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 ABSTRACT 

 In this paper, the nonlinear vibration behavior of a rotor with 

asymmetric shaft considering misalignment is studied. The system 

consists of a rectangular shaft and a disk, which is connected to a 

motor through a flexible coupling. In order to consider higher 

order deformations, nonlinear Bernoulli beam is used for modeling 

the shaft. Gibbons’ equations are utilized to apply misaligned 

coupling forces. The equations of motion of the system are derived 

using the Lagrangian method and then discretized by the Rayleigh-

Ritz method. In order to solve nonlinear equations and hence 

obtaining nonlinear responses, multiple scales method is used. The 

vibration behavior of the system near the resonance frequencies is 

studied by taking into account various parameters including 

unbalance forces and the effect of the asymmetry of cross section 

of the shaft. The analytical results are consistent with those of 

numerical method with a good accuracy. In addition, the effects of 

variations of the system parameters on the rotor vibration behavior 

have been shown graphically. In the end, the changes in the 

various parameters of the system and their effects on the rotor 

vibration response are discussed. 

                                © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

HE dynamic behavior of rotors is one of the significant fields in which extensive researches have been carried 

out so far. The focus of these works has been on shafts with a circular cross-section while in industry; there are 

rotary machines such as generators, electro motors or some of their components including couplings and screw 

shafts that are not symmetric. Regarding misalignment of rotors, due to its importance and its effects on vibrations, 

various studies have been done. However, the effects of misalignment on asymmetric rotors have rarely been 

investigated yet. In the case of the consequences of asymmetric rotors, Tondl [1] analyzed the effects of the 

variability of shaft stiffness on the vibration behavior of the system and then determined the boundaries of 

instability. Badlani [2] also examined the stability of the asymmetric rotor with a more precise model. He found new 

boundaries of instability, taking into account the theory of Timoshenko’s beam. Sheu [3] studied the results of 
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harmonic forces as well as dynamic forces on instability boundaries. Pei [4] also studied the boundaries of 

instability of a rotor with parametric excitation. He showed that the boundaries of instability are beyond the 

boundaries of instability obtained by Floquet method. Shahgholi [5] also acquired the main and parametric 

resonances of an asymmetric rotor considering the nonlinear effects due to higher order deformations. He applied 

multiple scales method to solve motion equations and showed the rotor's vibration behavior as well as unstable 

boundaries near the resonances. Jafari [6] solved the nonlinear motion equations for an asymmetric rotor using a 

perturbation method and using higher terms led to stability boundaries. He demonstrated that semi-analytic methods 

have more accuracy in solving nonlinear shafts with asymmetric sections when nonlinear terms are small. Gibbons 

[7] stated that the lack of alignment causes coupling forces and moments, which are the main reasons of vibrations 

in rotating machines. He calculated the forces and moments for various couplings and presented in his article.       

Sekhar et al. [8] developed Gibbons’ model. They considered 8 degrees of freedom for each node (4 degrees for 

each plane) to determine displacement, slope, shear force and bending moment for each node. They assumed that the 

misalignment causes excitation force at a frequency twice the rotational speed (i.e. 2X). Al-Hussain et al. [9] 

examined the effect of the misalignment due to the parallel misalignment in the dynamic response of the rotor. They 

first obtained the motion equations for the proposed model based on the energy method. They concluded that 

parallel misalignment would only affect vibrations in a steady-state equilibrium frequency, and higher harmonic 

vibrations are caused by nonlinear effects of the system and the asymmetry of bearings and rotors. A year later, in 

another article [10], he developed his model and added the bearing effect to his model using the Lyapunov method, 

examining the stability of the rotor in the presence of effects of angular misalignment. Lees [11] investigated 

misalignment in a rigid coupling rotor. He argued in his article that even without the nonlinear properties of a 

lubricant film in bearings or without considering the effects of flexible couplings, the vibrations caused by the 

misalignment can be observed at 2X harmonic. Patel and his colleague [12] and [13] performed a combination of 

theoretical and laboratory work to acquire more precise results on the study of the effects of misalignment on the 

