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 ABSTRACT 

 This study is the first report of numerical solution of nonlinear bending 

analysis for annular and circular plates based on 3D elasticity theory with 

asymmetric boundary conditions using semi-analytical polynomial 

method (SAPM). Orthotropic annular and circular plates are subjected to 

transverse loading and 3D bending analysis in the presence of symmetric 

and asymmetric boundary conditions is studied. For asymmetry cases, 

the plate boundaries are divided to two or three parts and various 

boundary conditions such as clamped, simply supported and free edges 

are defined for each part. The asymmetry in one and two directions is 

studied. The influence of elastic foundations, mechanical and thermo-

mechanical loadings are examined. Regarding this fact that no study has 

been done in the case of asymmetric boundary conditions, the obtained 

results are compared with FEM results by ABAQUS. The results show 

good agreement with the literatures and FEM results, which it shows that 

the presented method can use to analyze the 3D bending of plates under 

asymmetric conditions. In addition, it is observed that 3D elasticity 

estimates some higher deflections than other theories. However, the 

obtained results by 3D elasticity theory and those obtained by FEM 

analysis in the case of asymmetric conditions are so close. 

                                          © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 URING last decades, different studies are devoted to analyze the bending behavior of plates with different 

shape, mechanical behavior, boundary conditions and type of loading based on different plate theories. 

Different classical plate theories are proposed to use in this way. The basic difference between these theories is the 

way of displacement field definition or may be better to say, their employed assumptions. The simplest and oldest 
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theory is the classical plate theory (CPT) of Kirchhoff [1] also called Kirchhoff plate theory (KPT) which first 

employed and developed by Tsiatas [2] to the static bending analysis of microplates. The CPT provides accurate 

results for analysis of thin plates (length-to-thickness ratios larger than 20) made by homogeneous isotropic 

materials but, underestimates bending analysis and overestimates vibration analysis of moderately thick plates due to 

the ignoring shear deformation effects. An extension of KPT is the Mindlin-Reissner theory which was proposed by 

Mindlin [3] and similarly, but not identical, was proposed by Reissner [4]. Their theory so called first order shear 

deformation theory (FSDT) or Mindlin plate theory (MPT) which was taken into account the shear deformation 

effects through the thickness of the plates which is applicable for both thin and moderately thick plates [5]. The 

challenges related to the FSDT are the inaccurate distribution of transverse shear stress and strain and also the 

violation of traction free boundary conditions at the top and bottom surfaces of the plate, which to adjust the shear 

stress distribution, the shear correction factor is required which makes this theory inconvenient to be used. Reddy [6] 

presented third order shear deformation theory (TSDT) so called Reddy plate theory (RPT) to avoid shear correction 

factor by the aim of using cubic term in the thickness coordinate in the proposed displacement field, hence the 

transverse shear strain and stress are represented as quadratic through the thickness ,and vanish on the top and 

bottom surfaces of the plate. CPT, FSDT and TSDT are commonly used theories in the literatures, but other higher 

order theories are assumed and proposed by other researchers such as sinusoidal shear deformable theory (SSDT) of 

Touratier [7], the hyperbolic shear deformable plate theory of Soldatos (HSDPT) [8], the trigonometric shear 

deformable plate theory (TSDPT) of Ferreira et al. [9], exponential shear deformation theory (ESDT) of Karama 

[10] or parabolic shear deformation theory (PSDT) and some other refined plate theories [5,11] which each one 

contains different assumptions and significant advantages. 

By defining mentioned theories, many researchers try to use them to analyze the bending behavior of plates with 

different shapes under various conditions. So, among the literatures different studies could be found that by the aim 

of classical plate theory (CPT) [12,13], first order shear deformation theory (FSDT) [13,14], third order shear 

deformation theory (TSDT) [15] or higher order shear deformation theory (HSDT) [16] devoted to analyze the 

bending behavior of axisymmetric circular plates. But, few studies are examined the bending of circular plates based 

on 3D elasticity theory such as ones by Yang et al. [17] recently, which investigated 3D bending of axisymmetric 

functionally graded (FG) graphene reinforced circular and annular plates. 

