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 ABSTRACT 

 Thermoelastic behavior of temperature-dependent (TD) and 

independent (TID) functionally graded variable thickness cantilever 

beam subjected to mechanical and thermal loadings is studied based 

on shear deformation theory using a semi-analytical method. Loading 

is composed of a transverse distributed force, a longitudinal 

distributed temperature field due to steady-state heat conduction from 

root to the tip surface of the beam and an inertia body force due to 

rotation. A successive relaxation (SR) method for solving 

temperature-dependent steady-state heat conduction equation is 

employed to obtain the accurate temperature field. The beam is made 

of functionally graded material (FGM) in which the mechanical and 

thermal properties are variable in longitudinal direction based on the 

volume fraction of constituent. Using first-order shear deformation 

theory, linear strain–displacement relations and Generalized Hooke’s 

law, a system of second order differential equation is obtained. Using 

division method, differential equations are solved for every division. 

As a result, longitudinal displacement, transverse displacement, and 

consequently longitudinal stress, shear stress and effective stress are 

investigated. The results are presented for temperature dependent and 

independent properties. It has been found that the temperature 

dependency of the material has a significant effect on temperature 

distribution, displacements and stresses. This model can be used for 

thermoelastic analysis of simple turbine blades.                  

 © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE variable thickness cantilever beams have great applications in many static and dynamic structures. Analysis 

of variable thickness cantilever beams made of isotropic material is one of the conventional problems which 

have been already investigated in many literatures. A group of scientists developed a novel class of materials, which 
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is known as functionally graded material (FGM), with desired gradual change of properties along the specified 

direction [1]. The structures made of these materials can withstand more mechanical and thermal loads than 

structures made of homogeneous materials. One of the best desirable properties of these structures is preservation of 

its original form even when it is exposed to severe thermal load as well as mechanical loads. For example, these 

situations happen for turbine blades. On the other hand, the distance between the tip of the blade and engine casing 

is critical and it is very important to keep the clearance between the tips of rotating blades and inner surface of 

combustion chamber. Kapania and Raciti [2] reviewed the developments in the analysis of laminated beams and 

plates. This study brought together a wide range of developments and researches about the analysis of laminated 

plates and beams. Romano and Zingone [3] presented deformation of beams made of homogeneous materials with 

different rectangular cross sections. They determined relation of maximum deflection and the ratio between the 

minimum and the maximum height. In another study, Romano [4] presented deformation of Timoshenko beam with 

different forms of cross-section. Sankar [5] investigated functionally graded beams. The mechanical properties 

except the Poisson’s ratio were assumed to vary exponentially through the thickness of the beam. Sankar and Tzeng 

[6] developed an analytical solution for thermoelastic response of functionally graded beams. In their study, thermal 

and mechanical properties except the Poisson’s ratio are also variable through the thickness. Chakrabortya et al. [7] 

presented an exact shear deformable finite element for the analysis of FGM beams using the first-order shear 

deformation theory. They investigated static, free vibration and wave propagation problems in FGM beams using 

this method. The results showed that using first-order shear deformation theory is completely appropriate for static 

and dynamic analysis of FGM beams. Ching and Yen [8] presented a solution based on the meshless local Petrov–

Galerkin method for transient thermoelastic deflections of FG beams. They showed that transient temperature and 

deformation distributions of FG beams differ from those at the steady state substantially. Also, Kadoli and et al. [9] 

presented stress and deformation in a special thick functional graded beam made of metal matrix composites under 

uniform load using higher-order shear deformation theory. They presented the results of first-order and higher-order 

shear deformation theory and founded that both of them yield approximately similar results. Li [10] investigated 

static and vibration response of FG beams under the body force. They also presented stress and deformation for a 

FG cantilever beam. Similar to the aforementioned researches, in this study, all material properties are assumed to 

vary along the thickness of the beam. Giunta et al. [11] presented linear static analysis of FGM beams using classical 

and axiomatic refined theories. They considered material properties exponentially varying along the one or two 

directions on the cross-section. The comparison of results indicated that presented higher order models are accurate 

and affordable in term of computational cost than finite element method. Also, they investigated thermo-mechanical 

response of FGM beams based on a unified formulation [12]. They validated the results obtained with finite element 

analysis, as in the previous article. 