frequency response of the rotor. In their model, they utilized finite element method taking into account Timoshenko 

beam with 6 degrees of freedom and modeling misalignment as a force vector at the point in the coupling location 

obtained using laboratory data. Pennacchi [14] examined the misalignment impacts on a more complex model. His 

model was similar to the real turbo generator. They also considered bearing effects in their model and solved the 

problem using finite element method. Similar to the other researchers, they observed the super-harmonic vibrations 

as a result of non-linear effects of rotor components including bearings. Ma [15] scrutinized the bearing's instability 

due to rotor misalignment. They used the proposed Gibbons’ model to study the misalignment. They solved the 

problem using finite element method and taking into account the Timoshenko beam element with four degrees of 

freedom in each node as well as considering the gyroscopic effect of disks. 

In the case of rotor vibrations with an asymmetry section, considering misalignment, rarely research has been 

done, and only the work of Sheng [16] in 2012 has been mentioned. The model of their study included two axes and 

a flexible coupling, each with a disk and one of the axes having asymmetric section. Using the Lagrangian method, 

they extracted the equations and used numerical methods. In their model, they examined only the effect of parallel 

misalignment. They showed that parallel misalignment and unbalance mass in shafts with asymmetry section 

increase the amount of vibration amplitude at the natural frequency of the system while the variable stiffness of shaft 

increases the amount of vibration amplitude at a frequency equal to half the system natural frequency. 

This research intends to analyze analytically and numerically the nonlinear vibration behavior of a rotor in which 

shafts with rectangular section are used under coupling forces due to misalignment. The moment of inertia of rotary 

parts, the gyroscopic effect, the effects of higher order nonlinear displacements in the strain energy of shaft and the 

affects of unbalance force are considered. The changes in the moment of inertia are also taken into account as well 

as the shaft stiffness variations in rotor rotational motion. Using the angles of Euler, the kinetic energy of the rotor is 

calculated and applying the theory of nonlinear Bernoulli beam, strain energy of rotor is derived. The Lagrange 

method is utilized to extract the motion equations and these coupled equations are solved by the multiple scales 

method. 

2    FORMULATION AND MOTION EQUATIONS  

In this study, the model includes a single rectangular-section shaft with a disk mounted on which are connected to an 

electric motor through a coupling. The model is shown in Fig.1. The shaft is a beam with rectangular cross section 

and length L. The disk is assumed rigid with radius R. Unbalance mass of disk is denoted by 
unbalance

m  .The 
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displacement components in the x, y, and z directions are represented by ( , ), ( , )u x t v x t and ( , )w x t  respectively as 

shown in Fig.2. 

 

 

 

 

 

 

 

Fig.1 

Rotor system coupled with electric motor. 

  

 

 

 

 

 

 

 

 

 

Fig.2 

Rotor system using shaft with rectangular cross section. 

 

The kinetic energy of the disk can be derived as follows: 

 

2 2 2 2 21 1
( ) ( )

2 2
D D Dx x Dy y Dz z

T M u w I I I        (1) 

 

where D
M , 

Dx
I , 

Dy
I and 

Dz
I  are mass of disk and moment inertia of disk about principal directions. 

x
 , 

y
  and 

z
  

are rotational speeds of disk, which are extracted as below: 

 

cos sin cos , sin , cos cos sin
x z x x y z x z z x x

                       (2) 

 

where
z

 , 
x

  and   are Euler angles [17]. Since torsion deformations are neglected and rotational speed of rotor is 

constant, the magnitude of   is equal to that of  . 

