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 ABSTRACT 

 A mesh-free method based on moving least squares approximation 

(MLS) and weak form of governing equations including two 

dimensional equations of motion and Maxwell’s equation is used to 

analyze the free vibration of functionally graded piezoelectric material 

(FGPM) beams. Material properties in beam are determined using a 

power law distribution. Essential boundary conditions are imposed by 

the transformation method. The mesh-free method is verified by 

comparison with a finite element method (FEM) which performed for 

FGPM beams. Comparisons showed that this model has a good 

accuracy. After validation of the presented model, a parametric study 

was carried out to investigate the effect of mechanical and electrical 

boundary conditions, slenderness ratio and distribution of constituent 

materials on natural frequencies of FGPM beams. It is concluded that 

slenderness   ratio has more significant effect on lower frequencies. On 

the other hand, higher frequencies are affected by the volume fraction 

power index much more than lower frequencies. 

                                       © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 N recent years piezoelectric materials are considerably used in engineering applications as sensors and actuators. 

Deformation of piezoelectric materials causes generation of electric charge and conversely strain field is generated 

undergo applying an electric charge. This coupling property is widely considered to use in electrical and electro-

mechanical devices.  Traditional layered piezoelectric materials have some shortages such as cracking or creeping 

due to low or high temperature respectively and also abrupt change in the martial properties can cause stress 

concentration at interface. Concept of functionally graded materials (FGM) was introduced to overcome these 

shortages. Functionally graded piezoelectric materials are useful for many fields such as micro-electric- mechanical 

systems due to their continuously graded properties. Continuous variation of properties in special direction makes 

them suitable for reduction of stress concentration in piezoelectric materials which are used in sensors and actuators 

extensively. Static and dynamic analyses of FGPM structures can be used as an efficient tool in optimum design of 
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sensors and actuators. Several works have been carried out using analytical methods to obtain dynamic and static 

response of FGPM structures. Sharma and Parashar [1] carried out free vibration analysis of shear induced FGPM 

annular plates by the generalized differential quadrature method. Kruusing [2] used an analytical method Based on 

the Euler-Bernoulli beam theory to obtain the mechanical response of an actuator with graded elastic constants. 

Hauke et al. [3] reported experimental results by using linear regression formula to determine deflection of FGPM 

actuator. Huang et al. [4] introduced analytical and semi-analytical solutions for anisotropic functionally graded 

magneto-electro-elastic beams subjected to an arbitrary load. Li and Feng [5] investigated free vibration analysis of 

FGPM beams using modified gradient method and Timoshenko beam theory. Wu and Syu [6] used perturbation 

method to obtain dynamic response of functionally graded piezoelectric cylindrical shells under electromechanical 

loads. Li and Peng [7] analyzed the static response of a FGPM spherical shell and an analytic method was 

considered to reduce problem to a Fredholm integral equation. Hsu [8] used deferential quadrature method (DQM) 

to investigate the electromechanical behavior of piezoelectric laminated composite beams. Razavi and Faramarzi 

Babadi [9] presented free vibration analysis FGPM cylindrical Nano shell based on consistent couple stress theory. 

They used energy method and Hamilton principle to determine the governing equations and boundary conditions. 

Zhang and Shi [10] focused on the response of a functionally graded piezoelectric (FGP) cylindrical actuator placed 

in a harmonic electric field based on elastic membrane theory and shell theory. They introduced non-dimensional 

expressions and an analytical solution for this type of actuators. Xiang and Shi [11] presented Static response of a 

multi-layered piezoelectric cantilever based on the Airy stress function. 

