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 ABSTRACT 

 This paper investigates the bending vibration of rotating single-

walled carbon nanotubes (SWCNTs) based on nonlocal theory. To 

this end, the rotating SWCNTs system modeled as a beam with a 

circular cross section and the Euler-Bernoulli beam theory (EBT) is 

applied with added effects such as rotary inertia, gyroscopic effect 

and rotor mass unbalance. Using nonlocal theory, two coupled sixth 

order partial differential equations that govern the vibration of 

rotating SWCNTs are derived. To obtain the natural frequency and 

dynamic response of the nanorotor system, the equation of motion for 

the rotating SWCNTs are solved. It is found that there are two 

frequencies in the frequency spectrum. The positive root introduced 

as forward whirling mode, while the negative root represents 

backward whirling mode. The detailed mathematical derivations are 

presented while the emphasis is placed on investigating the effect of 

the several parameters such as, tube radius, angular velocity and 

small-scale parameter on the vibration behavior of rotating 

nanotubes. It is explicitly shown that the vibration of a spinning 

nanotube is significantly influenced by these effects. To validate the 

accuracy and efficiency of this work, the results obtained herein are 

compared with the existing theoretical and experimental results and 

good agreement is observed. To the knowledge of authors, the 

vibration of rotating SWCNTs considering gyroscopic effect has not 

investigated analytically yet and then the results generated herein can 

be served as a benchmark for future works.  

© 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Nonlocal theory; Gyroscopic effect; Forward and 
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1    INTRODUCTION 

 ARBON nanotubes (CNTs) invented by Iijima [1] are mainly classified into two types namely, single walled 

carbon nanotubes (SWCNTs) and multi walled carbon nanotubes (MWCNTs). SWCNTs are tiny cylinders 
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made from carbon [2] described as a single layer of a graphite crystal rolled up into a seamless circular cylinder, one 

atom thickness, usually with a small number of carbon atoms along the circumference and a long length along the 

cylinder axis [3]. SWCNTs have many unique, fascinating properties. They are very strong and have extremely 

lightweight. They are excellent conductors of heat, and transport electrons easily. Because of these special 

properties, they might be used as the substantial parts of nanoelectronics, nanodevices, and nanocomposites. Very 

often, these components are subjected to external loadings during work operation and their vibrational 

characteristics and resonant properties are of much concern. Thus, establishing an accurate model considering 

vibrational properties of nanobeams is an important factor for successful nanostructure design. As a result, 

nanotechnological research on free vibration properties of nanobeams is important. There have been many studies 

on the vibration behavior of beam like nanostructures using continuum model [4, 5]. It is proven that the properties 

of CNTs depend strongly on their microscopic structure [6]. Classical continuum mechanics (CCM) modeling 

assumptions are deduced to erroneous results, in material domains where the typical microstructural dimension is 

comparable with the structural ones [7]. Currently, various elegant modifications to CCM have been proposed to 

consider microstructural features into the theory. These theories are introduced as generalized continuum mechanics 

[8]. One particular generalized continuum mechanics theory proposed by Eringen is nonlocal theory which states 

that the stress tensor at a point is a function of strains at all points in the continuum [9]. It is different from the CCM 

theory which state that the stress at a point is a function of strain at that particular point [10]. Then, in recent years, 

considerable effort has been devoted to the problem of the vibration of these nanomaterials considering 

microstructural effects [11]. One of the most modes of vibration for rotating SWCNTs is lateral vibration [12]. 

Because of wide applications of CNTs, they have potential to be used as new rotating devices such as miniature 

motor. Ghorbanpour Arani investigated surface and small-scale effects on free transverse vibration of a SWCNT 

conveying viscose fluid based on nonlocal EBT. The governing equation of motion is solved with the Galerkin 

method [13]. In another work, Ghorbanpour Arani et al. analyzed vibration and instability of a Y-shaped SWCNT 

conveying fluid using fourth order beam nonlocal theory [14]. Fatahi-Vajari and Imam studied axial and radial 

vibration of SWCNT using Doublet mechanics theory [8, 11]. Ghorbanpour Arani et al. presented a realistic model 

for dynamic instability of embedded SWCNTs conveying pulsating fluid is considering the viscoelastic property of 

the nanotubes using Kelvin–Voigt model. SWCNTs are placed in longitudinal magnetic fields and modeled by 

sinusoidal shear deformation beam theory (SSDBT) as well as modified couple stress theory [15]. Ansari et al. 

