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 ABSTRACT 

 The free vibration behavior of two fluid-conveying vertically-

aligned single-walled boron nitride nanotubes are studied in the 

present paper via the nonlocal strain gradient piezoelectric theory 

in conjunction with the first-order shear deformation shell 

assumption in thermal environments. It is supposed that the two 

adjacent boron nitride nanotubes are coupled with each other in the 

context of linear deformation by van der Waals interaction 

according to Lennard–Jones potential function. To achieve a more 

accurate modeling for low-scale structures, both hardening and 

softening effects of materials are considered in the nonlocal strain 

gradient approach. The motion equations and associated boundary 

conditions are derived by means of Hamilton’s variational 

principle, then solved utilizing differential quadrature method. 

Numerical studies are done to reveal the effect of different 

boundary conditions, size scale parameters, aspect ratio, inter-tube 

distance, and temperature change on the variations of 

dimensionless eigenfrequency and critical flow velocity.  

                                 © 2021 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 S a consequence of providing attractive mechanical, electrical and physical properties, nanotubes (NTs) have 

been utilized for various advanced applications in nanostructures [1]. Undoubtedly, one of the most notable 

carbon allotropes is carbon nanotube (CNT) including rolled-up single-walled carbon nanotubes (SWCNTs) or 

multi-walled carbon nanotubes (MWCNTs) [2, 3]. Boron nitride (BN) is a chemically resilient refractory mixture of 

boron and  nitrogen atoms which has numerous outstanding characteristics including a high elastic modulus, and 

noteworthy efficiency in heat transfer fields [4, 5]. An advantages of boron nitride nanotubes (BNNTs) over CNT is 
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that BNNTs exhibit strong piezoelectric properties which makes them an interesting choice in nano-

electromechanical systems (NEMS) [6]. Some researchers have investigated the static and dynamic behavior of 

BNNTs. For example, based on the Donnell shell approach, Salehi-Khojin and Jalili [7] studied the buckling 

behavior of multi-walled BNNTs (MWBNNTs)-based composites corresponding to electro-thermo-mechanical 

loadings. By taking into account molecular mechanics simulations and continuum mechanics assumptions, 

Chowdhury et al. [8] carried out the transverse and radial breathing vibrations of armchair and zigzag BNNTs. The 

critical buckling loads of BNNTs for different diameters subjected to uniaxial compression loading were obtained 

via the molecular dynamic (MD) by Ebrahimi-Nejad et al. [9]. Yang et al. [10] analyzed the influence of 

geometrically nonlinear deformation on the nonlinear dynamic response of piezoelectric cylindrical shells reinforced 

using BNNTs via the finite difference technique. A three dimensional finite element method was applied by Ansari 

et al. [11] to investigate the stability properties of single-walled BNNTs (SWBNNTs) and demonstrated that zigzag 

BNNTs offer more stability than armchair ones. Recently, Yan et al. [12] studied the influence of tube-shaped radius 

on the frequencies of both torsional and longitudinal free vibrations of BNNTs. Owing to the significance of low-

size structures, numerous empirical tests and atomistic simulations [13, 14] have been performed to show the 

noteworthy impact of low-size materials on mechanical properties as the material size enters the nanoscale. Due to 

the existing issues such as great computational costs in utilizing controlled tests and MD modelling in 

nanostructures and the lack of an internal length scale factor in traditional continuum models, higher-order non-

classical continuum approaches are required to perfectly predict the mechanical behavior of low-size structures [15–

23]. Until now, several projects have utilized the described non-classical continuum models to consider the impacts 

of low scale on the free/forced vibration, and the static/dynamic instability problem of different CNTs and BNNTs 

[24–43]. For example, by taking into account the nonlocal elasticity theory of Eringen [21] in the framework of 

Euler–Bernoulli beam assumption, Ghorbanpour Arani and Roudbari [44] proposed a non-classical model to study 

the impacts of surface stress and small scale on the nonlocal frequencies of zigzag coupled SWBNNT via 

viscoelastic medium. Regarding the concept of nonlocal elasticity theory, the stress state at every point of the area of 

nanostructures is supposed to be a function of strain states at all other points of the nanostructure. Mercan and 

Civalek [45] obtained the buckling load of BNNTs on elastic substrate aided by the nonlocal elasticity theory with 

discrete singular convolution (DSC). Akgöz and Civalek [46] applied the modified strain gradient theory introduced 

by Lam et al. [22] to investigate the bending of SWCNTs based on a higher-order beam model. According to the 

modified strain gradient theory, to exactly capture the effect of low scale, three independent higher-order length 

scale parameters should be considered. To consider both hardening and softening effects in a single theory, Lim et 

al. [47] combined the nonlocal elasticity and strain gradient approaches and demonstrated that to achieve a correct 

modeling of the size-dependent structures, it is essential to employ both hardening and softening effects of materials. 

