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 ABSTRACT 

 An approach of Green’s function is adopted to solve the 

inhomogeneous linear differential equations representing wave 

equations in piezo-composite materials. In particular, transference of 

horizontally polarised shear (SH) waves is considered in bedded 

structure comprising of porous-piezo electric layer lying over a 

heterogeneous half-space. Propagation of SH-waves is considered to 

be influenced by point source, situated in the heterogeneous 

substrate. A closed form analytical solution is obtained to establish 

the dispersion relation. Remarkable influence of different parameters 

(like elastic constant, piezoelectric constant, heterogeneity parameter, 

initial stress and layers thickness) on the phase and group velocity are 

shown graphically. Moreover, a special case of present study is 

shown by replacing the porous piezoelectric material with 

piezoelectric material. Some numerical examples are illustrated by 

taking the material constants of Lead Zirconate Titanate (PZT-1, 

PZT-5H and PZT-7) for the porous piezoelectric layer where the 

phase velocity of SH waves is high rather than that of piezoelectric 

layer.                           © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Point source; Porous piezoelectric material; Green’s 

function; SH-waves. 

1    INTRODUCTION 

N modern mobile technologies ambient light sensors have been incorporated in order to optimize the performance 

of display channels. In addition to this, the sensor has also been used in automobiles to accelerate the activity 

subsequently. SAW devices work on the principle of surface wave exists in an elastic body of free surfaces and 

interfaces, where the distribution is localized near the surface area. All acoustic wave devices utilize the 

piezoelectric effect to transduce an electric signal into a mechanical wave. The mechanical wave propagates through 

the material to another transducer, which converts the wave back to an electrical signal. Piezoelectric materials are 

extensively applicable due to the characteristic of inducing electric charge or self-polarization when subjected to a 

mechanical stress. It is noticed that from few decades, use of piezoelectric materials are increasing rapidly. Many 
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authors have reported significant works related to piezoelectric (PE) and others material [1-8]. The boundary value 

problem having homogeneous boundary condition is easier to solve as compared to non-homogeneous boundary 

condition. The non-homogeneous boundary conditions, for which the problem has solutions, need to be 

homogenized with the aid of some transformations of the variable [9-10]. Green’s function provides solution of 

elasto-dynamics problems having disturbance caused by point source. Since Green’s function is a useful tool in the 

field of applied mathematics as it helps by providing solutions to a large number of families of differential 

equations. Prior to last decades, the displacement generated in a form of Love waves due to two-dimensional point 

source in a medium, has been studied by Ghosh et al. [11], under the scheme of Green’s function. Green’s function 

is imposed according to the material characteristics whether how it behaves mechanically to an impulsive excitation 

force. Many researches have solved the problem of wave propagation influenced by point source for the accepted 

models [12-15].PE materials are the materials, which produce electric fields subject to mechanical stress. The 

possible applications of PE material falls in the area of mechanical and electrical engineering, communications, 

geophysics (especially in making of surface wave sensors, transducers and SAW devices) [16-21]. Embedding of PE 

materials with composite structures forms the structures of smart material. Besides, of their enormous applications, 

these smart structures have many non-ignorable shortcomings. In many device applications the brittle nature of PE 

material, causes failure of device under mechanical and electrical loading. Such limitations can be removed by 

introducing porosity in a controlled fashion to the PE material as the porosity gives low material density in compare 

to that of previous one. PE materials containing tailored porosity are known as porous-piezoelectric materials as 

piezoelectric ceramics. Composition of material with porous piezoelectric ceramics reduces the brittleness fracture 

in the composite smart structure, which provides strength, consequently increases the efficiency of the SAW 

devices. Wave propagation in porous piezoelectric structure is a topic of interest nowadays. Vashishth et al. [22] 

have studied the wave propagation concept in porous piezoelectric materials and derived the constitutive equations. 

Gaur AM and Rana [23] have studied the dispersion relations for SH wave propagation in a porous piezoelectric 

(PZT–PVDF) composite structure. 3D waves in porous piezoelectric materials have also been studied by Vashishth 

and Gupta [24]. Some more literature and applications of wave propagation in PE and porous material have been 

found somewhere [25-29].  