Rotating variable thickness FGM cantilever beam have been investigated in several literatures. Ramesh and Rao 

investigated the natural frequencies of vibration of a rotating pre-twisted functionally graded cantilever beam and 

considered the effect of coupling between chord wise and flap wise bending modes on the natural frequencies [13]. 

Zhang and Li investigated nonlinear vibration of rotating pre-deformed cantilever beam as a blade with thermal 

gradient [14]. Also, Cao et al. presented a model for rotating cantilever sandwich-plate with a pre-twisted and pre-

set angle to investigate the vibrational behavior of an turbine blade with thermal barrier coating (TBC) layers [15]. 

Panigrahi and Pohit investigated the stiffening effect due to rotation on the nonlinear vibrational characteristics for 

cracked cantilever beam [16]. Functionally graded material is taken into consideration, in which the properties vary 

as a continuous function along the depth of the beam. Reddy [17] presented a novel model based on a modified 

couple stress theory for static bending, vibration and buckling analysis of homogeneous and FGM beams. One of the 

important advantages of this new model is that it considers the effect of FGM beam geometry on static bending, 

vibration and buckling. He and his colleagues [18] developed a general third-order beam theory for nonlinear 

analysis of TD FGM beams. They also developed nonlinear finite element model by new presented model to distinct 

influence of the geometric nonlinearity and microstructure-dependent constitutive relations on linear and nonlinear 

behavior. Kiani and Eslami [19] discussed thermal buckling and post-buckling behavior of imperfect and perfect 

temperature-dependent sandwich functional graded material plates. The plate is assumed to rest on the Pasternak 

elastic foundation and they reported post-buckling paths of two types of sandwich plates and reported the influence 

of their temperature dependency. Ma and Lee [20] studied the nonlinear static behavior of FGM beams while the 

beam is under a uniform in-plane temperature field. In another article, Nguyen et al. [21] presented a method for 

determination of static and dynamic behaviors of functional graded beams using the first-order shear deformation 

theory. The beam is considered to be only under the axial force. Niknam et al. [22] investigated non-linear bending 

tapered beam made of FGM under thermal and mechanical load with general boundary conditions. They plotted 

deflections of tapered functional graded beam subjected to various loading and boundary condition. Filippi et al. 

[23] presented static analysis of FGM beams by means of the 1D Carrera Unified Formulation (CUF). They showed 
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that features of CUF are suitable for analysis of a wide range of various structures with different boundary and 

loading conditions, arbitrary reinforcement distributions and shaped cross-sections and dimensions. Static response 

of functionally graded (FG) sandwich beams based on a quasi-3D theory is developed by Vo et al. [24]. This theory 

considers thickness stretching effects and shear deformation at the same time. Arefi and Zenkour [25] presented 

analytical solution for electro-magneto-elastic behavior of curved beam. This beam has three layers and they 

employed first-order shear deformation theory and the relations of motion for a beam under study. Arefi and 

Zenkour presented an electro-elastic analysis of a special three-layer micro-beam using combination two theories, 

strain gradient and higher-order sinusoidal shear deformation. They found out that the micro-length scale parameters 

are significantly effective on the deformation of micro-beam [26]. In another research, Ebrahimi and Jafari [27] 

presented an analytical method for investigating thermo-mechanical vibration of temperature-dependent functional 

graded beams with porosities. They developed studying for four hypothetical temperature distributions that are 

assumed vary along the thickness directions. A significant number of researches on the FGM beams have been 

dedicated to the vibration and buckling behavior of FGM beams [28-37] which are only a small number of 

performed studies on the behaviors for beams of these kinds. Musuva and Mares [38] presented free vibration 

analysis and dynamic response of a functionally graded beam under a moving point load and resting on a 

viscoelastic foundation. Unlike most previous similar studies, they considered the reinforcement gradation of the 

FGM is in the longitudinal and transverse direction based on the power law. Recently, Amlan Paul and Debabrata 

Das [39] presented a mathematical model to develop dynamic behavior of tapered FGM beam under thermal load 

considering temperature-dependent material properties. They found that temperature-dependent properties have a 

reasonable effect on free vibration of the beam. The literature review reveals that limited number of studies focus on 

the variable thickness cantilever beam made of FGM. In several literatures turbine blades modeled as cantilever 

beams [35, 40-43]. 

