of 

rotating disk at inner and outer surfaces. In this paper, two different types of boundary conditions are considered. 

These conditions are explained in details in the next sections. 

4.2 Application of ADM 

The general governing Eq. (37) for an elastic rotating disk with variable thickness, density and angular velocity, has 

to be solved with the initial condition. The best zeroth approximation is obtained by assuming 
1( )f r and 

2 ( )f r  as 

follows: 
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        (48) 

 

As seen in Eq. (48), one of the ways to find the function 
2 ( )f r   is to consider it equal to the first approximation 

(  0u r
in Eq. (44)) obtained by the HPM. Now initial approximation by ADM can be presented as: 

 

   

6 5 4 3

3 2 1 0
( 1)

0 1 2 1 2

1 1 1 1
( )
30 20 12 6( )

r r r r

u r f r f r C r C r
G





    
 

   

      

  

        (49) 

 

By the same manner, other components of ( )u r
 are found. The optimum number of ADM iteration considering 

the converged result is three. 
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and, 
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and, 
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Therefore, the solution of Eq. (37) by ADM is, 
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5    NUMERICAL SOLUTION   

5.1 Application of FDM 

The differential Eq. (15) is valid for elastic deformations of non-uniform thickness and density rotating disk under 

variable angular velocity as mechanical loading in tangential direction. To solve the differential equation by finite 

difference method, derivatives of tangential displacement component in the radial direction are to be replaced by 

Eqs. (34-35). Finally, the finite difference form of the differential equation is expressed as follow: 
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        (54) 

 

The radial direction of the disk ( [ , ]i or r r ) is divided to N  grid points ( [1, ]i N ). For internal grid points 

( [2, 1]i N  ), the FD form of differential Eq. (54) is written. In addition, the boundary condition of the rotating 

disk at the inner and outer surfaces of the disk must be expressed in FD form. In this paper two different boundary 

conditions is considered and the FD form of them are as follow: 

(a) Radially constrained and guided boundary conditions: if the inner surface of the annular disk is mounted on 

a rigid shaft and outer surface is guided as shown in Fig. 1, then the boundary conditions and the FD form 

of this boundary conditions are: 

 

 

 

1, 0 0

, 0 0

i

i

i

e

i u r yields u

i N u r yields u

 

 

   


  

 
         

        (55) 

 

(b)  Radially constrained and free boundary conditions: if the annular disk is mounted on a rigid shaft and outer 

surface is free of any traction, boundary conditions and the FD form of this boundary conditions are: 
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        (56) 

 

Finally, a system of linear algebraic equations is obtained. By solving the system of equations, the tangential 

displacement of the rotating disk for each grid point is calculated. 

6    RESULTS AND DISCUSSIONS   

Table 1 records the geometry and material properties used for disks studied in this research. The main aim of this 

section is to demonstrate the ability of the HPM and ADM to handle non-uniform thickness and density rotating 

disks, with considering variable angular velocity in current simulations. Because of its fast rate of convergence, 

these methods are particularly suitable for nonlinear problems. It is quite interesting to notice that the exact solution 

of the Eq. (15) for uniform thickness and density rotating disk in tangential direction can be shown as [36]: 
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        (57) 

 

The constants 
1C  and 

2C in this equation are determined by applying boundary conditions. As mentioned earlier, 

two different boundary conditions are applied on the annular disk. 

In Finite difference method and for solving equilibrium equation in FD form as Eq. (54), in order to increase the 

accuracy of the solutions, the radial distance, ( )e ir r , is divided into N steps, ( )e i
r

r r

N



 . Moreover, a mesh 

sensitivity analysis was performed to ensure that the results are not dependent on the mesh size, and N  was set to 

401 .  
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For the uniform thickness and density case, Fig.5 compares the HPM, ADM and FDM results for tangential 

displacement and shear stress with radially constrained-free boundary condition with those results obtained from 

exact solution as Eq. (57)[16]. Fig. 6 compares these results for radially constrained-guided boundary condition. 

With considering the performance of disks used in actual work environments, an angular acceleration  

2( 100 )rad
s

    is considered. For this value of angular acceleration, the displacement in rotating disk is in an 

elastic region. As it can be seen in these figures, the agreement between the results of HPM, ADM and FDM 

solutions for uniform disk is excellent in comparison with exact solution. As shown in Figs.5 and 6, boundary 

conditions are completely satisfied. For radially constrained-free condition, the shear stress is reaches its maximum 

value at inner surface (
ir r ). However, for radially constrained-guided condition maximum value of shear stress 

occurs at both inner and outer surface of disk. In this boundary condition, shear stress at inner surface is positive and 

at outer surface of disk is negative. Along the radial direction of this disk, there is a point in which shear stress is 

zero. The level of displacement and stress in disk with this boundary condition is much less than radially 

constrained-free condition. This means that elastic limit of the angular velocity at which yielding begins for disk 

with constrained-guided boundary condition is less than disk with constrained-free boundary condition. 
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Fig.5 

Comparison of results for rotating an annular disk with radially constrained-free conditions, uniform thickness and density: (a) 

tangential displacement and (b) shear stress. 
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Fig.6 

Comparison of results for rotating an annular disk with radially constrained-guided conditions, uniform thickness and density: 

(a) tangential displacement and (b) shear stress. 