The proposed non-classical assumption is the so-called nonlocal strain gradient theory (NSGT). When using NSGT, 

rhe focus is on correctly considering the influence of two length scale terms on the physical and mechanical 

behaviors of size-dependent structures. Li et al. [48] applied NSGT in the framework of Euler–Bernoulli beam 

theory to analyze the flexural wave propagation phenomenon through functionally graded nanobeams. The authors 

indicated that the acoustical and optical phase velocities normally increase with decreasing nonlocal factor or 

increasing material length scale term. In another study by Li et al. [49], wave propagation problem in size-dependent 

SWCNT in view of surface effect and magnetic field was carried out via NSGT. Malikan et al. [50] showed how the 

thermal environment affects the forced vibration of SWCNTs resting on viscoelastic foundation using NSGT. 

Dehghan et al. [51] studied the small size effect on the wave propagation problem of fluid-conveying magneto-

electro-elastic nanotube via NSGT. Recently, Mohammadian et al. [52] used NSGT in the framework of Euler-

Bernoulli beam model to investigate the natural frequencies of hetero-junction CNTs. Thanks to impeccable hollow 

cylindrical geometry in CNTs and BNNTs along with amazing chemical, mechanical and physical characteristics, 

they are anticipated to be utilized as nanofluidic, gas storage, and drug delivery systems [53–59]. Ghorbanpour-

Arani et al. [60] reported size-dependent wave propagation in double-walled BNNTs conveying nanoflow based on 

nonlocal Timoshenko beam theory. NSGT in conjunction with the shear deformable shell theory was used by 

Zeighampour et al. [61] to investigate wave propagation in fluid-conveying double walled CNTs considering Van 

Der Waals (VDW) force between the two intended walls. Mohammadi et al. [62] applied NSGT in conjunction with 

cylindrical shell model to study the free vibration of an SWCNT conveying viscous fluid. The free vibration and 

instability behavior of SWCNT conveying viscous fluid flow were investigated by Mahinzare et al. [63] via NSGT 

and firs-order shear deformation theory.  

The above literature review evidently shows that no analytical or numerical study on the application of NSGT in 

conjunction with first-order shear deformation shell model has been carried out to examine the vibration behavior of 

two vertically-aligned SWBNNTs conveying fluid in thermal environment. Therefore, the major purpose of current 

paper is to fill this important gap in the literature. Indeed, investigations demonstrated that drugs could bind to the 
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BNNTs surface in a stable manner with non-covalent interactions. Also, BNNTs are biocompatible and non-toxic, 

and have the potential to act as competent drug delivery vehicles. Therefore, one of the main innovations of the 

present work is to consider the effect of VDW interaction between two SWBNNTs conveying nanofluid with 

respect to the variations of temperature and external voltage. On the other hand, the effect of size-dependency on the 

dynamic behavior of BNNTs is presented by implementing both hardening and softening effects in the framework of 

NSGT. The first-order shear deformation shell model which include the effects of transverse shear deformation and 

rotary inertia is considered for obtaining the governing equations of motion. The two vertically-aligned SWBNNTs 

are coupled through VDW interaction. The motion equations and associated boundary conditions are derived by 

means of Hamilton’s variational principle, and then solved utilizing differential quadrature method (DQM). As 

mode shapes are very important in the design of the smart nanostructures. Thus, the effect of small scale parameters 

on the mode shapes of various boundary conditions are investigated. Furthermore, it is denoted that VDW force is a 

substantial parameter and cannot be neglected in the analysis. 

2    PRELIMINARY FORMULATION  

As schematically demonstrated in Fig. 1, two vertically-aligned SWBNNTs (simulated as cylindrical shell) of the 

ensemble network conveying fluid and of the same length L, same radius R, same mean radius rm, inter-tube distance 

lm, and same uniform thickness h are subjected to the thermal environment of T . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Two vertically-aligned SWBNNTs conveying fluid subjected 

to temperature change. 

 

Based on the first-order shear deformable shell approach, the deflection field (U, V, W) for the cylindrical shell 

can be expressed as [64-66]: 
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In which u, v and w refer to the displacements along the curvilinear coordinates ,x   and z, respectively. 