The kinetic energy of shaft with rectangular section and the kinetic energy due to mass unbalance denoted by 

s
T and  

u
T  respectively. Referring to [17], they are calculated as follows: 

 

2 2 2 2 2 2

0 0 0

1 1 1
( ) ( 4 ) (cos 2 ( ) 2 sin 2 )

2 2 2

L L L

x z z x x z z xs
A u w dy I dy I t t dyT                          (3) 

 

( cos s )
unbalanceu

T m d u t w in t     (4) 

 

Therefore, the total kinetic energy of rotor 
R

T  , using the Eqs. (1), (3) and (4) can be obtained as: 

 

2 2 2 2 2 2 2 2

0 0 0

2 2

1 1 1 1
( ) ( 4 ) (cos2 ( ) 2 sin 2 ) ( )

2 2 2 2

1
( ) ( ) ( cos s )

2

L L L

R x z z x x z z x D

Dx x z Dy z x unbalance

T A u w dy I dy I t t dy M u w

I I m d u t w in t

          

   

             

        

  
 (5) 
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where ,
2 2

x z x z
I I I I

I I
 

    and 
x

I and 
z

I  are moment inertias about x and z respectively. 

The strain energy of shaft with rectangular section and taking into account higher order deformations are 

obtained in the form of following equations [17]: 

 
2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 20 0

2 2 2

0

[( ) ( ) ] [(( ) ( ) )(cos sin ) 4( )( ) sin cos ]
2 2

[(( ) ( ) ) ]
8

L L

s

L

EI u w E I w u u w
U dy t t t t dy

y y y y y y

EA u w
dy

y y

      
         

     

 
 

 

 



 (6) 

 

According to ,
x z

w u

y y
 

 
  
 

  

the Eq. (6) can be rewritten as follows: 

 

2 2 2 2 2 2 2

0 0 0
[( ) ( ) ] [(( ) ( ) ) cos2 2( )( ) sin 2 ] [( ) ]

2 2 8

L L L
z z zx x x

s z x

EI E I EA
U dy t t dy dy

y y y y y y

    
 

    
        

     
    (7) 

 

In this research, Gibbons' reaction forces [7] are the static load for stationary rotors. For a rotating shaft, the 

forces act as a periodic load with a function of half-sinusoidal, having time period of /  . In order to analyze the 

effect of misaligned coupling forces in both first and second rotational speed, 1X and 2X components are considered 

and in this paper, theoretical model based on Gibbon and Ref. [18] is assumed as follows: 

 

1 1 1 2 2 2
sin sin 2 , 2cos cos

mis mis
F f t f t F f t f t         (8) 

 

where 
1

f  and 
2

f  are obtained according to Gibbons' equations. (Appendix A2) 

3    USING THE RAYLEIGH - RITZ METHOD  

For approximation of the functions u and w, displacements in x and z directions, the Rayleigh-Ritz method can be 

used. In this method, the values u and w can be expressed in the form of the following equation. 

 

1 2
( , ) ( ) ( ) , ( , ) ( ) ( )u y t f y q t w y t f y q t   (9) 

 

and the angular displacements and derivatives are expressed in the following form: 

 

1

1

2 2 1

2 2 2 2

1 2 22 2 2 2

( ) ( )
( ) ( ) ( ) , ( ) ( ) ( )

( ) ( )
( ) ( ) ( ), ( ) ( ) ( )

x z

w df y u df y
q t g y q t q t g y q t

y dy y dy

u d f y w d f y
q t h y q t q t h y q t

y dy y dy

 
 

        
 

 
   

 

 (10) 

 

where derivatives are defined with respect to y. Substituting the Eqs. (9) and (10) in (5), the kinetic and strain energy 

of the rotor are obtained in the form of: 

 

2 2 2 2

1 1 2 2 1 2 1 1 2 3 2 1 3 1 2

1 1
( ) ( )( cos s ) ( ) cos2 sin 2

2 2
R unbalance

T a q q a q q m df l q t q in t a q q t a q q t               (11) 

 

where 
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2 2 2 2

1 1 1

0 0

2 2 2

2 1 3

0 0

( ) ( ) ( ) ( )

2 ( ) ( ) , ( )

L L

D Dx

L L

Dy

a A f y dy I g y dy M f l I g l

a I g y dy I g l a I g y dy

 

 


   





    



 

 

 
(12) 

2 2 2 2 2 2 231 2

1 2 2 1 2 1 2 1 2
( ( ) ( )) ( ( ) ( ))cos2 ( ) ( )sin 2 ( ( ) ( ))

2 2 8
s

bb b
U q t q t q t q t t b q t q t t q t q t        

 

(13) 

 

where 

 

2 2 4

1 2 3
0 0 0

( ) , ( ) , ( )
L L L

b EI h y dy b E I h y dy b EA g y dy       (14) 

 

The Lagrange method is used to derive the motion equations. Lagrange equations for a k-degree system can be 

given as: 

 

( )
k

k k

L T U

d L L
Q

dt q q

 

 
 

 

 (15) 

 

In the above equation, L is Lagrange and is equal to the difference between kinetic and strain energies. 
k

q  is 

general characteristics and 
k

Q  is general force corresponding to it. 