 

For non-uniform thickness and density case, in order to verifying HPM and ADM results for tangential 

displacement and shear stress, different thickness parameter based on the definitions in Eq. (1) is selected ( 0.5    

and 0.5  ). The results are compared with FDM solution in Figs. 7 and 8 for two prescribed boundary conditions. 

All the presented results are based on using a constant angular acceleration ( 
2100 rad

s
   ) and density function 

according to Eq. (2). It is important to note that rotating disks with non-uniform thickness and density have no exact 

solution. These figures show the ability of these methods to solve the governing equation of rotating disk in its 
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general form. In HPM, two iteration leads to high accuracy of the solution for the governing equation of the problem 

in its general form (non-uniform thickness and density). This solution is in good agreement with the exact and FDM 

results. In ADM case, non-uniform solution after three iterations and much more calculations than HPM is obtained. 

Optimum identification of initial conditions for ADM is difficult and one way to find it is use special terms of HPM 

solution. Comparison between HPM and ADM shows that although the results of these semi-exact methods when 

applied to the elastic equation in annular disks are the same approximately, but HPM does not require specific 

algorithms, complex calculations and high computational size such as ADM and is much easier and more convenient 

than ADM.  

As seen in Figs. 7 and 8, when non-uniform thickness and density is considered, the level of tangential 

displacement and shear stress at every affected point of the disk with constrained-free conditions is decreases for 

0.5    and increases for 0.5   in compared to uniform disk with 0  . Moreover, these conditions in disk with 

constrained-guided boundary are different. In disk with this kind of boundary conditions, level of displacement is 

decreases for 0.5   and increases for 0.5   in compared to disk with 0  . In the case of shear stress as shown 

in the Fig. 8, level of shear stress on the inner and outer surface of the disk is not equal, unlike the uniform disk. At 

the inner surface of the disk, the disk with 0.5   and at the outer surface, disk with 0.5    have more shear stress 

than uniform disk. For mention, the thickness of disk decreases parabolically when 1 0    and varies 

approximately linearly when 0 1   . Based on these results, it can be said that always considering the disk with 

non-uniform thickness dose not reduce the displacement-stress levels in rotating disk. The factors that contribute to 

these results are the type of disk boundary conditions. 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

x 10
-4

Radial coordinate (m)

T
a
n
g
e
n
ti
a
l 
d
is

p
la

c
e
m

e
n
t 

(m
)

 

 

HPM,Alpha= -0.5 

ADM,Alpha= -0.5 

FDM,Alpha= -0.5 

HPM, Alpha=0

ADM, Alpha=0

FDM, Alpha=0

HPM,Alpha= 0.5 

ADM,Alpha= 0.5 

FDM,Alpha=0.5 

 
(a) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1

0

1

2

3

4

5

6

7
x 10

7

Radial coordinate (m)

S
he

ar
 s

tr
es

s 
(P

a)

 

 

HPM, Alpha= -0.5

ADM, Alpha= -0.5

FDM, Alpha= -0.5

HPM, Alpha=0

ADM, Alpha=0

FDM, Alpha=0

HPM, Alpha=0.5

ADM, Alpha=0.5

FDM, Alpha=0.5

 
(b) 

Fig.7 

Comparison of results for rotating an annular disk with constrained-free conditions, thickness parameter 0.5,0,0.5    and 

density function ( )r : (a) tangential displacement, (b) shear stress. 
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Fig.8 

Comparison of results for rotating an annular disk with constrained-guided conditions, thickness parameter 0.5,0,0.5   and 

density function ( )r : (a) tangential displacement, (b) shear stress. 
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7    PARAMETRIC STUDY   

The main object of this section is to carry out a parametric study on effects of the boundary conditions, the 

geometric parameter and the value of angular acceleration on the behavior of the rotating disk with non-uniform 

thickness and density. Based on this information, the optimum disk profile is selected for prescribed boundary 

conditions. Firstly, variation of the tangential displacement and the shear stress for different values of  , are shown 

in Figs. 9 and 10. The boundary conditions of the disk are considered as constrained-free and constrained-guided in 

these figures, respectively. The reported results are based on using the HPM solution and angular acceleration as  

2( 100 )rad
s

   . As shown in these figures, all the results expressed in Figs. 7 and 8 for certain values of 

thickness parameter   can be generalized to different values of   for each boundary condition. For constrained-

free condition and range of changes 1 0   , as the thickness parameter increases, the level of tangential 

displacement along the radius of the disk decreases. Nevertheless, for range of changes 0 1  , as the thickness 

parameter increases, the level of the tangential displacement also increases. It can be seen that for both ranges of , 

the tangential displacement reaches its maximum value at outer surface (
er r ) in Fig. 9 and this condition 

approximately occurs in the middle radius of the disk in Fig. 10.  