The present research article is confined to study the SH-wave transference (due to a point source) in porous 

piezoelectric layer, overlying a heterogeneous substrate. Green’s function method is used to solve the governing 

equations. Dispersion relation is obtained analytically in closed form and matched with classical Love-wave 

equation. Remarkable influence of parameters like elastic constant, piezoelectric constant, heterogeneity parameter, 

initial stress and layers width are shown as graphically. Numerical examples are considered by acquiring the 

material constants of PZT-5H, PZT-7 and PZT-1 for the porous piezoelectric layer. 

2    FORMULATION OF THE PROBLEM  

The transference of SH wave under a point source in a framework comprising of porous piezoelectric layer (of 

thickness h ) overlying by a heterogeneous half-space. The mathematical model specified by a Cartesian coordinate 

system is shown in Fig.1. Axis-y
 
is taken along the direction of wave transference and x-axis pointing vertically 

downwards. A source of disturbance is located at interface ‘S’. The poling direction of porous piezoelectric material 

is parallel to z-axis. 

 

 

 

 

 

 

 

 

Fig.1 

Geometry of the problem. 

 

2.1 For the upper porous piezoelectric layer  

The governing equation of motion for upper porous piezoelectric layer is given as: 
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where,  *w w represents the displacement components for solid (fluid) phase of the material; 
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ij ij ij11 12 22, and   are the mass coefficient. The porous piezoelectric materials having the following 
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where , andp p p

ijkl ijc  
 

represent the elastic constants; , andp p pp

il li il    represent the dielectric constants; 

       , , ,, , andp p p pp p pp p pp

kl i j j i i i k kD D E      are the strain tensor, stress tensor, electric displacement and electric 

field  for solid (fluid) phase of the material, respectively. The relation between strain tensors, displacement 

components, electric fields and electric potentials are as: 
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where,     represents the electric potential function for solid (fluid) phase of the material. We have considered 

that the wave propagates along y-axis, the displacement and electric potential function (for solid and fluid phase) 

can be defined as: 
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On substituting the values from Eqs. (3) and (4) in Eq. (2), we get 
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Let  1 ,r t be the distribution of force density in the upper layer due to point source at the common interface; r 

is the distance from the origin (where the force is applied to a point of coordinates) and t is time. With the help of 

Eq. (1) and (5), we get  
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Moreover, rearranging the Eq. (6), we get 
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Let us suppose that the solutions of Eq. (7) are  

 

               1 1 1 1 1 1 1 1, , , , .
i tp p i t p p i t pp pp i tw x, y,t w x, y e x, y,t x, y e x, y,t x, y e r t r e
             

    

(8) 

 

Due to the impulsive force, the disturbance can be represented in the form of Dirac-delta function at the source 
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Moreover, the inverse Fourier transformation functions  
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By applying the Fourier transformation on Eq. (7), we get the following ordinary differential equations of second 

order 
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where,      1 r y x h    . Now, from Eqs. 11(a) and 11(b), we have 
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2.2 For the pre-stressed heterogeneous substrate 

The equation of motion for pre-stressed heterogeneous substrate can be written as: 
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where, h *

2, and   represent the initial stress, density and rigidity of the material respectively. We have assumed 

heterogeneity associated with rigidity in half-space and varies linearly. 
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where,  is the heterogeneity parameter and  is the rigidity of the substrate. Let us assume the solutions of Eq. (13) 

can  

 

   2 2 ,h h i tw x, y,t w x, y e    

    
(15) 



S. Karmakar et.al.                                           77 

 

© 2020 IAU, Arak Branch 

On substituting the values from Eqs. (14) and (15) in Eq. (13), we get 
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Moreover, there inverse Fourier transformation 
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By applying the Fourier transformation on Eq. (16), we get the following ordinary differential equation of second 

order 
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3    BOUNDARY CONDITIONS AND APPRAISAL OF CONSTANTS  

In order to find the solutions of Eqs. (13) and (19), we use the Green’s Function approach along with the following 

boundary conditions:  

I. The mechanical traction free and electrical boundary conditions (both open and closed circuit case) at the 

free surface are 
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II. The continuity conditions at the common interface of the upper layer and substrate are 

 

 

 

 

1 1

1

( ) ( ) ,

( ) ( ) ,

( ) 0.

p h

zx zx

p h

pp

e x x

g W x W x

i x

 



 

    
 

  1

( ) ( ) 0,

( ) 0,

p pp

x x

p

f D x D x

h x

 

      
 

                         

Now, using the above conditions (a), (b), (e) and (f), we can represent the boundary conditions  

 

1 0
pdW

dx


       
  

   

at    0,x 

 

(20) 

 