In this paper, the forces due to misaligned coupling assumed as external forces applied on the coupling at a 

distance 
2

L  from the bearing No.2. Using Eq. (9) , the following equation can be derived: 

 

1 1 1 1

2 2 2 2

2 2

2 2

( ) sin ( ) sin 2

( ) cos ( ) cos 2

mis mis

mis mis

W F f L t q F f L t q

F f L t q F f L t q

  

 

   

  
 (16) 

 

So, 
1

Q and 
2

Q  are the general forces due to misaligned coupling in the direction x and z, respectively, and are 

computed as [17]: 

 

1 12 21
( ) sin ( ) sin 2

mis mis
Q F f L t F f L t     (17) 

 

2 22 22
( ) cos ( ) cos 2

mis mis
Q F f L t F f L t    (18) 

 

By applying Lagrange's method and taking into account the damping forces, the unbalance mass and the force 

generated by the misalignment, the motion equations can be derived as: 

 

2 23

1 1 2 1 1 1 2 1 2 1 2 1 2 2 2 2

2

2 1 2 2 1 1 1 2 1 2

( ) cos2 (2 )sin 2 sin 2 (2 )cos2
2

cos2 sin 2 [ ( ) ( )]sin ( )sin 2
e mis mis

q q q q q q q t q t q t q t

q t q t cq m df l f f L t f f L t


     

 

              

          

 (19) 

 

2 23

2 1 1 1 2 1 2 2 2 2 2 2 2 1 2 1

2

2 2 2 1 2 1 2 2 2 2

( ) cos2 (2 )sin 2 sin 2 (2 )cos2
2

cos2 sin 2 [ ( ) ( )]cos ( )cos2
e mis mis

q q q q q q q t q t q t q t

q t q t cq m df l f f L t f f L t


     

 

              

          

 (20) 

 

where c is damping coefficient and, 

 

3 3 0 1 22 1 2

1 2 1 2 3 0 1 2

1 1 1 1 1 1 1 1 1

, , , , , , , ,unbalance mis mis

e mis mis

a b b m F Fa b b
m f f

a a a a a a a a a
               (21) 
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4    SOLVING THE MOTION EQUATIONS   

In this section, in order to solve ordinary differential equations i.e. the Eqs. (14) and (15), multiple scales method is 

used. This method is very effective in solving nonlinear equations. To apply this method, the displacement in the 

transverse directions of the shaft x and z are expanded, respectively, as follows: 

 

1 0 1 10 0 1 11 0 1

2 0 1 20 0 1 21 0 1

( , ) ( , ) ( , ) ...

( , ) ( , ) ( , ) ...

q T T q T T q T T

q T T q T T q T T





  

  
 (22) 

 

where 
0

T t  and 
1

T t  are respectively fast and slow time scale and   is a small non-dimensional parameter. In 

order to solve the Eqs. (19) and (20), the nonlinear term due to high order deformation (
3

 ) and coefficients 
2
 , 

2
  

related to stiffness variation in Mathieu's equation and also damping and forcing terms are assumed small so that 

they appear in the  order. Therefore  parametric values c , 
2
  , 

2
  , 

3
  , 

e
m   , 

1mis
f   and 

2mis
f  are 

substituted by c , 
2
 , 

2
  , 

3
 , 

e
m  , 

1mis
f  and 

2mis
f   in Eqs. (19) and (20). 