studied vibration of SWCNTs using different gradient elasticity theories [16]. The nanostructures that undergo 

rotation are a system with a promise future to be used in nanomachines which include shaft of nanomotor devices 

such as fullerene gears and CNT gears [17, 18]. Huang and Han proposed a controllable nanoscale rotating actuator 

system and investigated its rotating dynamics performance and driving mechanism are through molecular dynamics 

simulations [19]. Mirtalaie and Hajabasi analyzed the nonlinear axial-lateral-torsional free vibration of the rotating 

shaft is analyzed by employing the Rayleigh beam theory [20]. Cai et al. investigated Rotation of the inner tube in a 

double-walled carbon nanotube (DWCNT) system with a fixed outer tube and found to be inducible by a relatively 

high uniform temperature [21]. Ebrahimi and Shaghaghi employed nonlocal EBT for transverse vibration analysis of 

an initially pre-stressed size-dependent rotating nanotube [22]. CNTs may be used as rotating machinery in many 

applications. In general, rotating machinery consists of shafts whose diameters may change with longitudinal 

position, and bearings placed at various positions in the rotors. In vibration analyses, such a complex nanorotor 

system should be simplified and a suitable mathematical model is adopted. In the modeling process, it must be 

known which parameters are important for the system. Nanostructures undergoing rotation include nanoturbines, 

nanoscale molecular bearings, shaft and gear, and multiple gear systems. These nanostructure machines are expected 

to receive considerable attention in the near future. Researchers have thus reported the feasibility of nanoscale 

rotating structures. Examples include study of molecular gears, fullerene gears, and carbon nanotubes gears. Due to 

the above-mentioned extensive applications and efficacy, the precise prediction of the dynamic behavior of such 

systems is essential in their safety operation. With the development of high-performance rotating machinery, the 

need for presenting more and more exact nanorotor dynamic models is increasing. Nowadays, a great effort is 

devoted to the vibration analysis of nanobeams and CNTS under rotation using the Eringen nonlocal elasticity 

theory [23-25]. Pradhan and Murmu [26] applied a nonlocal beam model and Differential Quadrature Method 

(DQM) to investigate the flapwise bending-vibration characteristics of a uniform rotating nanocantilever. Murmu 

and Adhikari [27] investigated the same problem, but now considering an initially prestressed SWCNT to analyze 

the effect on the initial preload in the vibration characteristics. Narendar and Gopalakrishnan [28] analyzed the wave 

dispersion behavior of a uniform rotating nanotube modeled as a nonlocal Euler–Bernoulli beam. 

However, much effort is devoted to investigate a rotating nanoscale device, but a preferable model for a 

nanorotator incorporate gyroscopic effect and scale parameter has not been proposed so far. In the present study, a 

rotating nanoactuator system is designed based on an analytical model for CNTs using the nonlocal theory. Its 
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rotational dynamics and physical mechanisms are systematically studied. Furthermore, there is not any attempt to 

investigate the vibration of CNTs rotates about its own axis. Most of the previous studies on nanorotor dynamics 

have concentrated on the vibrations behavior of the beams rotating on the fixed hub, solely. As known by authors, 

the vibrations of rotating SWCNTs rotates on its own axis is not investigated yet, while in these cases a general 

continuous model in which the effects of lateral deformations with the combination of gyroscopic effects are 

included is required for providing meaningful results.  

As described earlier, both of the above-mentioned factors, namely the geometric property and gyroscopic effect 

have crucial effects in rotor dynamic analyses. The combination of these effects is the motivation of our work, 

because many rotor dynamic phenomena include contact or rub impact, crack, gear coupling, misalignment and 

unbalancement can be investigated based on this model. In this paper, the free vibration of a rotating nanotube is 

investigated using nonlocal theory. This model contains various factors that could represent the real dynamic 

behaviors of the system. To this end, the rotating SWCNT is assumed to be attached to supports and is undergoing 

rotation about its axis. Nonlocal EBT is employed to formulate the governing equations. The basic equation of 

motion for vibration of rotating SWCNTs which considers small-scale effect is obtained. After that, this equation is 

solved to give the natural frequencies of rotating SWCNTs. 