Among the literature, few studies examined the asymmetric bending of circular plates. Tielking [18] investigated 

asymmetric bending of an isotropic, variable thickness annular plate with clamped edges using Von Karman plate 

theory and Ritz method. Pardoen [19] examined asymmetric bending of circular plates subjected to a concentrated 

force using the finite element method. Al Jarbouh Ali [20] presented a mechanical modelling for the behavior of the 

metallic circular plate under the effect of asymmetric loading. However, by the knowledge of the authors, no study 

is found which investigated the nonlinear bending of plates with asymmetric boundary conditions based on 3D 

elasticity theory. 

In this study, the nonlinear bending analysis of orthotropic annular and circular plates with asymmetric boundary 

conditions based on 3D elasticity theory is investigated for the first time. For this purpose, the SAPM as a new 

numerical method, which is presented by the authors recently [14], is used to solve the obtained equations. Dastjerdi 

and Jabbarzadeh [14-16] presented and used SAPM to solve the symmetric bending of plates based on different 

theories except 3D elasticity. While, the SAPM is a simple and powerful numerical method with various potentials, 

which one of them is the potentiality of, solving governing equations related to the 3D bending analysis of plates 

with asymmetric boundary conditions that this potentiality will be discussed in this study. For this purpose, initially 

the governing equations of nonlinear bending of orthotropic annular and circular plates based on 3D elasticity theory 

using principle of stationary total potential energy is derived. Secondly, the boundaries of the plate are divided to 

two or three parts and different boundary conditions is employed to each part. Two types of asymmetry is 

considered: (a) asymmetry through one direction, which means that the inner and outer radius have the same 

boundary conditions at each part and the asymmetry is through direction, and (b) asymmetry through two 

directions ,which means that the inner and outer radius boundary conditions at each part have different boundary 

conditions and the asymmetry is through r and directions. The analysis is performed for different types of loading 

such as mechanical, thermal and thermo-mechanical, and the influence of elastic foundations under different 

boundaries is investigated.  

It is observed that the obtained results are in good agreement with the results reported in the literatures (in 

symmetry case) and the FEM results (in asymmetry cases). In addition, it is concluded that the 3D elasticity theory 

estimates higher values of deflections than other theories of plates such as CPT, FSDT and TSDT. The obtained 

results by 3D elasticity theory and those obtained by FEM analysis in the case of asymmetric conditions are so 

close. 
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2    GOVERNING EQUATIONS 

2.1 3D elasticity theory formulation 

A schematic of an annular plate is shown in Fig.1 with inner radius
i

r , outer radius
o

r , and thickness of h under 

uniform transverse loading q
 
resting on two parameters Winkler-Pasternak elastic foundation. 

w
k

 
and p

k
 
are the 

Winkler and Pasternak stiffness coefficients of elastic foundation respectively.  

 

 

 

 

 

 

 

 

 

 

Fig.1 

The schematic view of an annular/circular plate under uniform 

loading and rested on elastic foundation. 

 

According to the 3D elasticity theory of plates, the displacements filed can be expressed as follow: 

 

u r z u r z
1
( , , ) ( , , )   (1) 

 

u r z v r z
2
( , , ) ( , , )   (2) 

 

u r z w r z
3
( , , ) ( , , )   (3) 

 

where
i

u is the displacement vector and u v w, ,  are the displacement components along the r z, ,  directions 

respectively. It is obvious that no assumption or simplification is employed in definition of displacement vectors. To 

investigate the mechanical bending analysis, the following Von-Karman strain equation is used [21]: 

 

ij i j j i k i k j
u u u u

, , , ,

1
( )

2
     (4) 

 

where
ij
 is the stress tensor and to define the thermal stress following relation is used [21]: 

 

T
T    (5) 

 

where
T
 is the thermal strain   is thermal diffusivity and  is the temperature difference. 

By substituting Eqs. (1)- (3) into Eq. (4) and defining
T
 using Eq. (5), the nonlinear components of the Von-

Karman strain field can be written as: 
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Due to the orthotropic behavior of employed plate, the stress-strain relations using Hook’s law [22] are derived 

as: 

 r
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where
ij

 are the Cauchy stress tensors, 
ij
 is shear strain,

ij
 is poison ratio, 

r
E is the elastic modulus in r 

direction,
ij

G is the shear modulus of orthotropic plate and
z z r r rz zr r z zr r z rz

1                          which it 

is a coefficient factor [22],
r r r

E E     ,
zr rz z r

E E   and
z z z

E E     . The E
and the

z
E are the elastic 

moduli in and z directions. 