In this study, analysis of variable thickness cantilever beam made of FGM with temperature-dependent and 

temperature-independent properties is considered. Unlike previous studies, not only the material properties are 

variable longitudinally but also the properties are temperature-dependent and the beam geometry is also varying 

functionally along the beam. In this research, the model described is a simple simulation of a turbine blade working 

under similar loading and boundary condition. 

2    MATERIAL PROPERTIES, GEOMETRY AND LOADING 

All mechanical and thermal properties of the material are linearly variable in longitudinal direction based on the 

volume fraction of the constituent. Based on this assumption, properties can be described as: 

 

   

        
 

100

root tip root

matrix reinforcement matrix

x
VP x V V V

L
VP x

R x,T R x,T R x,T x,TR

  

 

 (1) 

 

where  VP x  is the volume fraction of reinforcement particles at point x, 
rootV  and 

tipV  are volume fractions of 

reinforcement at the root and tip of the beam, respectively. In this formula R is the property at x position and 

temperature T. 
matrixR  and reinforcementR  are the pure matrix and reinforcement property, respectively. The beam is 

exposed to distributed transverse forces with a specific function in terms of variable x and centrifugal force due to 

rotation of the beam about an axis normal to the horizontal axis.  

Thermal loading is a temperature field due to thermal gradient in longitudinal direction between root and tip of 

the beam. Variation of the beam thickness is expressed by function ( )h x . This relationship represents the profile of 

the beam. The geometry of the cantilever beam is shown in Fig. 1. The temperature dependency of material 

properties defined in Eq. (1) is taken from the literature and written as nonlinear function of temperature as [44]: 

 
1 2 3

reinforcement 0 1 1 2 3( 1     )matrixR or R R R T R T R T R T

      (2) 

 

Here T indicates the temperature in Kelvin and 0R , 1R , 1R , 2R , and 3R  are the material constants. 
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Fig.1 

Sketch of the cantilever beam under loading. 

3    HEAT CONDITION PROBBLEM 

In steady-state conduction, the Fourier heat conduction equation in the absence of heat generation in x-direction is 

considered for a composite beam made of temperature-dependent material properties and is written as follows:  

 

1
( ( , ( )) ( )) 0

d d
xK x T x T x

x dx dx
  (3) 

 

It is supposed that the lower and upper surfaces of the cantilever beam are insulated and there is no heat loss. If 

the thermal conductivity is assumed to be TID, then Eq. (3) becomes a second-order ordinary differential equation 

the solution of which gives the temperature distribution for this case. However, in the case of TD the coefficients are 

variable in longitudinal direction. Because of longitudinal-dependent of coefficients, a semi analytical method [41] 

is employed to solve the differential equation. In this method, the FGM beam is divided into a large number of 

divisions longitudinally. The schematic of the beam and sample of divisions is depicted in Fig. 2. 
 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Dividing x-direction of cantilever FGM beam. 

 

The coefficients of second-order ordinary differential equation (SODE) are calculated at x(k), midpoint of K
th

 

division and the differential equation and specified coefficients are only valid in K
th

 division and is rewritten as: 

 
2

( )

2
( ) 0kd d

S T
dxdx

   (4) 

 

where 

 

( )

( )

( ) ( )

( )1 1

( ) k

k T

k k

T x x

dK x
S

dxx K x


 

       

1,2,...,k m

  

 (5) 

 

The SODE with variable coefficients is turned into SODE with constant coefficients for each section. The 

solution of mentioned SODEs is exactly expressed as: 

 

   

( ) ( )
( ) ( ) ( )

1 2( ) exp( )
k k

k k kT x R R x S  

      

 (6) 
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where 
k

1

( )

R and 
k

2

( )

R are unknowns constants for K
th

 subdomain. These constants can be determined using the 

continuity condition of temperature and the continuity condition of thermal conduction at the interfaces of the 

adjacent sub-domains. These continuity conditions at the interfaces are: 

 
1

1

2 2

( ) ( )k k
k kt t

x x x x
T x T x 
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  

1
1

2 2

( ) ( )
k k

k kt t
x x x x

dT x dT x

dx dx 
   



         