78                                  Method of Green’s Function for Characterization of SH…. 

 
 

© 2020 IAU, Arak Branch 

   

1 2

44

p h

p dW dW
c

dx dx


    
  

   

at    .x h

 

(21) 

 

Let us consider  1G x x   
be the Green’s function (in the context of upper porous-piezoelectric layer) that 

satisfies the following condition 

 

 1
0 at 0 and ,

dG x x
x h

dx


 

 

(22) 

 

where, x   is an arbitrary point of the upper layer. Green’s function  1G x x 
will also satisfy the following 

condition  

 

 
   

2

1 2

1 12
.

d G x x
G x x x x

dx
 

   

 

(23) 

 

On multiplying Eq. (12) by  1G x x   and Eq. (23) by 
1

pW  and then subtracting, we have 

 

 
 

     
22

11

1 1 1 1 12 2
4 .

p

p p
d G x xd W

G x x W x G x x dx x x W dx
dx dx

 

     

 

(24) 

 

Now, on integrating Eq. (24) with respect to x between the limits 0and ,x h we get  

 

 
 

     11

1 1 1 1 12 2

0 0

4 .

x h x hp

p p

x x

dG x xdW
G x x W dx x G x x x x W dx

dx dx
 

 



  

 

 
       

 
 

 
 

 

On using the Eq. (22), we can write 

 

     
2

1

1 1 12

1

2
.

p

p

x h

d W
G h x G h x W x

dx
  



 

 
(25) 

 

On replacing the variable byx x in Eq. (25), the expression of displacement function for the upper layer at 

arbitrary point as: 

 

      1

1 1 1

1

2
,

p

p

x h

dW
W x G x h G x h

dx


 

 
(26) 

 

where,    1 1G h x G x h . Similarly, let  2G x x  be the Green’s function (in the context of lower heterogeneous 

half- space) which satisfies the following condition 

 

 2
0 at

dG x x
x h

dx


 

 

(27) 

 

 2
0

dG x x
as x

dx


 

 

(28) 

 

Green’s function  2G x x  will also satisfy the following condition 
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 
   

2

2 2

2 22
,

d G x x
G x x x x

dx
 

   

 

(29) 

 

where x   is an arbitrary point of half space.  On multiplying Eq. (19) by  2G x x 
 and Eq. (29) by 

2

hW  and on 

subtracting, we get 

 

 
 

     
2

22

2 2 2 2 22 2
4 .

h

h h
dG x xd W

G x x W dx x G x x dx x x W dx
dx dx

 

     

 

(30) 

 

Now, on integrating Eq. (30) with respect to x between the limits 0and ,x   we get  

 

         
2 2

2 2

2 2 2 2 22 2
4 ,

x xh

h h

x h x h

d W d G
G x x W x x dx x G x x x x W dx

dx dx
 

 

   

 

 
       

 
 

 
 

 

 which reduces to 

 

       
2

2

2 2 2 22
4 .

xh

h

x h

d W
G h x x G x x dx W x

dx




  



  
 

(31) 

 

On replacing byx x in Eq. (31), then, the expression of displacement function for the lower half space at 

arbitrary point as: 

 

        2

2 2 2 24 ,

x h

h

x h x h

dW
W x x G x x dx G x h

dx




 

 

 
 

(32) 

 

where

 

   2 2G h x G x h and    2 2 .G x x G x x   By using boundary condition (II. g) and Eqs. (20), (21) 

and (32), we have 

 

 

         
   11

2 2

1 1 44 2 1 44 2

2
4 .

xp

p p
x hx h

G h hdW
x G h x dx

dx G h h c G h h G h h c G h h

 


 







  



 
 


 

 

 

Substituting the following value in Eq. (26), we get 

 

   

   

   

    
   1 2 1 1

1 2 0 2

1 1 44 2 1 1 44 2

22
4 .

x

p

p p
x h

G x h G h h G x h G h h
W x G h x dx

G h h c G h h G h h c G h h




 







 



  
 


 

(33) 

 

Moreover, on using the value of  24 x from Eq. (19), 

 

   

   

   

   

     

1 2 1 144

1

1 1 44 2 1 44 2

2

22

2 2 22

22

.

p

p

p p

x h

h h

x

x h

G x h G h h G x h G h hc
W

G h h c G h h G h h c G h h

d W
x h x h W d W G h x dx

dx



 







   



  
 

 
     

 


 
(34) 

   