2.2 Constitutive equations 

In this study, the constitutive equations and boundary conditions are derived based on the principle of stationary 

total potential energy [21]: 

 

 ext
U W 0     (18) 

 

where is the variation symbol and
ext

W is the potential of applied forces which contains the effects of transverse 

loading q and Winkler-Pasternak elastic foundation on the surface of plate. The components of total potential energy 

are defined as: 
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where
r rr r z

2 2 2
2

2 2 2 2

1 1



   
    
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is the Laplacian operator. 

By substituting Eqs. (6)- (11) into the Eq. (19) and neglecting body forces, 3D equilibrium equations of an 

orthotropic annular/circular plate are derived as: 

 

rzr rrrru
r r z r

1
0 : 0 

  




 
    

  
  (21) 

 

zr

r
v

r r r z

2 1
0 : 0 



 
 



 
    

  
  (22) 

 

rz rz z zz

rr r rz r z

rz z zz

w w w w w w
w r r

r r r z r r r z r r r z

w w w
r r

r z r z

1 1 1
0 :

1
0

 
  



    
     

   

  


            
           

             

    
    

    

  (23) 

 

For sake of generality and convenience, the following non-dimensional parameters are introduced [14-16]: 
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which to find these non-dimensional parameters is tried to divide each parameter to a parameter with the same 

dimension. So, all parameters with length dimension are divided to 
o

r  and all elastic modules and foundations are 

divided to
r

E . 

In continue as the final step, by substituting Eqs. (6) - (11) into Eqs. (12) - (17) to define the expression of stress 

components versus the displacement fields and replacing the resulted stress components into the Eqs. (21) - (23) and 

using non-dimensional parameters, three equilibrium equations are derived as: 
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 (27) 

3    SOLUTIONS PROCEDURE 

According to the three equilibrium equations, it can be seen that a system of nonlinear partial differential equations 

is obtained. In this study a new semi-analytical polynomial method (SAPM) which is presented by Dastjerdi and 
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Jabbarzadeh [14] recently in 2D is employed which can solve the system of nonlinear partial differential equations 

needless to any assumptions or simplifications. This method is identified by Dastjerdi and Jabbarzadeh [14-16] just 

as a powerful method, which can solve system of partial equations simply. However, the authors by more studies 

found more abilities in this method. It is found that this method has potentiality of solving obtained equations for 

asymmetric conditions about 3D conditions. No numerical method is found that have the ability of solving of all 

types of systems of partial equation related to the 3D bending of circular plates with all boundary conditions under 

symmetric and asymmetric conditions. The main purpose of this study is examination and identifying the ability of 

this solution method in solving 3D bending of plates under asymmetric conditions. To investigate the ability of this 

method in solving of partial equations related to the symmetric 3D bending of plates, the results are compared with 

the results in the literatures. However, about asymmetric conditions (due to the lack of results in the literatures), a 

FE model in ABAQUS software is prepared to examine the accuracy of the obtained results by this method. 

In this method, every function in each partial differential equation is estimated by a polynomial in general form 

depended on the grid point s’ distribution. In contrast to the common methods, each polynomial is needless to satisfy 

boundary conditions. Every partial equation or set of them would be solved conveniently and quickly considering 

different types of boundary conditions. 

By considering a partial differential equation as follows: 
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  (28) 

 

where the function  F r z, , is defined as: 
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where N is the number of grid points in r direction, M is the number of grid points in direction and P is the number 

of grid points in z direction and l is counted from 1 to N M P  by counting i j k, ,
 
on the summations, which sample 

grid point domains are shown in Fig. 2. By substituting Eq. (29) in Eq. (28) the partial differential equation is 

converted to the algebraic equations which M P2   number of equations would be derived from boundary 

conditions (white points) and    N M P M P2     number of equations are derived from Eq. (29) (related to the 

black points). Consequently, there are N M P  numbers of algebraic equations and unknown
i

a coefficients, 

which by substituting obtained
i

a into the Eq. (29), the  F r z, ,  function would be determined. For a system of 

partial differential equations, the similar procedures should be applied. 