Analytical methods are applicable for simple geometries with specific types of boundary conditions and external 

loads. Among numerical methods, the finite element method is a robust method for analysis of solid structures. In 

recent decades several work has been presented on static and dynamic analyses of FGPM structures by the finite 

element method. Transient response and vibration of FGPM beam under thermo-electro-mechanical load were 

studied by Doroushi and Eslami [12]. They used the higher order shear deformation and the finite element method to 

obtain the numerical results. Their results have been presented for various boundary conditions such as open and 

close circuit systems. Behjat and Khoshravan [13] investigated response of a FGP plate under mechanical and 

electrical loads by a nonlinear finite element analysis. Linearly inhomogeneous elements were used by Sedighi and 

Shakeri [14] for electrostatic analysis of simply supported FGP cylindrical panels. Behjat, et al. [15] presented static, 

free vibration and dynamic response of FGP panels by finite element method using four-node elements. Babaei and 

Chen [16] used finite element method to investigate thermo-piezoelectric response of FGP hollow cylinders under 

dynamic axisymmetric loading. FEM has some disadvantages such as difficulty of creating FEM meshes and low 

accuracy in stress calculation. Mesh-free methods are a new class of numerical methods, have been introduced 

recently as an alternative for the finite element method to simulate solid mechanics problems. In these methods a set 

of nodes are used for interpolation or approximation of unknown field variables. Mesh-free  methods are classified 

into four categories based on the function approximation schemes; MLS approximation schemes, integral 

representation method, point interpolation methods and other mesh-free  interpolation schemes [17]. Mesh-free 

methods have been improved by introducing MLS shape function, because continuous approximation is important 

features of MLS shape functions, which result in more accurate results. For the first time Nayroles et al. [18] used 

MLS shape function to promote the diffuse element method (DEM). Chuaqui and Roque [19] used multi quadric 

radial basis functions to investigate electro-mechanical static response of functionally graded piezoelectric smart 

subjected to mechanical loads and electric potential. MLS shape functions do not satisfy the Kronecker delta 

property. Therefore, in MLS based mesh- free methods, essential boundary conditions cannot be imposed directly as 

in the FEM. Among the methods have been used to impose essential boundary conditions in mesh-free methods, 

transformation method is more efficient than other methods. This method has been used in several works. Safaei and 

Moradi-Dastjerdi [20] analyzed natural frequencies of sandwich plates reinforced by functionally graded single-

walled carbon nanotubes (SWCNTs) agglomerations by enforcing thermal loads. They used a mesh-free method 

based on MLS shape function to investigate the effects of essential boundary conditions. They applied the 

transformation method to impose essential boundary conditions. Moradi-Dastjerdi and Pourasghar [21] used the 

transformation method for imposition of essential boundary conditions in dynamic analysis of functionally graded 

nanocomposite cylinders reinforced by wavy carbon nanotube under an impact load. Moradi-Dastjerdi and 

Payganeh[22] studied thermoelastic dynamic behavior of functionally graded carbon nanotubes. They also applied 

the transformation method to modify a mesh-free method for imposition essential boundary conditions. Free 

vibration analysis of FGPM beams by a mesh-free method has not been carried out to the best of author’s 

knowledge.  

This work studies the free vibration analysis of FGPM beam by a mesh-free method based on weak form of two 

dimensional equations of motion and Maxwell’s equation. MLS shape functions are used to approximate the 

displacement and electric potential fields in these equations. Since MLS approximation does not satisfy the 
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Kronecker delta, transformation method is applied to enforce the essential boundary conditions. The material 

properties vary smoothly across the thickness of the beam. After validation of the presented model, different 

slenderness ratio and various boundary conditions such as close and open circuits systems and clamped-free or 

clamped- clamped end conditions for beam are considered to present the results. 

2    FORMULATION   

2.1 Functionally graded piezoelectric material properties 

The beam with FGPM properties, length L, and thickness h and negligible width b is made from mixture of two 

different materials with piezoelectric properties. According to 2-D, X-Y coordinate, it is assumed that properties vary 

smoothly through the thickness (Y direction) from top to bottom. 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometry of rectangular FGPM beam. 