2    EQUATIONS OF MOTION FOR ROTATING NANOTUBES USING NONLOCAL THEORY  

A rotating CNT can be represented as a cantilever beam having displacements perpendicular to the plane of rotation. 

The model is established based on the EBT in which the effects of rotary inertia and gyroscopic forces are added but 

the shear deformation is neglected. The latter assumption means that the deformation due to the shear force can be 

neglected and the former assumption makes it possible to calculate the strain at an arbitrary position in the beam. In 

this theory, the bending moment at an arbitrary position of the beam is proportional to the inverse of the radius of 

curvature of the centerline of the beam and only the lateral motion is considered. For slender rotors, EBT expresses 

the motion of the rotor, suitably. It is known that when the wave length of the vibration mode becomes small relative 

to the beam thickness, the effect of rotary inertia and that of the deformation due to shearing forces, called shear 

deformation, appear. A beam model taking these two effects into account is called the Timoshenko beam. In a rotor 

system, when the diameter-to-length ratio increases, these two effects appear in addition to the effect of the 

gyroscopic moment.  

CNT can be considered as an elastic rotor whose diameter doesn’t vary much and modeled appropriately by 

distributed parameter model. In the following, this model, which has distributed mass, distributed stiffness and 

distributed damping, called a continuous carbon nanotube rotor (CCNTR). Analysis of CCNTRs is based on the 

theory of beam’s lateral vibrations. In recent years, one main concern for researchers is to predict the critical speed, 

because the first thing that had to be done in designing rotating machinery is to avoid resonance. In rotor dynamics, 

the rotating speeds that produce resonance responses are called critical speeds. The deformation of a nanorotor is the 

highest in the neighborhood of the critical speed. It should be pointed out that rotor is often used as the general term 

for the rotating part of a rotating machine. The opposite term is stator, which means the static part of the machine. If 

a flexible nanorotor with distributed mass and stiffness is considered, this model is called a distributed-parameter 

system or continuous nanorotor system. Rotors are sometimes classified into vertical and horizontal shaft systems. 

In this paper, it is discussed the vertical model but the effect of gravity is ignored. Fig. 3 shows the theoretical model 

of an elastic CCNTR with a circular cross section. The length of this uniform rotor is l. As the rotor is supported 

vertically, gravitational force does not work however in horizontal case, gravitational force may be ignored. For 

simplicity, shear deformation is not considered. 

 

 

 

 

 

 

 

 

 

 

Fig.1 

A rotor. 
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The rectangular coordinate system O xyz  is fixed in space. The axis along the nanorotor centerline is 

represented by z because s is used as a complex variable representing the deflection of the rotor in the following. 

The deflections in the x and y directions at the position z are denoted by and, respectively. The displacement fields in 

any section of the nanobeam are expressed by [23] 

 

   
   , ,

, ,  , , x y z

u z t v z t
u u z t u v z t u x y

z z

 
   

 
 (1) 

 

The inclination angle  ,z t  of the tangent to the nanorotor deflection curve is represented by two components 

 ,   x z t and  , y z t , which are the projections of   to the xoz  and yoz  planes, respectively, and are given by 

[17] 

 

 , x y

u v

z z
 

 
 
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 (2) 

 

Let the moments working in the xoz  and yoz  planes be xzM  and yzM , respectively. From the EBT, the 

following relationships between , yxz zM M   and  , x y   in the scale less condition, are expressed [23] 

 

 , 
yx

xz yzM EI M EI
z z

 
 

 
 (3) 

 

where E is Young’s modulus and I is the cross-sectional area moment of inertia. 