 

2 23

1 1 2 1 1 1 2 1 2 1 2 1 2 2 2 2

2

2 1 2 2 1 1 1 2 1 2

( ) cos2 (2 )sin 2 sin 2 (2 )cos2
2

cos2 sin 2 [ ( ) ( )]sin ( )sin 2
e mis mis

q q q q q q q t q t q t q t

q t q t cq m df l f f L t f f L t


          

      

              

          

 (23) 

 

2 23

2 1 1 1 2 1 2 2 2 2 2 2 2 1 2 1

2

2 2 2 1 2 1 2 2 2 2

( ) cos2 (2 )sin 2 sin 2 (2 )cos2
2

cos2 sin 2 [ ( ) ( )]cos ( )cos2 (24)
e mis mis

q q q q q q q t q t q t q t

q t q t cq m df l f f L t f f L t


          

      

              

          

 (24) 

 

Substituting Eq. (22) into equations Eqs. (23) and (24) and Equalizing the terms of the same order, the following 

equations are obtained: 

 
0 :   

10 1 20 1 10

20 1 10 1 20

0

0

q q q

q q q

 

 

   

   
 

(25) 

 
1 :  

2 2 2 2 23

0 11 1 0 21 1 11 0 1 10 1 1 20 10 20 10 2 0 10 2 0 10 2 0 20

2

2 0 20 2 10 2 20 10 1 1 2 1 2

( ) 2 (( ) cos2 (2 ) sin 2 sin 2
2

2 cos2 cos2 sin 2 [ ( ) ( )]sin ( ) sin 2
e mis mis

D q D q q D D q D q q q q D q t D q t D q t

D q t q t q t cDq m df l f f L t f f L


     

  

               

             t

 

 

(26) 

 

2 2 2 23

0 21 1 0 11 1 21 0 1 20 1 1 10 10 20 20 2 0 20 2 0 20

2 2

2 0 10 2 0 10 2 20 2 10 0 20 1 2 2

2 2

2 ( ) cos2 (2 ) sin 2
2

sin 2 (2 ) cos2 cos2 sin 2 [ ( ) ( )]cos

( ) cos2

e mis

mis

D q D q q D D q D q q q q D q t D q t

D q t D q t q t q t c D q m df l f f L t

f f L


    

   

             

             

 t

 (27) 

 

The solution of Eqs. (25) will be in the form of: 

 

10 1 1 1 0 2 1 2 0
( )exp( ) ( )exp( )q A T i T A T i T cc     (28) 

 

20 1 1 1 0 2 2 2 0
exp( ) exp( )q A i T A i T cc      (29) 
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where 

 
2 2

1 1 2 1

1 2

1 1 1 2

( ) ( )
,

i i   

 

 
   

 
 (30) 

 

The two resonance frequencies 1
  and 2

  are the primary resonance frequencies, which are the solution of the 

following equation: 

 
4 2 2 2 2

1 1 1
(2* ) 0          (31) 

 

Substituting Eqs. (28) and (29) into Eqs. (26) and (27) and then Simplifying them, following equations will be 

derived: 

 

2 2 3 2 23

0 11 1 0 21 1 11 1 1 1 0 2 1 2 1 2 1 2 0

2 2 2 2

1 1 2 1 2 1 2 0 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

2 2 1 2 1 2 1 2 2 1

( ) [(1 ) exp[3 ] (3 2 ) exp[ ( 2 ) ]
2

(3 2 ) exp[ (2 ) ] [ 2 ( ) (3 )

(6 2 2 )

D q D q q A i T A A i T

A A i T i D A T D A A A
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2
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  
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2
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2
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[ (2 ) (2 ) ] exp[ (2 )]

2

1
[ (2 )

2

e

mis mis

i T A A i T cc i m df l

f f L i T if f L i T cc

i i i A i

i

   

          

     

       

    
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          

      

           
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(32) 

 

2 3 3 2 23
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2 2 2 2
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2
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3 3
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A

 

   

   

 
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  2

2 0 1 2 2 0 2 2 0
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

          

          

       

          
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2 2
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]

1
[ (2 ) (2 ) ] exp[ (2 )]

2

1
[ (2 ) (2 ) ] exp[ (2 )]

2

i i i A i

i i i A i

          