Furthermore, x  and   indicate the rotations of each BNNT cross-section about x   and   axis. Based on the 

displacement field stated in Eq. (1) and implemented linear strain-displacement relations, the nonzero strains can be 

presented as: 
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The non-classical differential constitutive equation based on the assumption of Lim et al. [47] in the framework 

of piezoelectricity theory can be expressed as: 
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modulus of BNNT. Furthermore, the parameters 0e a  and l denote, respectively, the nonlocal term and the strain 

gradient term. Moreover, 0e  and a represent, respectively, the calibration constant and the internal characteristic 

length. Also,   is the thermal expansion coefficient, and the thermal changes of the environment is demonstrated 

by T . Moreover,   is Poisson’s ratio and ,ij ije s  and ip  are, respectively, reduced piezoelectric constants, 

dielectric constants and pyroelectric constants.  

Based on the piezoelectricity theory [67], the electric potential for each SWBNNT can be defined as: 
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In which i  denotes the variation of electric potential for each SWBNNT and 0V  expresses the external electric 

voltage. However, to satisfy Maxwell relations, the electric field must be considered as: 
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Hamilton’s principle is employed to derive the governing equations and boundary conditions according to [68] 
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respectively. The strain energy variation of the fluid-conveying SWBNNTs is written as: 
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Substituting Eq. (2) into Eq. (7) results in the following set of equations: 
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where sk  refers to the shear correction term. 

The variation of kinetic energy using Eq. (1) can be presented as: 
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(10) 

 

where   stands for the density of each mass of SWBNNT. It should be noted that the fluid inside the every 

SWBNNT is taken as incompressible, inviscid, isentropic and irrotational. However, the external work variation 

exerted by fluid can be presented as: 
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     (11) 

 

In which f  indicates the mass density of applied fluid. Furthermore, U represents the fluid velocity.  
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Also, according to Lennard–Jones potential function, the external work variation exerted by vdW forces on a 

SWBNNT, owing to its relative lateral motion with respect to its neighboring BNNT, can be defined as: [69, 70] 
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 (12) 

 

where yC  and zC  express the VDW interaction factor, which are defined as: [69] 
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(13) 

 

where   refers to the well depth, a is length of the BN bound, and   denotes the equilibrium distance. Finally, the 

external work variation exerted by the electric potential and temperature rise for each SWBNNT can be written as: 

 

   

   

,

2 21 1 1 1

0 0 0 0

2 22 2 2 2

0 0 0 0

f elec

L LT T
x E x E

L LT T
x E x E

w w v v
N N R dxd N N R dxd

x x x x

w w v v
N N R dxd N N R dxd

x x x x

 

 



   

   

 

      
            

      
           

   

   

 
(14) 

 

where 
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Finally, substituting , , ,,s f f fluid f vdW f elec             and k in the Hamilton’s principle, the 

general system of higher-order equations of motion can be obtained as: 
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In which 
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Also, Hamilton’s principle gives the corresponding boundary conditions at each SWBNNT ends  0,x L  as: 
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Finally, substituting Eq. (3) (with respect to Eq. 9) into Eqs. (16)–(21), the non-classical equilibrium equations in 

terms of displacements are derived and provided in Appendix A. 
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3    SOLUTION OF EQUATIONS OF FLUID _ CONVEYING SWBNNTs 

To solve the set of main equations, i.e. equations given in Appendix A, DQM is utilized to discretize the equilibrium 

equations and associated boundary conditions. According to this method, the partial derivative of a function at a 

given discrete point can be determined by a weighted linear combination of the function values at all grid points. 

However, the derivative of each optional function in an optional point can be rewritten at all intervals. Furthermore, 

based on Chebyshev points, the grid points are computed as: [71] 
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In which N depicts the entire number of grid points. Additionally, the pth-order differential operator is indicated 

as a finite series in the form 
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where 
 p

kj
C  denotes the weighting factors for the pth-order derivative. In addition, the considered boundary 

conditions can be presented as: 
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(32) 

 

For simply-supported-end (S) SWBNNT.  

In order to investigate the free vibration of the two vertically-aligned SWBNNTs (simulated as cylindrical shell) 

of the ensemble network, the displacement field along the   direction can be stated as follows: 
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where   expresses the complex natural frequency. Firstly, substituting Eq. (33) into the governing equations 

(equations given in Appendix A) and related boundary conditions (Eqs. (31–32)), then employing DQM, the 

eigenvalue problem can be obtained as in the following matrix form  
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 2 0.M C K d     (34) 

 

where M, C, K and d represent, respectively, the mass matrix, damping matrix, stiffness matrix, and modal vector. It 

must be noted that Re    denotes the damping factor and Im    expresses the natural frequency. Nevertheless, by 

attaining the non-trivial solution of relation (34), the complex natural eigenfrequency can be calculated.  