The signs of the bending moments xzM  and yzM  are defined as positive when they work to increase x  and 

y  as z increases, as shown in Fig. 1. The relation between stress with force and moments are expressed by the 

following equations [23]: 

 

0 0

, 

L L

x xz y yzF dA F dA     (4) 

 

0 0

, 

L L

xz zz yz zzM x dA M y dA     (5) 

 

Now, the scale effect is entered to the problem under study using Eringen nonlocal theory. According to Eringen 

theory [1–3], the stress field at a point x in an elastic continuum not only depends on the strain field at the point but 

also on strains at all other neighboring points of the body. Eringen attributed this fact to the atomic theory of lattice 

dynamics and experimental observations on phonon dispersion. The nonlocal stress tensor   at point x  is expressed 

as [9] 

 

   , ' '

V

K d    x x t x x  (6) 

 

where  t x  is the classical, macroscopic stress tensor at point x and the kernel function  ,K  x x  represents the 

nonlocal modulus, x x  being the distance (in Euclidean norm) and   is a material constant that depends on 

internal and external characteristic lengths (such as the lattice spacing and wavelength, respectively). The 

macroscopic stress t  at a point x in a Hookean solid is related to the strain   at the point by the generalized Hooke’s 

law [7] 
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     :C t x x x  (7) 

 

where C is the fourth-order elasticity tensor and : denotes the ‘double-dot (tensor) product. The constitutive Eqs. (6) 

and (7) together define the nonlocal constitutive behavior of a Hookean solid. Eq. (6) represents the weighted 

average of the contributions of the strain field of all points in the body to the stress field at a point. The integral 

constitutive relation in Eq. (6) makes the elasticity problems difficult to solve. However, it is possible to represent 

the integral constitutive relations in an equivalent differential form as [15] 

 
2 2

0, e a      t    (8) 

 

where 0e  and a  are a material constant and the internal characteristic lengths, respectively. Using Eqs. (7) and (8), 

stress resultants can be expressed in terms of the scale parameter. As opposed to the linear algebraic equations 

between the stress resultants and strains in a local theory, the nonlocal theory results in differential relations 

involving the stress resultants and the strains. In the following, these relations are presented for homogeneous 

isotropic nanobeams under the assumption that the nonlocal behavior is negligible in the thickness direction. Then, 

the nonlocal constitutive relation in Eq. (8), with Eq. (7) for the macroscopic stress, takes the following special 

relations for nanobeams: 
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2 2
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where E is Young’s modulus of the beam. It is clear that when the nonlocal parameter   is zero, the constitutive 

relations of the local theories are obtained. 

Form Eq. (1), the strains of the rotating nanobeam are obtained as follow: 

 
2 2

2 2
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z z z z
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 (10) 

 

Substituting Eq. (9) into Eq. (4) with using Eq. (10) yields the following nonlocal shear forces for the nanorotor 
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Similarly, the nonlocal shear moments are obtained with substituting Eq. (9) into Eq. (5) along with using Eq. 

(10) as: 
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To derive the equations of motion, a sliced element with thickness dz at z is considered as shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Component of moments. 
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The polar moment of inertia pdI  and the diametric moment of inertia ddI  of this element are given by [23]: 

 

   
2 2

, 
2 2 4

p

p d

dIR R
dI Ads dI Ads     (13) 

 

where R is the radius of the rotor, A the cross-sectional area, and   the density of the shaft material.  

Now, the correspondence equations of motion for the nanorotor are obtained using this sliced element. Suppose 

that the nanorotor is executing a whirling motion and the inclination of the sliced element changes from x  to 

x xd   and from y  to y yd  , respectively, during time dt. Changes in the angular momentums about the 

principal axes of the moment of inertia are shown in Fig. 2. The shearing force  , F z t  and the moment  , M z t  

are also shown in Fig. 2. The equations of motion are obtained from the relationships among momentum and angular 

momentum changes, and shearing forces and moments, as follows. In the first, the lateral motion of a sliced element 

is considered. Let the viscous damping coefficient per unit length of the rotor be c, the deflection of the center of 

gravity at the position z be ( , G Gu v ), and the components of a force in the x- and y-directions be xF  and yF , 

respectively. Newton’s second law gives 
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x x