          

          

           

 

(33) 

 

Since Eqs. (32) and (33) are linear, one can obtain a particular solution for each right term independently. To 

determine solvability conditions, the coefficients 
0

exp( )
n

i T of the particular solution are considered as follows: [19] 
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11 1 1 1 0 1 1 2 0

21 2 1 1 0 2 1 2 0

( )exp( ) ( )exp( )

( )exp( ) ( )exp( )

q P T i T Q T i T

q P T i T Q T i T

 

 

 

 
 (34) 

 

In the case   is near the first resonance system i.e.
1

 : 

To investigate the dynamic behavior of the system near the first resonance   is considered in the following 

form: 

 

1
     (35) 

 

where   is the detuning parameter to determine the proximity of   and 
1

 . 

Eqs. (32) and (33) will have solutions just when solvability conditions are met. To study the solvability 

conditions, the particular solution of the Eq. (34) by taking into account 
1

     is substituted in Eqs.(32) and 

(33), and the coefficients of terms of the same order are equalized [19]. By doing so, the following equations are 

obtained: 

 
2

1 1 1 1 1 2 1

2

1 1 1 1 1 2 2

( )

( )

P i P R

i P P R

   

   

    

    

 (36) 

 

where 
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(37) 

 

and  

 
2
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2
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Q i Q S

i Q Q S

    
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 (39) 

 

Because the coefficients matrices for Eqs.(36) and (38) are singular according to the characteristic Eq.(31),  the 

solution do not exist unless: 

 
2 2

1 1 1 1 1 1

1 1 2 1 2 1 2

( ) ( )
0 , 0

R S

i R i S

   

    

 
 

 
 (40) 

 

By solving the determinants of Eq. (40) and simplifying, the result will be in the form of the following equations:  
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2
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(41) 

 

and 
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DD D
d d d

D D D
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(42) 

 

By substitute  (1/ 2)( exp( ))
n n n

A a i  where 
n

a  and 
n

 are real constants, into Eqs.(41) and (42) and simplify them, 

the final solution of will be in the form of: 

 

3

2 1 4 5 1 6 1

1 4 6 1

1 1 1
cos cos2 0

8 2 2

1 1
sin sin 2 0

2 2

c a c c a c a

a c c a


     


     


 (43) 

 

where 

 

1 1
T     (44) 

 

In solving the equations, the value of 
2

a  is equal to zero. Therefore, the amount of vibration amplitude in the 

first resonance will be function of 
1

a . 

In the case   is near the second resonance system i.e. 
2

 : 

Using the same process, the equations governing the system near the second resonances will be as follows: 

 

3

2 2 4 2 5 2 6 2 2

2 4 2 6 2 2

1 1 1
cos sin 2 0

8 2 2

1 1
sin cos2 0

2 2

d a d d a d a

a d d a


     


     


 (45) 

 

The Eqs. (43) and (45) in the system of equations are in terms of domain 
1

a  or
2

a ,  ; the detuning parameter 

and cos  or sin . According to the solution of the system of equations, cos  and sin  can be eliminated from 

the equations and a can be plotted versus . In Fig. 3, the vibration behavior of the rotor is shown in the first and 
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second resonances. As clearly indicated by the figures, resonance occurs at both critical speeds of the rotor and 
nonlinear terms have caused the resonance diagram form to be of a hard-spring type. 

 

 
(a) 

 
(b) 

Fig.3 

Frequency response diagrams for the shaft with rectangular cross-section a) at the first critical speed b) second critical speed. 

5    NUMERICAL STUDY  

In order to examine the analytical results, a systematic analysis was conducted using the Simulink toolbox of the 

Matlab. The equations of motion, i.e. Eqs. (19) and (20), are directly solved by this software numerically near the 

first and second critical speeds and the results are shown as triangular marks in Fig.3. The numerical data are given 

in Appendix A4.The disadvantages of numerical methods in the analysis of non-linear problems are that unstable 

non-linear parts cannot be predicted, while in a multiple-scale method, these boundaries are well represented. 