Similarly with the help of Eqs. (21) and (32), the displacement function for first approximation (neglect the 

higher power of  )    

 



80                                  Method of Green’s Function for Characterization of SH…. 

 
 

© 2020 IAU, Arak Branch 

   

   
2 144

2

1 1 44 2

2
.

p

p

p

G x h G h hc
W

G h h c G h h


  
(35) 

 

On substituting the value from Eq. (35) in Eq. (34), we get  

 

   

   

   

    

 
 

   
 

 

1 2 1 144 44

1 2

1 11 44 2
1 44 2

2

2 22

2 22

2 2p p

p

p
p

x

x h

G x h G h h G x h G h hc c
W

G h h c G h h G h h c G h h

d G x h dG x h
x h x h G x h G h x dx

dxdx



 







 

    



  
 

  
     

  


 
(36) 

 

The displacements are the function of
iG , so it is necessary to find the values of Green’s function to obtain the 

value of displacement. From Eq. (23), we can write  

 

2

0 2

12
0

0.

xd G
x

xG
xdx



 
 
     

   

(37) 

 

Let P1 and P2 be two independent solutions of Eq. (37) vanish at x  and respectively, then   1

1

x
P x e


  

and   1

2

x
P x e


 . Then the solutions of Eq. (37) for an infinite medium are 

 

   

   
 

 
 

 
1 2

2 1

1 2 1

1 2

for

2 .

for

P x P x
x x

dP x dP x
where P x P x

dx dxP x P x
x x


 















   






 
 

In a simplified way the solutions of Eq. (37) for an infinite medium is
1

12

x x
e





 


.  Moreover, with the help of 

Eq. (22), we get  

 

   
          1 1 1 11 1

1

1 1
1

1 1

1 1

2 2

v h x v h x v h x v h xv x v x

v x x

v h v h

e e e e e e
G x x e

e e 

   



      

 

 

   
  
 
  

 

  2 2 2

2

2

1

2

v x x v x x h
G x x e e


     


  
 

 

(38) 

4    DISPERSION RELATION  

On substituting the values from Eq. (38) in Eqs. (35) and (36), we get  

 

 

    
 

  

    

1 1 1 1

1 1

1 1 1 1

2

44 2

44 2

1

2 1 44 2 1 44 1 1 2 1 44 2 1 44

1
2

22 4
.

x x h hp

x xp

p

h h h hp p p p

c e e e e
c e e

W
e c e c e c e c

   

 

   




       

 



  

 
   
    

 
         

(39) 

 
Eq. (39) has been further simplified to yield the given result 
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 
    

 
 

    

1 1

1 1

1 1

1 1

44

1
2

12 1 44 2 1 44

2

2

2 1 44 2 1 44

2 1
.

1

2 4
1

x x p

p

h hp p

h h

h hp p

e e c
W

e c e c
e e

e c e c

 

 

 

 

   




   









 
 
 
 

   
  

      
    
  

      

 
(40) 

 

Eq. (40) contained the heterogeneity parameter (  ), assuming the value of 
 
small, we neglect the higher power 

term. So by using inverse Fourier transformation, the displacement at arbitrary point for upper porous piezoelectric 

layer is 

 

 

    
 

 

1 1

1 1

44

1
2

1

2 1 44 2 1 44 12

2

2
,

1 h
2

x xp

p i x

h hp p

e ec
w e d

e c e c Cos h

 

      




 

 

 
 

  
   

    
         
  


 

(41) 

 

where the factor of time is omitted. Now we will compute electric potential (for both solid and fluid phase). Let us 

assume that 

 

     15

1 1

11

, , , , , , .
pp

p p

pp

e
x y t x y t W x y t


  

 
(42) 

 

On substituting the value from Eq. (42) in Eq. (11b), then the electric potential function for the solid phase of 

porous piezoelectric material are 

 

 
 

    

 
 

    

1 1

1 1

1 1

1 1

15

1 3 4

11 2 1 44 2 1 44

2

2

2

2 1 44 2 1 44

2
, ,

1

2 4
1 .

x xpp

p x x

pp h hp p

h h

h hp p

e ee
x y t A e A e

e c e c

e e

e c e c

 

 

 

 

    




   



 








    

   

  
   

   
 

    
 
 
 

 
(43) 

 

On using the boundary condition (c) and (h), we get 

 

 
 

 

    

             

1 1

1 1

1 1 1 1 1 1

2

2

215 44

1

11 1 1 2 1 44 2 1 44

(x h) (x h)

1
22

, , 1 *
h( )

2 e e .

h h

pp p

p

pp h hp p

h x h x h x h x x x

e e
e c

x y t
Sin h e c e c

e e e e e e

 

 

     





    





           

  
   

    
  

     
 
  

       
 

 
(44) 

 

By using inverse Fourier transformation of Eq. (44), the electric potential (solid phase) at an arbitrary point for 

upper layer are  
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      
      

    
 

 

1 1

1 1 1 1

1 1

(x h) (x h)

15 44

1
2

11 1

2 1 44 2 1 44 12

2

2 e e

2
.