Due to the above explanations about SAPM, three displacement fields could be defined as follow: 
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which the obtained algebraic equations are solved using numerical methods such as Newton-Raphson method. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

The schematic view of grid points based on SAPM. 

4    BOUNDARY CONDITIONS 

In the present study, all types of boundary conditions are considered under three categories of the simply supported 

(S), clamped (C) and free edges (F) which at inner and outer radius (
i

r and
o

r ) the boundary conditions could be 

defined as follow: 

 

r
S v w* *: 0      (33) 

 

C u v w* * *: 0     (34) 
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In the present study, to define asymmetric boundary conditions, the plate grid points through direction are 

divided to two (Fig. 3) or three (Fig. 4) categories and each category should satisfy specific boundary condition 

which this possibility is due to the use of SAPM. As mentioned before, in this method, each polynomial is needless 

to satisfy boundary conditions and every partial equation or set of them would be solved considering different types 

of boundary conditions. So, for each part of plate as shown in Figs. 3 and 4 different boundary conditions could be 

defined. 

In addition, the displacement components should satisfy the following boundary conditions at the top and bottom 

surfaces of plate: 
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Fig.3 

The schematic view of dividing the plate to two parts for 

defining asymmetric boundary conditions. 

 

  

 

 
 
 

 

Fig.4 

The schematic view of dividing the plate to three parts for 

defining asymmetric boundary conditions. 

5    NUMERICAL RESULTS AND DISCUSSIONS 

To investigate the convergence of the SAPM results for different grid numbers, an isotropic annular plate with 

following properties [10] is considered for different symmetric boundary conditions, which the results are reported 

in Table 1: 

 

r z ij i
E E E MPa r h q* * *2 ; 0.3; 0.2; 0.1; 0.1          (40) 

 
Table 1 

Convergence checking of non-dimensional deflections of an isotropic annular plate versus the number of grid points. 

 

n (number of domain 

nodes) 

w* 

Boundary Condition Type 

C - C S - S C - S S - C F - C F - S 

5 1.3429 5.5518 3.1683 2.2380 - - 

7 1.4119 5.4942 3.1759 2.2870 - - 

9 1.4390 5.4768 3.2134 2.2917 20.2673 85.6911 

11 1.4510 5.4581 3.2151 2.2901 18.3913 82.8252 

13 1.4571 5.4552 3.2186 2.2899 18.0180 81.2390 

 

It is considered that the convergence at 13 grid points through r direction is occurred. For all cases, the number 

of grid points through z,  directions are 5 points for this part (axisymmetric conditions) but about asymmetric 

boundary conditions due to the asymmetry directions and the amounts of parts, different number of grid numbers are 

used to convergence of the results to FE model. 

Due to the lack of the results for asymmetric boundary conditions, the validation of the method is performed 

through the analysis by symmetric boundaries and then the analysis with asymmetric boundaries is investigated. So, 

as the first step of validation, the deflection of an isotropic circular plate with the following properties for symmetric 

clamped edges is comprised with Refs. [21, 23-25] in Table 2: 

 

r z ij
E E E MPa h*2 ; 0.3; 0.1        (41) 

 
Table 2 

Comparison of the non-dimensional deflection of an isotropic circular plate with clamped edges. 

q* 
o

o

q rw
w

r Eh

2 3
*

3

12 (1 )

64


   

[23] [24] [21] [25] Present study 

  0.0001 0.1685 0.1678 0.1687 0.1706 0.1774 

  0.0003 0.4642 0.4583 0.4655 0.5119 0.5322 

0.001  1.0557 1.0509 1.0937 1.7069 1.7742 
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which good agreement is observed between the results especially to the Ref. [25]. In addition, the results are 

compared for an isotropic annular plate for both symmetric clamped and simply supported edges with Refs. [23, 26, 

27] for following conditions in Table 3: 

 

r z ij
E E E GPa h q* *280 ; 0.288; 0.15; 0.054         (42) 

 
Table 3 

Comparison of the non-dimensional deflection of an isotropic annular plate with clamped and simply supported edges. 