 
(7) 

 

The global boundary conditions on the root and tip surfaces of the FGM beam must also be satisfied. These are: 

 

( )

( )

root root

tip tip

T x T

T x T



          

 (8) 

 

Eq. (7) together with Eq. (8) constructs a set of linear algebraic equations with regard to 
k

1

( )

R and 
k

2

( )

R  

coefficients. Solving these equations with respect to 
k

1

( )

R and 
k

2

( )

R , temperature distribution ( )T x can be achieved 

in each division. For the cases of TD thermal conductivity, Eq. (4) is implicit with the function ( )T x and therefore 

necessitates an iterative algorithm obtain the exact temperature distribution. To solve differential Eq. (4), a 

successive solution method is employed [46]. Step-by-step algorithm is extensively presented as follows: 

1- Particular estimated values of temperature are considered at each sub-domain.  

2- With the assumed distribution for temperature, ( )K x  is computed for the constituents using Eq. (2) and 

Eq. (3). 

3- Using these values of ( )K x from step 2 at all division points, a new temperature distribution is obtained 

which is compared with the previous estimated values at all division points for the convergence of the 

procedure. If convergence is achieved for all division points, then iteration will be stopped. Otherwise, 

these new achieved values of temperature distribution will be considered as initial distribution for 

temperature and the algorithm will be repeated until convergence is obtained.  

4    GOVERNING EQUATIONS AND ANALYSIS METHOD 

In this section, by the FSDT, an elastic solution is presented. The displacements in the X and Z directions are in 

accordance with the theory of elasticity as: 

 

   
 

0

0

,

,

u x z u zψ x

w x z w

 
 

         

 (9) 

 

where here, 
0u  shows the longitudinal displacement of the neutral axis, 

0w  represents the transverse displacement 

of the neutral axis in the thickness direction and  ψ x  is rotation component. Using the linear strain–displacement 

relations and also considering thermal strain, longitudinal and shear strain components are written as: 

 

 
 0

xx

ψ xuu
ε z αT x

x x x


   
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  0

xz

wu w
γ ψ x

z x x

 
    
  

     

 

(10) 

 

Generalized Hooke’s law by considering the thermal strains is written as: 
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 
 0

xx xx

ψ xu
ζ Eε E z αT x

x x
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x
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(11) 

 

The variation of the strain energy in accordance with the principle of virtual work is: 
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(12) 

 

The resultant force and moment per unit length due to stresses are equal to: 
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The external work is represented by: 
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According to Eq. (8), variation of external work is expressed as: 

 

      1 2 3

Z

δW F x δu F x δψ F x δw dx   
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Based on the principle of virtual work, the strain energy variations are equal to the variation of external work, 

namely: 
 

U W =

       

 (17) 

 

The following relationships are obtained according to (12) and the use of the variation calculus. 
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By substituting from relation (13) into Eq. (18) the following constitutive differential equations of the problem 

are obtained. 
 

       

               
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where   1,2,3,4,5,6iA x i  is given in the Appendix A. To solve these differential equations with variable 

coefficients a semi analytical division method has been used [45].  

A large number are divisions in longitudinal direction are considered. For the center point of each division, the 

Eqs. (19) are solved and, using the local boundary conditions introduced in relations (20), and global boundary 

condition (21), a set of algebraic equation containing constant coefficients of each division are obtained. Solving 

these equations constants are obtained, then displacements, stresses and strains are achieved. 
The local boundary conditions that are due to the continuity condition are: 
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(20) 

 

and the root and tip boundary conditions of the cantilever FGM beam are: 
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(21) 

 

In this method, for K
th 

division, Eqs. (19) is rewritten as follows: 
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where the constants   1,2,3,4,5,6k

iA x i  are given in the Appendix B. 
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5    NUMERICAL RESULTS 

An analysis is performed for a cantilever FGM beam whose non-homogeneity is due to variable property in 

longitudinal direction, using the method described in the previous section. Upper and lower surfaces profiles are 

mathematically represented by the following relations (23) and (24). In these equations x is in millimeter. 

 

0.0114
30

x x
e  

  

 (23) 

 

0.0114
30

x x
e  

  

 (24) 

 

with the above mentioned profiles thickness as a function of x is represented by Eq. (25). 