1 h h( )
2

h x h x

i x

h x h x x x
pp p

p

pp

h hp p

e e
e

e e e ee c
d

e c e c Cos h Sin h

 

   

 




     


     

 

     







   
 
 
      

 
  
        

    


 

(45) 

 

Similarly, we can find the electric potential for fluid phase at arbitrary point. By solving the integral of 

Displacement and electric potentials function (fluid and solid phase) for poles, we get the following equation  

 

    
 

 1 1

2

2 1 44 2 1 44 12

2

1 h 0.
2

h hp pe c e c Cos h
      




 
       
 
   

(46) 

 

Eq. (46) is the dispersion relation of SH wave propagating in the porous-piezo composite structure under the 

influence of point source which is lying over a pre-stressed heterogeneous half space. 

Replacing 1 by 1i and  by k, we get 

 

 

2

2 2
20

1 22 2
2

244 442 2
21 1

1
2

1

2 11 2 1
2

p p

c

k
Tan h

cc c
kc k c




  




  

  
    

   
  

   
       

   
 

 
2

2
150 2 2
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(47) 

5    SPECIAL CASES AND VALIDATION  

Case I 

When the considered geometry reduces to transversally isotropic with initial stress , with point source, then the 

dispersion relation becomes [14] 
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Case II  

When the considered geometry reduces to transversely isotropic layer lying over a transversely isotropic elastic 

material with a point source, then the dispersion relation becomes [31] 
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Case III 

When the considered geometry reduces to transversally isotropic with then the dispersion relation becomes  
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which is a classical Love-wave equation [15].   

6    GROUP VELOCITY    

The group velocity refers to the speed at which the whole group of waves travel. The variation of group velocity 

 gc expresses the rate at which energy is transported. The group velocity can be calculated by the formula 

,g k kc d c k d c    where  is the frequency of wave, k  is the wave number and  c is the phase velocity. 

If the group velocity is greater than the speed of phase velocity, the dispersion is termed as ‘anomalous’ 

otherwise ‘normal’. 

7    NUMERICAL EXAMPLE AND DISCUSSIONS  

To show the impact of different parameters on the phase and group velocity, numerical examples are provided. We 

have considered the elastic constants of Lead Zirconate Titanate (PZT-1, PZT-5H, PZT-7) for porous-piezoelectric 

medium. The material constants for the porous piezoelectric layer and heterogeneous half space are given in Tables 

1 and 2 respectively. 
 
 

Table1 

Material Constants for porous piezoelectric material. [32]    

Parameter /Materials
 

PZT-1
 

PZT-5H
 

PZT-7
 

   11 3

3

3
·/  p kg m 

 
4950

 
4950

 
4950

 

   12 3

3

3
/ ·p kg m 

 
4800

 
4800

 
4800

 

   22 3

3

3
/ ·p kg m 

 
-1125

 
-1125

 
-1125

 

 2

44 / N·pc m 

 
22.2 × 109

 
23.0 × 109

 
25.0 × 109

 

 2

15 / C·pe m 

 
9.8

 
17.0

 
13.5

 

 2

15 / C·p m 

 
4.20

 
7.80

 
6.56

 

 1

11 / F·p m 

 
5.2 × 10-9

 
11.2 × 10-9

 
10.8 × 10-9

 

 1

11 / F·p m 

 
8.76 × 10-9

 
27.70 × 10-9 17.10 × 10-9 

 1

11 / F·pp m 

 
10.90 × 10-9 29.90 × 10-9 21.80 ×10-9 

 
 

Table2 

Material constants for heterogeneous half space. [14] 

Parameter/Material Isotropic heterogeneous half pace 

 2/ .N m 
 23.24× 1010 

 3

2 ·/ kg m 
 5.008× 103 

                

https://en.wikipedia.org/wiki/Angular_frequency
https://en.wikipedia.org/wiki/Angular_wavenumber
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Graphs have been plotted to represent the variation of dimensionless phase velocity (c) and group velocity  gc  

against dimensionless wave number and have shown by Figs. 2-11.   Fig. 12 represents the surface plot by taking the 

group velocity, dimensionless wave number and width of porous piezoelectric layer in three axes. Moreover, Fig. 13 

is drawn to show the comparison between phase and group velocity. 