6    EXAMINING THE EFFECT OF SYSTEM PARAMETERS  

One of the advantages of analytical methods in comparison with numerical ones is that the equations obtained are in 

terms of the parameters of the system and it is easy to examine the behavior of the rotor by changing its parameters. 

Eqs. (43) and (45) are obtained by considering the geometry of rotor, mass unbalance forces, gyroscopic effect, 

forces caused by misalignment and the effects of these parameters are dependent on its coefficients. The designers 

can change the parameters in order to predict different rotor dynamic behaviors and optimize the parameters that 

have the greatest effect. In this paper, simulating parameters including unbalance mass, asymmetric shaft and 

misalignment forces can be used to control the vibrational behavior of the system near the first and second critical 

speeds. In general, the effect of nonlinearity has caused the resonance curves bend from the position of the linear 

system response given in Appendix A3. It is interesting to note that nonlinearity due to asymmetric shaft is 

significantly expand the instability region in case of 
2

  . The parameters’ effects are discussed more in 

following section.  

7    THE EFFECT OF THE INCREASE OF THE MASS UNBALANCE FORCE   

In order to investigate the effect of unbalance mass force on the dynamic behaviors of rotor near the first and second 

critical speeds, the amount of unbalance mass in the disk location increased from 0.5 to 2 grams. As the magnitude 

of the unbalance mass increases, the amplitude of vibration is intensified and the vibration diagram inclines to the 

right and covers a wider range of detuning parameters, which means that the resonance at the first and second 

critical speeds occurs in the wider frequency range. This issue is of utmost importance in rotary machines speeds of 

which are higher than the critical speed, and to prevent the damage to the equipment s’ passing the critical speed, the 

passing time should be calculated or, as far as possible, the force caused by unbalance mass should be decreased by 
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precise balance methods. In Fig. 4 the increase of unbalance mass force in the first and second critical speeds are 

shown in resonance graphs. 

 

 
(a) 

 
(b) 

Fig.4 

Effect of increase in mass unbalance a) at the first critical speed b) second critical speed. 

8    THE EFFECT OF INCREASING THE FORCE CAUSED BY MISALIGNMENT  

As mentioned, the forces and moments caused by the unbalance force are derived from Gibbons’ equations 

(Appendix A2). Given the fact that in the model assumed, the torque of the motor can be neglected in steady state, 

the effect of the forces and moments caused by the misalignment versus the transverse forces due to the 

misalignment can be ignored. In this paper, the magnitude of misalignment in the z direction is increased from 0.1 to 

0.5, and its effect on the rotor's resonance curve is investigated near the first and second critical speeds, as in the 

case of the increase in unbalance mass, the increase of misalignment lead to the growth of the magnitude of 

vibration and also the frequency range of the resonance is intensified near the first and second critical speeds. In 

comparison with mass unbalance effect, the resonance curves are more expanded and the range of amplitude is 

higher. This matter is illustrated in Fig. 5. 

 

 
(a) 

 
(b) 

Fig.5 

Effect of increase in misalignment a)at the first critical speed b) second critical speed. 

9    ASYMMETRIC SHAFT EFFECT  

In order to investigate the effect of non-circular shaft, the length of rectangular of the cross section has been 

increased to twice its width. The effect of increasing the asymmetric of the shaft near the first and second critical 

speeds is illustrated in the rotor resonance diagram as shown in Fig. 6. The effect of changing the ratio of length to 

width of the cross section and, consequently, the change in the moment of inertia of the cross section near the 

second critical speed has led to a sharp increase in the widespread of frequency of the resonance. This means that the 
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effects of different parameters are not always the same on different resonances, and it is necessary to examine the 

effect of each of the parameters separately on the first and second resonances. 

 

 
(a) 

 
(b) 

Fig.6 

Effect of increase in /I I  a) at the first critical speed b) second critical speed. 