4    RESULTS AND DISCUSSION  

4.1 Convergence study 

In this section, the convergence for performed calculations is systematically guaranteed in a simple trial and error 

fashion, i.e., by increasing the number of nodes distributed through the length of SWBNNTs, N, while seeking for 

stability in the predicted dimensionless complex natural frequencies with a predefined error bound  710   . 

Therefore, the results stated in Table 1 indicate the convergence of the first two computed dimensionless natural 

frequencies nom R
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 for three various boundary conditions (i.e., CC, SC, and SS). As shown, at least 16 

nodes (N=16) are required for the proper convergence of numerical solutions. Here, the length scale parameters are 

assumed to be zero. Also, the material and physical parameters of SWBNNTs used in this section and following 

ones (except for the section of verification of results) are in the form 
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Table 1 

First two dimensionless natural frequencies with respect to the total number of nodes. 

N Mode SS CC 

6 
1 0.34246 0.95635 

2 0.79199 1.63742 

8 
1 0.35475 0.89507 

2 0.83139 1.43125 

10 
1 0.35856 0.88528 

2 0.83046 1.42668 

12 
1 0.35852 0.88520 

2 0.83042 1.42559 

14 
1 0.35851 0.88520 

2 0.83042 1.42559 

16 
1 0.35851 0.88520 

2 0.83042  1.42559 

4.2 Comparison study 

Before presenting the main results, the correctness and accuracy of the derived formulations must be established. To 

this end, by neglecting VDW force as well as fluid and thermal effect, the calculated values of the first natural 

frequencies of cylindrical piezoelectric shell for simply-supported boundary condition are reported in Table 2. 

Comparisons with numerical reports previously presented by Mehralian and Tadi Beni are also provided [72]. The 
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calculated frequency values demonstrate good agreement with the results presented in the mentioned study. Here, it 

is assumed that ,L R  2 23 3. nm   and 0.05 .h R  

 

Table 2 

Comparison study of the nondimensional natural frequencies (THz) of single cylindrical piezoelectric shell. 

4.3 Main results 

Numerical studies are carried out in this section to properly understand the impact of several factors (i.e., size-

dependent effects, inter-tube distance, aspect ratio, thermal environment) on the variations of the complex natural 

frequencies of the system.  

In Fig. 2, the effect of the nonlocal term   on the variations of the real and imaginary parts of eigenfrequency 

versus flow velocity for three various boundary conditions (i.e., SS, CC and CS) is displayed. Here, the strain 

gradient parameter and thermal factor are assumed to be zero, 10 ,L R  0 0V   and 0.05h R . The key 

observations are summarized as follows. As expected, the natural frequency (imaginary part of complex 

eigenfrequency) is reduced with increasing flow velocity until it becomes zero and the first mode of divergence 

instability occurs. One should note that the flow velocity related to the zero values of the imaginary part of 

frequency is named the critical velocity. It is also found that with increasing nonlocal factor, the natural frequency 

and critical flow velocity decrease for all boundary conditions. This is attributed to the fact that the interaction force 

between SWBNNT atoms decreases and brings about a softer system. On the other hand, the real part of complex 

eigenfrequency initially remains zero, meaning that in this period, the fluid flow in system does not experience any 

damping and the system is stable.  

 

 
 

  

  
  

 2l nm  Present (DQM) Ref. [72] (analytical) 

0.1 0.3822 0.3813 

0.3 0.5331 0.5323 

0.5 0.6551 0.6542 

0.7 0.7544 0.7536 

0.9 0.8418 0.8409 
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Fig.2 

Effect of nonlocal term on the variations of the complex natural frequency versus flow velocity for different boundary 

conditions. 

 

Fig. 3 shows the effect of strain gradient parameter on the variations of the imaginary and real parts of complex 

eigenfrequency with respect to different flow velocity values for different boundary conditions. Here, the nonlocal 

parameter and thermal factor are supposed to be zero, 10 ,L R  0 0V   and 0.05h R . The comments about 

divergence instability and critical flow velocity can readily be made similar to the mentioned remarks (i.e., as in Fig. 