 

0.0128
15

( ) xh
x

ex  

  

 (25) 

 

To find the thermoelastic response of a FGM cantilever beam, studies have been carried out based on ZrO2 / 

Ti6Al4V constituent. However, the mentioned method in this paper is as well applicable for every type of functional 

graded materials. The TD properties corresponding to ZrO2 and Ti6Al4V are given in Table 1. In this composite, 

Poisson’s ratio is constantly supposed and ν = 0.29. Also, it is assumed that L = 200 mm, 
0r = 300 mm, 

rootT = 300 K, 

tipT =700 K, 
2

35680ZrO kg / m  , 3

6 4 4429Ti Al V kg / m  , 3000rpm . 

 
Table1  

Temperature-dependent coefficients for ZrO2 and Ti6Al4V [47]. 

R3 R2 R1 R-1 R0 Metal & Reinforcement 

 

-3.681e-10 

-6.778e-11 

0 

 

1.214e-6 

1.006e-5 

6.648e-8 

 

 -1.371e-3 

 -1.491e-3 

1.27e-4 

 

0 

0 

0 

 

244.27e+9 

   12.766e-6 

 1.7000 

ZrO2 

E(Pa) 
1( K )

 
K(w/m0K) 

 

0 

0 

0 

 

0 

-0.3147e-6 

0 

 

-4.586e-4 

6.638e-4 

1.704e-2 

 

0 

0 

0 

 

122.56e+9 

      7.5788e-6 

1.0000 

Ti6Al4V 

E(Pa) 
1( K )

 
K(w/mk) 

 

The distributed force P(x) is variable from the root to the tip of the beam linearly and is represented by relation 

(26). 

 

( ) 0.03 0.05P x x +

  

 (26) 

 

For three different cases of reinforcement volume content distributions 0 30root tipA :V ,V  , 30 0root tipB :V ,V   

and 15 15root tipC :V ,V  , the temperature distribution, longitudinal and transverse displacements, longitudinal 

shear and effective stresses are calculated by the present method. Schematic of the three different cases of 

reinforcement distributions of the beam are illustrated in Fig 3. 

Figs. 4-9 are devoted to temperature distribution, longitudinal displacement distribution, transverse displacement 

distribution, transverse stress distribution, shear stress distribution and effective stress distribution of all three cases 

considering TID and TD properties non-dimensionally. 

To demonstrate the precision and validity of the current study, using Abaqus software, temperature distribution, 

displacements distribution and stresses distribution are calculated for the case B-TD and compared with the same 

case obtained from the proposed method. The A-TD and B-TD are general cases because in these cases, material 

properties are temperature-dependent and functionally. Note that in these figures, dash line and solid line correspond 

to TD and TID properties respectively. 
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Fig.3 

Schematic of the three different reinforcement distributions 

of the beam. 

6    DISCUSSION 

Fig. 4 shows that the boundary condition for temperature distribution is satisfied at the root and the tip of the beam, 

however the temperature distribution for the TD property case is higher than TID property. It is interesting that the 

temperature of the corresponding point in TID in case A is higher than case C and in the case C is higher than B and 

this trend is the same for TD properties, i.e. the temperature in case A is higher than C, and in case C is higher than 

B. At lower temperatures near the root and for the TD cases, according to Eq. (1) and (2) and Table 1., the heat 

conduction coefficient is lower which is associated with higher temperature gradient due to the same heat flux 

throughout the beam. On the other hand, at the higher temperature of the tip region, lower temperature gradient is 

expected as is evident from the Fig. 4. A convex curve for temperature distribution in these cases is therefore 

justified.  

In TID cases the temperature distribution dependent on volume percent distribution of reinforcement. For the A-

TID case the heat conduction coefficient is lower at the root and higher at the tip which is associated with higher 

gradient at the root and lower at the tip yielding to a low convex shape for temperature distribution. The concave 

curve of temperature distribution for the case B-TID is due to higher content of reinforcement at the root and lower 

values at the tip. 

 

 

 

 

 

 

 

 

 

Fig.4 

Temperature distribution of composite cantilever beam. 