 

According to law of mixture mechanical and electrical properties P of the functionally graded beam at each point 

are determined as follows: 

 

top top bottom bottomP P V P V   (1) 

 

where,  
topP   , 

topV , 
bottomP  and 

bottomV are  property  and volume fraction  of material of top and bottom surfaces 

respectively. In this work, top and bottom surface materials are PZT-4 and PZT-5. Relation between 
topV  and 

bottomV   

is explained as following: 

 

1top bottomV V   (2) 

 

A power law distribution proposed by Reddy and chin [23] is used for variation of volume fraction through the 

as follows: 

 

2
n

top

y h
V

h

 
  
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 (3) 

 

where n is the volume fraction index. Substituting Eqs. (3) and (2) in (1) leads to: 
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 (4) 

2.2 Governing equations 

The Hamilton’s principle states that: 
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where, T, П, and 
ncW  are kinetic energy, elastic strain energy, and the work done by external forces respectively. 

These variables are defined as follows: 

   
1

2

TT u ud


   (6) 

 

 
1

2

T TE D d 


     (7) 

        

   T T

nc b b s sW u f q d u f q d
 

       
(8) 

  

where , , , , , , , , , ,b s bE D u u f f q     and 
sq  are stress vector, strain vector, electric field intensity, mass density, 

electric displacement, displacement vector, velocity vector, body force vector, surface traction vector, electrical 
potential, electrical body charge and electrical surface charge.  is the problem dominate and Γ is part of boundary 

on which surface tractions are enforced. 

Also linear piezoelectric constitutive equations is demonstrated as follow [12]:  

 
TC e E D e E   = = +  (9) 

 

where, C, e, and   are stiffness, piezoelectric, and dielectric constant coefficient matrices, respectively. Substituting 

Eqs. (6), (7), (8) and (9) in (5) the weak form of governing equation is obtained: 
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In two dimensional coordinates , , , , ,X Y C e    are expressed as: 

 

[ ]Txx yy xy     (11a) 

 

[ ]Txx yy xy     (11b) 
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2.3 Mesh-free formulation 

In MLS approximation, in domain  , variable ( )u x at interest point ( , )X x y , is approximated by: 
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( )P X is the basis function, ( )a X is coefficients which is function of x variable, and m is the number of 

monomials. In 2D problems linear basis function is given by: 

 
T( ) [1 X Y]P X           (13) 

 

( )a X is determined by minimizing the following weighted residual: 
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where n is the number of field nodes in the support domain   , ˆ
iu is the of virtual nodal value at node 

iX , and  w 

is the weight function. In this paper cubic spline is chosen as weight function 
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where, 
cxd and 

cyd are average node distances in X and Y directions, and  is the dimensionless size of the support 

domain. 

 

sx cx sy cyd d d d            (17) 

 

and 

 

( ) ( ) ( )ix iyw r w r w r           (18) 

 

Unknown coefficients ( )a X are determined by minimizing weighted residual: 
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Consequently:  
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In which  
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and 

 

B w X X P X
i i i
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and û  are virtual nodal values: 

 

1 2
ˆ ˆ ˆ ˆ[ ]Tnu u u u=          (23) 

 

By replacing Eq. (20) to Eq. (12), Eq. (24) is obtained: 
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where 
i  is MLS shape function of node that located at  X X

i
= : 

 

( )i X P X A X B  T -1

i
( )[ ( )]          (25) 

 

Displacement vector u and electrical potential ψ  in X-Y coordinates can be approximated by the MLS shape 

functions: 

 

ˆ
uu u           (26) 

and 
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1 2 3[ ]n    =  (29) 

 

where, the virtual displacement and virtual electric potential vectors are represented as: 
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The equations for strain and electrical field are provided which related theme to displacement and electrical 

potential respectively:   

 

ˆ
uB u =  (31) 

 

ˆE B =  (32) 
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In which 
uB  and B  , are given as: 

 

1

1

1 1

0 0

0 0

n

n

u

n n

x x

B
y y

y x y x

  
 
  

  
  

  
    
 
    

 (33) 

 

1 2

1 2

...