u F u
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

   
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After making some manipulations, the following equations are obtained 
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2
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It should be pointed out that unbalance is defined as the condition which exists in a nanorotor when vibratory 

force or motion is imparted to its bearings as a result of centrifugal force. One main cause of vibrations is the 

excitation due to inevitable mass unbalance of nanorotors. Residual unbalance usually occurs owing to various 

causes such as synthesis error, thermal deformation, material inhomogeneity and so on. It also occurs owing to stuck 

up of tolerance in assembly. When a well-balanced rotor is mounted on a well-balanced shaft, the necessary 

assembly tolerances permit radial displacement of the nanorotor, and, as a result, unbalance occurs. The term 

unbalance refers to the nonuniform distribution of the mass of a rotor about its axis of rotation.  

Next, the inclination motion is considered. The components in the xoz  and yoz  planes indicated by the vectors 

are shown in Fig. 2. The moment vectors in the x- and y-directions are composed of the moments working on the 

element and the moments due to the shearing forces. From the relationships between the variations in angular 

momentum during dt and the applied moments in the x- and y-directions, the following expressions are obtained: 
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M M dz F dz

dt z
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142                                 Natural Frequency of Rotating Single-Walled Carbon…. 
 

 

© 2020 IAU, Arak Branch 

where xF dz  and yF dz  represent moments due to the shearing forces. Substituting Eq. (2) into Eqs. (18) and (19) 

and making some manipulations, the following equation are obtained 

 
3 2

2

pd xz
x

dIdI Mu v
F

dz dz z t zz t

    
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 (20) 
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dI MdI v u
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In the above equations, the first terms are due to the rotary inertia and the second terms appear because of the 

gyroscopic moment. By differentiating these equations with respect to z and substituting Eqs. (16) and (17) into 

them to eliminate xF  and yF , the following equations are obtained: 
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Using Eqs. (22) and (23) and expressing the components xzM  and yzM  from Eq. (12) as u and v, the following 

equations of motion are obtained: 

 

4 3 6 5 4 2 4 4
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where 0 0, 
pd

d p

dIdI
I I

dz dz
  . For the nanotube under study    4 4 4 4

0 0, 
4 2

d o i p o iI R R I R R
 

    . 

Introducing s u iv  and G G Gs u iv  , the above equations can be simplified to Eq. (26) 
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 (26) 

 

This equation is the basic equation for the vibration of rotating SWCNT considering scale effect. The boundary 

conditions may be categorized as follow: 

Simply supported boundary conditions: 0,  '' 0s s   

Fixed boundary conditions: 0,  0s s    

Free boundary conditions: 0,  0s s    

3    SOLVING THE EQUATION OF MOTION  

The boundary conditions of the tube are assumed to be simply supported. Then, to find the frequency of RBLMS of 

the nanotube, the solutions for the vibrations of rotating SWCNT are assumed to be of the form 
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where S and 
  are the amplitude and angular frequency of the rotating nanobeam vibration, respectively. n is the 

vibration mode. 
   may be related to natural frequency f by 

 
2 f


  . Superscript   in 

   indicates the 

natural frequency incorporates scale effects.  

Substituting Eq. (27) into Eq. (26) yields 

 
2 2 4 4 2 2 4

2 2 2 2 2
0 0 0 0 0d p d p d

n n n n n n n
I I I I A ic EI A ic

L L L L L L L

      
          

              
                                       

 (28) 

 

Then, with solving Eq. (28), two roots 1n  and 2n are obtained which include the scale parameter   and 

rotating speed  . With neglecting the eccentricity and damping effect, these two equations are as follow: 
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 (29) 

 

wherein A, B and C are defined by the following equations 
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Eq. (28) is the natural frequency for the rotating vibration of a SWCNT incorporating the gyroscopic and scale 

effects. In Eq. (29),  n  is the natural frequency corresponding to the nth mode. The advantage of this simple 

expression is that it explicitly shows the dependency of the natural frequency of rotating SWCNTs on the 

mechanical and geometrical properties. According to Eq. (29), there are two frequencies in the frequency spectrum. 