 

Longitudinal displacement is depicted in Fig. 5. Generally, the longitudinal displacement is positive which is due 

to centrifugal body force. It is zero at the root and is maximum at the tip for all cases and material properties which 

is expected from the boundary condition. It is obvious that the longitudinal displacements for the TID properties are 

lower than TD. Since for the TD cases, values of elastic and shear modulus E and G are lower according to Eq. (1) 

and Eq. (2) and Table 1., therefore, higher elongation is justified for TD cases. For the case B the reinforcement 

content at the thicker root region is higher than the tip therefore the beam mass will be higher in this case and a 

higher centrifugal force is expected. 
 

 

 

 

 

 

 

 

 

Fig.5 

Longitudinal displacement distribution of composite cantilever 

beam. 

A 

B 

C 



M.M.H. Mirzaei et.al.                                666 

 

© 2019 IAU, Arak Branch 

Transverse displacement of the composite cantilever beam in shown in Fig. 6. The transverse displacement is 

negative because of the downward distributed force over the beam. It is zero at the root and its maximum absolute 

value is located at the tip for all cases and material properties as expected from the boundary condition. All cases of 

reinforcement content and material temperature dependency and independency have not significant effect on 

transverse displacement almost on the first half of the beam. Since elastic and shear modulus of the TD cases are 

lower than TID cases, their absolute values of transverse displacement are higher. 

 

  

 

 
 
 
 
 
Fig.6 

Transverse displacement distribution of composite cantilever 

beam. 

 

Fig. 7 shows the longitudinal tensile stress which is maximum at the root and is zero at the tip which satisfies the 

free boundary condition at the tip and maximum centrifugal force at the root. The longitudinal stress in TD 

properties is basically higher than TID properties. In addition, for TD or TID properties, the longitudinal stress for 

the case A is lower than C and for the case C is lower than B. The same trend is observed in Figs. 8 and 9.  
 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Longitudinal stress distribution of composite cantilever beam. 

  

 
 

 
 
 
 
 
 
Fig.8 

Transverse stress distribution of composite cantilever beam. 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Effective stress distribution of composite cantilever beam. 
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Material temperature dependency/independency and reinforcement distribution have not considerable effect on 

longitudinal stress almost on the second half of the beam. It demonstrates that by considering the FGM materials 

with temperature dependent properties, the stress and displacements will both increase. Moreover, the volume 

content distribution of the reinforcement has considerable effects on stress and displacements. For example, for this 

specific case, as expected, the maximum effective stress happens at the root of the beam and in case TD with 

distribution B (solid line B-TD), the value of maximum effective stress is 1.44 times more than in case TID with 

distribution A (solid line A-TID). Also in case TD with distribution B (solid line B-TD), the maximum longitudinal 

displacement is 1.5 times higher than that in case TID with distribution A (dashed line A-TID).   

It is seen from Figs. 4-9 that there is a good agreement between the method presented in this study and the finite 

element method. 

7    CONCLUSIONS 

In this paper, a semi-analytic method is employed for analysis of a variable thickness cantilever beam (VTCB) 

subjected to thermomechanical loading. The beam is made of a metal based composite reinforced by a ceramic, the 

volume content of which is linearly distributed in longitudinal direction so that the material property is variable 

based on the constituent volume fraction. Two different cases of temperature-dependent and temperature-

independent properties are studied. It is noteworthy to mention that except the Poisson coefficient, rest of the 

thermal and mechanical properties are assumed to be variable along the beam. By successive relaxation method 

(SR), the temperature distribution along the beam is obtained. In fact, this beam is a simplified model of the 

turbine’s blade. The distributed force represents the aerodynamic force on the blade. Using first-order shear 

deformation theory, linear strain–displacement relations and Generalized Hooke’s law, a system of the second order 

differential equations (SODE) is obtained. Because of variable coefficients due to variable properties, a division 

method is applied to solve the differential equations. The coefficients then become constant for each division. An 

analysis is done for a beam made of ZrO2/Ti6Al4V composite and the results for a most general case are validated 

by the finite element method. The results indicated that consideration of temperature dependency for the 

functionally graded material has a significant influence on the temperature, displacements and stresses. Moreover, 

the results are presented for three different cases of reinforcement distribution the influence of which on 

temperature, displacements and stresses are also considerable.  
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