10    CONCLUSIONS 

Nonlinear dynamic behavior near the primary resonances of a rotor with a rectangular shaft under the influence of 

forces due to coupling misalignment is investigated. Also the effects of changes in the moment of inertia of the shaft 

in different directions as well as gyroscopic effect are considered. Since non-linear Bernoulli theory is used for shaft 

modeling, nonlinear displacement effect is considered so shear force effects are neglected. To solve the equations 

and investigate the nonlinear behavior of the rotor, multiple scale method is used and Gibbons’ equations are applied 

to calculate the forces due to coupling misalignment. The analytical results are verified by using numerical methods. 

It is observed that the analytical results are in good agreement with numerical results. As a whole, in this paper, the 

model of previous papers is developed. The model presented in this research is well suited to study and predict the 

effect of shaft asymmetry as well as other important parameters such as the effect unbalance forces, gyroscopic 

effect and forces caused by coupling misalignment in different speeds and especially near first and second 

resonances. 

ACKNOWLEDGMENTS  

The authors would like to thank the anonymous reviewers for their valuable and thoughtful comments to improve 

the quality of this work. 

APPENDIX  

A.1 Nomenclature 

1
a         Amplitude at the equilibrium position (m) in x direction 

2
a         Amplitude at the equilibrium position (m) in z direction 

         Angular Speed of rotor (rad sec
-1

) 

1 2
,    Angular frequencies of rotor (rad sec

-1
) 

 I          Area moment of inertia of shaft (m
4
) 

 c          Coefficient of damping (N s m
-1

) 

1
R         Cross sectional radius of shaft/internal radius of disk (m

2
) 

 A          Cross sectional area of shaft (m
2
) 

 q          Density of material (kg m
-3

) 

1
r           Detuning parameter (rad sec

-1
) 

 U          Discretized displacement along axis x (m) 
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 W         Discretized displacement along axis z (m) 

( , )u y t    Displacement along x axis of rotor (m) 

( , )w y t   Displacement along z axis of rotor (m) 

s
T          Kinetic energy of shaft (N m) 

D
T         Kinetic energy of disk (N m) 

u
T          Kinetic energy of mass unbalance (N m) 

 L          Length of shaft (m) 

dx
I         Mass moment of inertia of disk in direction x (kg m

2
) 

dv
I         Mass moment of inertia of disk in direction y (kg m

2
) 

d
M        Mass of disk (kg) 

1
d          Position of mass unbalance from geometric center of shaft (m) 

1
l           Position of disk on shaft (m) 

s
U         Strain (deformation) energy of shaft (N m) 

 h          Thickness of disk (m) 

R
T         Total kinetic energy of rotor (N m) 

R
U        Total strain (deformation) energy of rotor (N m) 

A.2 Misalignment reaction forces and moments  

 

 

 

 

 

 

 

 

 

 

Fig.A.2 

Coupling coordinates system. 
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
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(A.2a) 

 

where 

 

1 2

1 2

sin(ΔX1/Z3) , sin(ΔX2/Z3)

sin(ΔY1/Z3) , sin(ΔY2/Z3)

Arc Arc

Arc Arc

 

 

 


 

 (A.2b) 

A.3 Linear analysis 

The rotor is analyzed as a free un-damped linear system to determine natural frequencies and in Fig. A.3(a) 

Campbell diagram is plotted to determine the rotor critical speeds. Two critical speeds are found to be 1096.5 rpm 

and 1148.7 rpm. The unbalanced mass response is also shown in Fig. A.3(b). 
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(a) 

 
(b) 

Fig.A.3 

a) Campbell diagram. b) Mass unbalance response. 

 

A.4 Numerical data 

Geometric and material property: 

 
3 9 2

1

2 2 2

1 2 1 2

2 2

1 2

7800 , 200 10 , 0.001

: 92 , 0.24, 320, 4 , 6 ( tan sec 4 6)

: 1.561 , 19 , 150 , 10 , (3 3 ) /12

( ) / 2

D Dx D

Dy D

kgm E Nm c

Shaft L mm L L Sx mm Sz mm rec gular cross tion

Disk M Kg R mm R mm h mm I M R R h

I M R R


 

   

     

      

 

  

 

Constant 

 
6 4 3 9

1 2 1 2 3
0.046, 10 , 1.37883.3582 5.3010 , 1032 4.7729, 10    


           
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