The positive root 1n  represents a frequency of a forward whirling mode, while the negative root 2n  represents 

that of a backward whirling mode. It can be concluded that for infinite diameters,  1  which correspond to a 

transverse acoustic mode has zero frequency and 2  which correspond to the breathing mode of a bi-layer of 

graphene has the following frequency 
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which is equal to the frequency obtained in [15]. On the other hand, If the scale effect is neglected means 0  , the 

natural frequencies will be 
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which is in complete agreement with the natural frequency obtained in [23]. 

It should be noted that he intersections of the straight line   and the curves n  give the major critical 

speeds n . Setting  n np    in Eq. (29), it is obtained that 

 

2A A BC

B

 
   (35) 

 

Since n  is real only when the quantity under the radical sign in the denominator is positive, the major critical 

speed does not exist for higher modes with large n. Eq. (35) indicates that because of scale parameter and rotating 

speed, there are major differences between the predictions of present work and the other models. These differences 

will be explained in the next section. 

4    RESULTS AND DISCUSSION  

In this section, comparison between the results obtained using present work and molecular dynamics (MD) and 

CCM results are presented. Experimentally, the frequency is related to   via 
 

2

w
f

C
  where, 102.99 10

cm
C

s
   

is the velocity of light in the vacuum [8]. This relation is used in Table 1., below to report the frequencies in 
1cm  .Throughout this paper, the material properties of SWCNT are taken to be: Young’s modulus 1 E TPa , mass 

density 
3

2300 
kg

m
   and Poisson's ratio 0.2   [3]. In this paper, the scale parameter used is the carbon-carbon 

bond length 0.1421 nm   [6]. Table 1., shows the frequencies of (8, 8) Armchair SWCNTs for 10 different aspect 

ratios based on the available experimental and analytical results. The first column shows the aspect ratios of the 

nanotube and the next three columns are the experimental and analytical results from the CCM and nonlocal model 

(the present work), respectively. 

From Table 1., it can be seen that the doublet mechanical predictions of the natural frequencies of different 

rotating SWCNTs are in good agreement with the available experimental results. 
 

Table 1  

Fundamental frequencies (THz) for (8, 8) Armchair SWCNTs obtained from MD simulations and different gradient Euler–

Bernoulli beam models for 0  . 

Aspect ratio MD [15] CCM Present work 

8.3 0.5299 0.5380 0.5378 

10.1 0.3618 0.3640 0.3639 

13.7 0.1931 0.1982 0.1982 

17.3 0.1103 0.1244 0.1244 

20.9 0.0724 0.0853 0.0853 

24.5 0.0519 0.0621 0.0621 

28.1 0.0425 0.0472 0.0472 

31.6 0.0358 0.0373 0.0373 

35.3 0.0287 0.0299 0.0299 

39.1 0.0259 0.0244 0.0244 

 

The forward and backward frequencies obtained in the previous section by the present methods are also 

compared in graphic form in Figs. 3-6. In these figures the nanotubes is considered to be Zigzag (16, 0) SWCNT 
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with simply supported boundary condition. As shown in these figures, the two frequencies are very sensitive to the 

diameter d of the SWCNT, when this geometrical property is extremely small. The two frequencies decrease 

considerably with increasing tube diameter. 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Variation of the forward and backward frequencies with scale 

parameter. 

  

 

 

 

 

 

 

 

 

 
Fig.4 

Variation of the forward and backward frequencies with tube 

length. 

  

 

 

 

 

 

 

 

 

 

 

Fig.5 

Variation of the forward and backward frequencies with 

rotating speed. 

  

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of the forward and backward frequencies with tube 

diameter. 

 

In Fig. 3, the effect of scale parameter on the two frequencies in different vibration modes is shown for. The 

boundary conditions of the nanotubes are assumed to be simply support. It is found that the forward frequency 

increases with increasing in scale parameter. This decreasing is more apparent for higher scale parameter. Inverse 

effect is seen for backward frequency. In Fig. 4 variation of the two frequencies with tube length is shown. 
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According to this figure, increase in the length of the nanotube results in increase in the backward frequency. This 

increase is more apparent for lower tube length. Inverse effect is seen for forward frequency. Since scale effect is 

more apparent for smaller wave lengths, beyond a certain tube length, both forward and backward frequencies 

approach to certain values. This figure also shows that at large length, the discrepancy between the forward and 

backward frequencies becomes small. It can also be seen that the forward frequency is larger than the stationary tube 

while the backward frequency is smaller. 