Fig.2 reveals the influence of piezoelectric constant on phase velocity of SH waves. It is observed that increase 

of piezoelectric constant (in fashion of arithmetic progression with common difference of 25 /C m ) decreases the 

phase velocity. This theoretical result can be used to regulate the efficiency of sensors involving piezoelectric 

materials. Fig. 3 represents the effect of elastic constant on the dimensionless phase velocity. It is observed that as 

we increase the value of elastic constant (in fashion of arithmetic progression with common difference of 25 /N m ) 

the phase velocity decreases.  

 

 

 

 

 

 

Fig.2 

Variation of dimensionless phase velocity against 

dimensionless wave number for different values of 

piezoelectric constant. 

  

 

 

 

 

 

 

Fig.3 

Variation of dimensionless phase velocity against 

dimensionless wave number for different values of elastic 

constant. 

 

Figs. 4 and 5 represent the prominent influence of initial stress parameter of porous piezoelectric medium on 

dimensional phase velocity and group velocity of SH waves respectively.  

It is observed from Fig. 4 that increment in initial stress parameter decreases the dimensionless phase velocity of 

SH waves. The curves of Fig. 5 signify the variation of group velocity against wave number. 

 

 

 

 

 

 

 

Fig.4 

Variation of dimensionless phase velocity against 

dimensionless wave number for different values of initial 

stress. 

  

 

 

 

 

 

 

Fig.5 

Variation of dimensionless group velocity against 

dimensionless wave number for different values of initial 

stress. 
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The substantial influence of the thickness of the porous piezoelectric layer on the phase velocity and group 

velocity has been shown through Figs. 6 and 7 respectively. There is a remarkable finding in Fig. 6 that as we 

increase the value of width of the layer the dimensionless phase velocity of SH wave increases. This result may be 

useful for fixing the plate (porous piezoelectric) width of sensors and seismic devices, used for seismic recording in 

high-frequency range.  

 

 

 

 

 

 

Fig.6 

Variation of dimensionless phase velocity against 

dimensionless wave number for different values of layer 

width (porous piezoelectric layer). 

 

  

 

 

 

 

 

 

Fig.7 

Variation of dimensionless group velocity against 

dimensionless wave number for different values of layer 

width (porous piezoelectric layer). 

 

Fig. 8 reveals the influence of heterogeneity parameter (  ) associated with the heterogeneous half-space on the 

dimensionless phase velocity of SH wave. It is observed that the dimensionless phase velocity decreases with 

increase in the value of heterogeneity parameter (  ).  

Variation of dimensionless phase velocity against dimensionless wave number for different porous-piezoelectric 

materials is shown in Fig. 9, when the layer is composed of PZT-7, PZT-5H and PZT-1 materials. The highest value 

of phase velocity is found in the case of PZT-7H following the PZT-1 and PZT-5. Phase velocity is found to be 

comes closer in the case of PZT-7 and PZT-5H materials 
 

 

 

 

 

 

 

Fig.8 

Variation of dimensionless phase velocity against 

dimensionless wave number for different values of 

heterogeneity parameter (for lower heterogeneous half 

space). 

  

 

 

 

 

 

 

 

Fig.9 

Variation of dimensionless phase velocity against 

dimensionless wave number for different values of material 

constants (porous-piezoelectric material). 



86                                  Method of Green’s Function for Characterization of SH…. 

 
 

© 2020 IAU, Arak Branch 

From Fig.10, it can be observed that the phase velocity of the SH wave increases due to the porosity in the 

piezoelectric materials. The similar effect we can find in Fig. 11. Fig. 12 represents the surface plot among the group 

velocity, dimensionless wave number and width of porous piezoelectric layer. 

Fig. 13 demonstrate the comparison between phase velocity and group velocity.  The group velocity is found less 

than the phase velocity hence we call the dispersion as ‘normal’. 