...

n

n

x x x
B

y y y



   
   
 
   
    

 (34) 

 

By replacing Eq. (26), (27), (31) and (32) in Eq. (10) and by neglecting body forces and electrical body charge, 

mesh-free formulation is demonstrated as: 
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By rearranging Eq. (35) with coefficients of ˆ( )u  and ˆ( )   leads to: 
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or: 
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For free vibration ˆ
uf and ˆf   are zero. These matrices can be calculated easily by numerical integration. To 

impose essential boundary conditions, displacement and electrical potential nodal value vector must have the real 

values. Because Û  and ̂  have virtual value, essential boundary conditions cannot be imposed directly. 

Transformation is a simple method which is established for mesh-free to turn virtual displacement  Û  and 

electrical potential  ̂  into the real values. In this method, real and virtual nodal values are related by 

transformation matrices: 

 

ˆ ˆ
uU T U T = =  (40) 

 

where 
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Eq. (43) for free vibration is obtained by rearranging Eq. (37): 
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Essential boundary conditions can be implemented directly to Eq. (43). By solving Eq. (43): 

 
1Ψ * uK K U 

   (45) 

 

Replacing Eq. (45), in Eq. (43) leads to: 

 

0eqMU K U   (46) 

 

where: 



152                                 Free Vibration Analysis of Functionally Graded Piezoelectric ….    
 

 

© 2019 IAU, Arak Branch 

1

eq uu u uK K K K K  

   (47) 

3    NUMERICAL RESULTS AND DISCUAAION  

First of all, the convergence of the method is important to obtain reliable number of nodes to present the results. The 

first three dimensionless natural frequencies  11 4
/

PZT
h c 


   with clamped-free as mechanical boundary 

condition, are shown in Table 1., for different node arrangements. 

 
Table 1 

Convergency study of the meshless method, first three natural frequencies of a Clamped-Free FGPM beam (L/h=5, n=0.1). 

Nodes distribution 2*6 3*11 5*21 6*26 7*31 8*36 

1  0.0341 0.0271 0.0363 0.0377 0.0374 0.0374 

2  0.1886 0.2078 0.2038 0.2038 0.2035 0.2034 

3  0.2925 0.2988 0.2983 0.2982 0.2981 0.2981 

 

Because of small difference between results obtained with 6*26 and 7*31 node arrangements, 6*26 nodes have 

been selected to report the results with reliable accuracy.  

 
Table 2 

Materials constants [12]. 

Material 
11c  13c  33c  55c  13e  33e  15e  11  33  

PZT-4 

PZT-5H 

139 

  127.2 

74.3 

 84.67 

115 

    117.44 

25.6 

 22.99 

-5.2 

 -6.62 

15.1 

 23.24 

12.7 

 17.03 

1.306 

2.771 

1.151 

3.010 

 

In this study FGPM properties have been considered to present the results. In FGPM beam, properties are varied 

form bottom surface which is PZT-5H to PZT-4 at the top. The material properties of FGPM are listed in Table 2.  
 
Table 3 

The first three dimensionless natural frequencies of a FGPM beam (n=0). 

 Ref  Pre   Diff% Ref  Pre     Diff% 

C-F  L/h=5   L/h=15  

1  0.0392 0.0381 2.8 0.0045 0.0044 2.2 

2  0.2080 0.2060 0.0 0.0275 0.0268 2.5 

3  0.3306 0.3017 8.7 0.0744 0.0714 4.0 

C-C       

1  0.2025 0.2050 1.2 0.0277 0.0273 1.0 

2  0.4608 0.4803 4.2 0.0733 0.0713 2.7 

3  0.6575 0.6043 8.0 0.1369 0.1343 1.8 

 
Table 4 

The first three dimensionless natural frequencies of a clamped-free FGPM beam (L/h=15).  