The frequencies variation against rotation speed of rotating SWCNT is illustrated in Fig. 5. It can also be seen 

that as the rotation speed increases, both forward and backward frequencies increase. This increasing is more 

apparent for backward frequency. It can also be seen from that in contrast to stationary systems, the frequency is a 

function of rotation speed so that the larger the rotation speed, the more pronounced the discrepancy between the 

stationary and rotating frequencies becomes. Variations of the forward and backward frequencies with tube diameter 

are drawn in Fig. 6 for different mode numbers. As the tube diameter increases, the backward frequency decreases. 

This reduction is more significant for higher vibration modes and in lower tube diameters. As the tube diameter 

increases more, the backward frequencies tend to approach to constant values. On the other hand, the inverse effect 

was seen for the forward frequencies. The forward frequencies increase as the tube diameter increases. The 

increasing effect is more apparent for higher mode numbers and diameters. It can also be seen that for the same 

diameters, with increasing mode numbers, forward frequencies increase while backward frequencies decrease. 

5    CONCLUSIONS 

In this paper, a detailed investigation of the natural frequency of the rotating SWCNT based on nonlocal theory has 

been presented. The equation of motion for vibration of the rotating SWCNT based on nonlocal theory is derived. 

To obtain the frequency equation in rotating SWCNT vibration, the equation of motion for SWCNTs with simply 

supported end conditions is solved. The significant dependency of this oscillation to tube geometry, rotating speed 

and the scale parameter are observed. To show the accuracy and capability of this method, the generated results 

obtained herein have been compared with those available in open literature, and excellent correlation has been 

achieved. The following points are particularly noted. 

1. Due to the coupling of the vibrations in x and y directions and obtaining the forward and backward linear 

natural frequencies in lateral modes of vibrations, backward and forward nonlinear natural frequencies are 

defined in the analysis. 

2. The inclusion of the nonlocal effect increases the forward natural frequency and decreases backward 

natural frequency. As shown in this study, the nonlocal effect is considerably different and more 

pronounced in the higher vibration modes. 

3. The natural frequencies of the system are obtained as the functions of scale parameter which this 

phenomenon is due to microstructural nature of the system. The scale parameter affects the natural 

frequencies in the decimal digits in comparison with the continuum natural frequencies. Also, this effect is 

more evident in the upper natural frequencies than their lower modes. 

4. For a same rotating speed, the values of the natural frequencies in forward and backward modes are close 

together but they differ at the higher modes from each other. The difference between the forward and 

backward natural frequencies is more evident in lower rotating speeds. 

5. The results showed that the increase or decrease in the natural frequencies of the rotor is well matched with 

the rotor speed. It was seen that the natural frequencies increase very slowly by increasing of the shaft spin 

speed. The rotating speed affects the higher natural frequencies more. 

6. The forward natural frequencies decrease by the increase in the value of the shaft length. An inverse effect 

is seen in the backward frequencies. This effect is more observed in lower tube lengths. As the length 

increases more, the two frequencies converge to a single value. 

7. The backward natural frequencies decrease by the increase in the value of the tube diameter. An inverse 

effect is seen in the forward frequencies. This effect is more observed in higher mode numbers. 

8. The effect of the scale parameter on the natural frequencies is intensified as the higher modes are excited 

also for higher spin speeds of the rotor. In general, it is seen that the natural frequencies are relatively 

coincident in the lower mode numbers, but they deviate more in higher modes. This shows that the effect of 

interaction between frequencies is more evident at higher vibration modes. 
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9. In lateral modes of vibrations, the variation of the forward natural frequencies with respect to the rotation 

speed has a linear form in its lower values while the variations become of higher order than the linear form 

as the values of rotation speed becomes larger, especially in the backward modes. 
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