2). In particular, it is observed that as the strain gradient parameter increases, the natural frequency and critical flow 

velocity both increase since the interaction force between SWBNNT atoms increases and the structure becomes 

stiffer.  

 

  
  

  
  

  
Fig.3 

Effect of strain gradient parameter on the variations of the complex natural frequency versus flow velocity for different 

boundary conditions. 
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Fig. 4 demonstrates the effect of aspect ratio L
R

 on the variations of the imaginary part of dimensionless 

complex eigenfrequency against different flow velocity values for the first mode under various boundary conditions. 

Here, 0,T   0 4. nm ,   0 3l . nm ,  and 0 0V  . It is observed that with increasing aspect ratio, the natural 

frequency (imaginary part of complex eigenfrequency) and critical flow velocity are reduced. It is inferred that a 

system with a high aspect ratio is further likely to cause the divergence instability [73].  

 

  
  

 

 

 

 

 

 

 

 

Fig.4 

Effect of aspect ratio on the variations of the imaginary part 

of eigenfrequency versus flow velocity. 

 

The effect of temperature on the imaginary part of the system eigenfrequency versus flow velocity for the first 

mode under various boundary conditions is displayed in Fig. 5. Here, 10,L
R
  0 4. nm ,   0 3l . nm  and 

0 0V  . The results indicate that an increase in temperature change leads to a higher natural frequency and critical 

flow velocity. 

 

  
  

 

 

 

 

 

 

 

 

Fig.5 

Effect of temperature change on the variations of the 

imaginary part of eigenfrequency versus flow velocity. 
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The influence of electric voltage on the imaginary part versus flow velocity for the first mode under various 

boundary conditions is depicted in Fig. 6. Here 10,L
R
 0,T   0 4. nm  and 0 3l . nm . It is shown that with 

increasing electric voltage, the natural frequency decreases. 

 

  
  

 

 

 

 

 

 

 

 

 

Fig.6 

Effect of initial electric voltage on the variations of the 

imaginary part of eigenfrequency versus flow velocity. 

 

The effect of inter-tube distance on the dimensionless frequency against flow velocity is presented in Fig. 7. 

Here, 10,L
R
  0,T   0 4. nm ,   0 3l . nm  and 0 0V  . As noted, the natural frequency decreases with 

increasing inter-tube distance of the two SWBNNTs. This result is in complete agreement with the findings of Ref. 

[66].  

 

  
  

 

 

 

 

 

 

 

 

 

Fig.7 

Effect of inter-tube distance on the variations of the 

imaginary part of eigenfrequency versus flow velocity. 
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Mode shapes are crucial in the design of smart nanostructures. Thus, the first three mode shapes of CC, SS, and 

CS boundary conditions are demonstrated in Fig. 8 for various values of the nonlocal and strain gradient parameters. 

In general, one concludes that the mode shapes of all boundary conditions are affected by small-scale terms.  

 

 
  

 
  

    
Fig.8 

First three mode shapes of CC, SS, and CS BNNT versus x
L

 . 

 

Finally, the effect of VDW force on the dimensionless frequency with respect to flow velocity is illustrated in 

Fig. 9 for different boundary conditions. Here, 10,L
R
 0,T   0 4. nm ,   0 3l . nm ,  and 0 0V  . It is seen 

that by considering VDW interaction, the natural frequency increases as VDW forces increase the stiffness of the 

structure. 
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Fig.9 

The effect of VDW force on the variation of natural frequency. 

5    CONCLUSIONS 

A numerical model was presented to investigate the size-dependent free vibration problem of two vertically-aligned 

SWBNNTs conveying fluid using the nonlocal strain gradient piezoelectric theory in conjunction with the first-order 

shear deformation shell model. The two adjacent SWBNNTs were coupled with each other by Van Der Waals 

(VDW) interaction. The governing partial formulations was derived using Hamilton’s principle, after which DQM 

was implemented to solve equilibrium equations. Finally, the numerical results were displayed to denote how the 

dimensionless complex eigenfrequency is altered by varying the temperature change, aspect ratio, small scale 

parameters, inter-tube distance, and boundary conditions. The major results are summed up as follows 

 The results denoted that VDW force is a significant parameter and cannot be neglected in the analysis.  

 By incrementing the nonlocal term, the system frequency and critical flow velocity decrease for all 

boundary conditions 

 By increasing the strain gradient parameter, the critical flow velocity and the natural frequency increase. 

 An increase in the value of inter-tube distance brings about a decrease in natural frequency. 
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