 

 

 

 

 

 

 

 

Fig.10 

Comparison of dimensionless phase velocity against 

dimensionless wave number for porous piezoelectric 

material and piezoelectric material. 

  

 

 

 

 

 

 

 

Fig.11 

Comparison of dimensionless phase velocity against 

dimensionless wave number for porous piezoelectric 

material and piezoelectric material. 

  

 

 

 

 

 

 

 

 

 

 

Fig.12 

Surface plot by taking the group velocity, dimensionless 

wave number and width of porous piezoelectric layer in 

three axes. 

  

 

 

 

 

 

 

 

 
Fig.13 

Comparison of dimensionless phase velocity and group 

velocity against dimensionless wave number. 
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8    POSSIBLE APPLICATION  

Lead Zirconate Titanate (PZT) is one of the most excellent executing, cost price effective piezoelectric materials. 

High piezoelectric responses depends on dense ceramics, to achieve that, porosity generally causes for reducing 

mechanical and piezoelectric properties respectively. In order to minimize this problem, the Nb ions codoped with 

PZT material to control the large porous microstructure. Consequently, the codoped material becomes a new crucial 

applicative entrant for the vibrant applications in the field of ultrasonic transducer. Into the form of 2-phase 

composite, the porous ceramic can be visualized. These ceramic materials are highly utilized because of having 

more advantages such as specific electronic properties, high melting point, low thermal mass, low thermal 

conductivity. The performance of this material may further be enhanced by incorporation of appropriate porosity.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14 

(a) Single element thick film transducer. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.14 

(b) Multi element array transducer. 

 

 
 

However, due to the poor acoustic coupling to the media and low hydrostatic figure of merit (FOM) so the dense 

PZT-type piezo-ceramics are not suitable for these applications. That’s why the porous materials has got significant 

applications in various scientific areas such as in cleanliness and filtration of molten metals, support for catalytic 

reactions, high-temperature thermal insulation, and filtration of hot caustic gases in industrial window. It is also 

utilized as ultrasonic transducers. Due to the generation of intense ultrasonic wave the ultrasonic transducers may be 

useful for high penetration, erosion of paints, welding and also as medical diagnostic instruments. The displacement 

among the atoms around the equilibrium positions starts due to the propagation of ultrasonic waves in the material. 

Subsequently, the force raised due to mechanical vibrations of atoms creates stress-strain interactions inside the 

typical structure of material. This wave may propagate into the form of longitudinal waves, shear waves, Rayleigh 
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waves and Lamb waves. In general, the longitudinal waves are used as ultrasonic waves. In this system 

displacements between two atoms of piezo-ceramic transducers are created using high frequency. The term of 

transmitter or receiver is basically part of active piezoelectric element which is formed from a piezo-ceramics disk 

such as 1 to 2 cm wide, where two different electrodes are created on both sides for biasing purpose. After applying 

a sufficient voltage on these electrodes the depletion layer enhances due to the variation of the transducer. Here, the 

mechanism of inverse piezoelectric effect takes place. In addition to this, the backing layer works to provide a 

mechanical support for active element and attenuate the acoustic energy from back to back face of transducer. This 

is worth to note that the backing and active layer materials should be similar impedance rates for the optimization of 

transmission of the ultrasounds. To achieve this condition epoxy resins incorporated along with tungsten particles 

are utilized as substances for backing layers purpose. 

9    CONCLUSIONS 

The influence of heterogeneity, piezoelectric constants, initial stress, layer’s width and elastic constants on the 

dispersion of SH-wave in a porous piezoelectric layer overlying by a heterogeneous substrate under point source 

scheme was investigated. Numerical example has been shown for three distinct types of piezoelectric materials 

(namely PZT-5H, PZT-7 and PZT-1) and the influence of affecting parameters on dispersion curves were illustrated 

by graphs. The outcomes of the study are as follows: 

1. The phase velocity of SH-wave is found to have decreasing nature with respect to wave number 

1. Influence of heterogeneity parameter, piezoelectric and elastic constants has significant impact on the phase 

velocity curve. 

2. In PZT-5H material phase velocity is high in comparison with PZT-1 and PZT-7. 

3. Some of the results (in particular influence of layer’s width and influence of initial stress on phase velocity 

and group velocity of considered wave) suggests for selection of a suitable porous piezoelectric material in 

devices like transducers, rotating sensors and SAW device in order to prevent the brittle fracture. 

4. Obtained result is validated by matching the obtained dispersion relation with the classical Love wave 

equation. 
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