In term of the shear stress, the distribution of stress is completely different for the two boundary conditions. For 

constrained-free condition, shear stress reaches its maximum value at inner surface, (
er r ) and as the thickness 

parameter increases, the level of stress decreases for 1 0    (parabolically) and increases for 0 1  (linearly). 

However, for constrained-guided condition, it is found that the value of stress in the inner and outer surfaces of the 

disk is not equal.  For a certain value of thickness parameter in the range 1 0   , while the inner surface of the 

disk is thicker than outer surface, experiences lower stress. For range 0 1  , although the inner surface is thicker, 

it experiences more stress. For all values of , as the thickness parameter becomes smaller, the thickness changes 

become more uniform and the difference of shear stress between the inner and outer surfaces of the disk decreases. 

As the thickness parameter increases, the point in which shear stress are zero moves to the middle radius of the disk 

for 1 0    and moves to the inner radius of disk for 0 1  .It can be concluded that the proposed HPM can 

successfully handle the problem of a rotating disk under variable mechanical loading. These results can be used to 

select the optimal disk profile from the point of view of tangential displacement-shear stress distribution in rotating 

disk. Shear stress is involved in the calculation of equivalent stress, which is a limit for plastic deformation 

initiation. Accordingly, the optimal disk profile for each boundary condition is as follows: 

- Constrained-free condition: rotating disk with a thickness parameter 1    has the least amount of 

tangential displacement-shear stress among different values of . 

- Constrained-guided condition: rotating disk with thickness parameter 1    at inner surface and 1   at 

outer surface has the least amount of shear stress among different values of . In term of tangential 

displacement, 1  has the least amount among different values of . 
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Fig.9 

Comparison of results for rotating an annular disk with constrained-free conditions, different thickness parameter   and 

density function ( )r : (a) tangential displacement, (b) shear stress. 
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Fig.10 

Comparison of results for rotating an annular disk with constrained-guided conditions, different thickness parameter   and 

density function ( )r : (a) tangential displacement, (b) shear stress. 

 

The variation of tangential displacement and shear stress along the radius of the disk for an arbitrary geometric 

parameter 0.5    and different value of angular acceleration is shown in Figs. 11 and 12. As described in the 

previous sections, boundary conditions of the disk are considered as constrained-free and constrained-guided in 

these figures. The reported results are based on using the HPM and angular 

acceleration
2( (50 ,100 ,150 ) )rad

s
     . 

It is observed from these figures that as the angular acceleration increases, the levels of displacement and stress 

are increases. With increasing the angular acceleration, the rate of change of shear stress along the radius of the disk 

increases. From Fig. 12, it can be seen that the radial coordinate in which stress is zero remains constant for all 

values of angular acceleration. 
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Fig.11 

Variation of results for rotating an annular disk with constrained-free conditions, thickness parameter 0.5    and different 

angular acceleration: (a) tangential displacement, (b) shear stress. 
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Fig.12 

Variation of results for rotating an annular disk with constrained-guided conditions, thickness parameter 0.5    and different 

angular acceleration: (a) tangential displacement, (b) shear stress. 
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8    CONCLUSION 

In this work homotopic perturbation method and adomian decomposition method as semi-exact solution methods 

and finite difference method as a numerical solution are used for the elastic analysis of a rotating annular disk with 

non-uniform thickness and density under the variable mechanical loading. HPM and ADM methods have been 

successfully employed to obtain the solutions of equilibrium equation of rotating disk in tangential direction. The 

obtained results have been compared with the FDM solution. The solutions obtained show that the results of these 

methods are in good agreement but HPM is easier, practical, no restriction in using and more convenient than ADM. 

It has been shown that the proposed methods yield accurate results without the need to use commercially available 

finite element analysis software. This may lead to time and cost saving in handling complicated cases. After 

validation, parametric studies by HPM results are done to study the elastic destructions of tangential displacement 

and shear stress of rotating disks under different thickness parameter, boundary conditions and angular acceleration. 

It is shown that boundary conditions have significant effect in reducing displacement-stress level in rotating non-

uniform disk compared to uniform disk. For radially constrained-free condition, disk with parabolically thickness 

changing have a lower values for shear stress. But For radially constrained-guided condition, disk with parabolically 

thickness changing have a lower values of shear stress at inner surface of disk and disk with linearly thickness 

change have a lower values of shear stress at outer surface of disk. This means that with considering disk profile 

variable, level of displacement and stress are not always reduced and type of changing the thickness along the radius 

of disk and boundary condition are an important factor in this case. It can be concluded that one can analysis any 

arbitrary thickness function including constant, hyperbolic, exponential, or parabolic disk and density variation 

using semi-exact methods presented in this research. 
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