 

The first three natural frequencies, obtained from the presented model are compared with those presented by  

Doroushi et al. [12] in Table 3. Diff is defined as % *100
r p

r

Diff
 




 that show difference between reference results 

and present study. r   and 
p are the results reported by reference and present study, respectively. Accuracy of 

 n=0 n=0.2 n=1 n=10 

1  0.0044 0.0040 0.0040 0.0040 

2  0.0268 0.0256 0.0250 0.0235 

3  0.0714 0.0696 0.0663 0.0641 
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results obtained from beam theories increases with increase in slenderness ratio. This factor does not affect the 

accuracy of results obtained from 2-dimensional theory of elasticity. That is why the difference between results are 

significant for lower values of L/h ratio. Furthermore, this table shows that natural frequencies with C-C boundary 

condition are greater than those with C-F boundary condition as expected.  Effect of power exponent n on natural 

frequencies is shown in Table 4. This table depicts that natural frequencies decrease with increase of n. Increase in 

power index n leads to increase in volume fraction of PZT-5H and consequently decrease in stiffness of the beam. 

This can justify the decrease in natural frequencies with increase of n. 

 
Table 5 

The first three dimensionless natural frequencies of a clamped-free FGPM beam (n=1). 

 L/h=5 L/h=10 L/h=12 L/h=15 

1  0.0365 0.0089 0.0061 0.0040 

2  0.1963 0.0551 0.0373 0.0250 

3  0.2831 0.1417 0.1004 0.0663 

 

Table 5., shows the effect of ratio L/h on natural frequencies. Natural frequencies decrease with increase in this 

ratio because of decrease in stiffness of the beam. In order to study the effect of n and L/h on natural frequencies, 

variation of first three frequencies versus L/h for different values on n are shown in Fig. 2.  This figure confirms the 

results obtained from Tables 4 and 5. Furthermore this figure reveals that the L/h ratio has more significant effect on 

lower frequencies. On the other hand higher frequencies are affected by n much more than lower frequencies. 

 
Table 6 

The first three dimensionless natural frequencies in open and close circuits of a Clamped-Free FGPM beam (L/h=10).  

 open 

n=0 

close 

n=0 

Diff% open n=1 close    

n=1 

Diff% open 

n=10 

close 

n=10 

Diff% 

1  0.0095 0.0095 0.0 0.0089 0.0089 0.0 0.0085 0.0083 2.3 

2  0.0567 0.0560 1.2 0.0551 0.0537 2.5 0.0507 0.0501 1.1 

3  0.1526 0.1453 4.7 0.1417 0.1360 4.0 0.1336 0.1276 4.5 

 

To examine effect of electrical boundary conditions on natural frequencies, results are obtained for open loop 

and closed loop conditions and summarized in Table 6. For closed loop condition, mechanical energy of the system 

is converted to electrical energy and consequently the stiffness of system decreases. That is why natural frequencies 

for closed loop condition are less than those for open loop condition.  

 

 
(a) 

 
(b) 

 
(c) 

 

 

 

 

 

Fig.2 

First (a) Second (b) Third (c) natural frequencies of a 

Clamped-Free FGPM beam with different slenderness 

ratios and different volume fraction indexes. 
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4    CONCLUSIONS 

Free vibration of functionally graded piezoelectric beams subjected to different boundary conditions was 

investigated using a mesh-free method. The formulation is based on 2-D elasticity theory and governing equations 

are derived by Hamilton principle. PZT-4 and PZT-5H are used as constituent   materials in this study. Effect of 

ratio L/h, power exponent n and electrical boundary conditions on natural frequencies of beam were investigated by 

the presented model. It was concluded that the ratio L/h has more effect on lower frequencies while, effect of power 

exponent n on higher frequencies is more significant. Natural frequencies with open loop condition are greater than 

those with closed loop condition.  
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