Study w* 

Clamped Simply supported 

[23] 2.810 10.633 

[26] 2.781 10.623 

[27] 2.774 10.572 

Present study 3.015 11.406 

 

which good agreement is observed. 

For validation of deflection of orthotropic annular plate in the presence of elastic foundations, the results for 

following properties (non-zero parameters) are compared with those by [23] in Table 4: 

 

r z rz ij i w p
E E E G h r q k Pa m k Pa m* * * * * * *1; 0.8; 0.03; 0.3; 0.3; 0.1; 0.2; 0.0001; 1.13 / ; 1.13 .             (43) 

 
Table 4 

Comparison of the non-dimensional deflection of an orthotropic annular plate in the presence of elastic foundations. 

Boundary condition type w* 

Ref. [23] Present study 

(3D Elasticity) CPT FSDT 

C – C 0.0030 0.0034 0.0031 

S – S - 0.0085 0.0085 

C – S - 0.0065 0.0053 

F – C - 0.026 0.0263 

 

which it is observed that the results show good agreement. 

To verify the accuracy of boundary conditions equations, the nonlinear bending analysis of both circular and 

annular plates with following conditions are compared with the results reported by Reddy et al. [28] in Table 5: 

 

r z ij
E E E MPa h*1 ; 0.25; 0.1        (44) 

 
Table 5 

Comparison of the non-dimensional deflections of isotropic annular/circular plate for various boundary conditions. 

 w* 

 

 

Study 

Circular plate (
i

r* 0 ) Annular plate (
i

r* 0.25 ) 

F - C F - S F - C C - F F - S 

q* = 0.0001 q* = 0.0001 q* = 0.0001 q* = 0.00005 q* = 0.00005 

[28] CPT 0.01757 0.050 0.01624 0.02358 0.04273 

[28] FSDT 0.01829 0.050 0.01685 0.02358 - 

Present study 0.01822 0.052 0.01761 0.01860 0.04407 

 

At each four part of validations, it shows that the results are in an accurate range. In addition, it is observed that 

in the most cases, 3D elasticity theory estimated higher deflections than other theories such as CPT, FSDT, TSDT 

and some analytical solutions. So, the validity of the present method and solution procedure for various symmetric 

boundary conditions and elastic foundations checked. In continue, the bending analysis for asymmetric boundary 

conditions is performed. There is no study in the literature, which investigated the bending analysis for asymmetric 

boundary conditions. Therefore, for each case, the same finite element model in ABAQUS software is produced to 

check the validity of the results. 

To investigate the asymmetric bending of orthotropic annular and circular plates following properties is 

considered [14-16, 23 and 29]: 
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r z rz z r r rz z
E E E G G G* * * * * * 61; 0.8; 0.03; 0.6; 0.5; 0.45; 0.3; 2.02 10                     (45) 

 

The nonlinear mechanical bending of an annular plate with
i

h r* *0.1, 0.2  and q* 0.0001 for symmetric and 

asymmetric boundary conditions is investigated. For symmetric boundary conditions, the clamped and simply 

supported conditions are employed and for asymmetric boundary conditions, the boundaries are divided to two and 

three parts and all three types of boundary conditions (clamped, simply supported and free edges) are employed to 

each part (Table 6).  

 
Table 6 

The symmetric and asymmetric non-dimensional deflections of orthotropic annular plate for various boundary conditions with 

the same boundaries for inner and outer radius at each part. 

 

Method 

w*  

Symmetric B.Cs Two parts asymmetric B.Cs Three parts asymmetric B.Cs 

C S C-S C-F S-F C-C-S C-S-S C-C-F C-S-F S-S-F 

3D elasticity 0.0014 0.0053 0.0054 0.235 0.251 0.0045 0.0051 0.0562 0.0660 0.0762 

ABAQUS 0.0014 0.0053 0.0051 0.236 0.254 0.0042 0.0053 0.0578 0.0664 0.0761 

 

For this step, the asymmetry is considered in direction and the same inner and outer radius boundary 

conditions are employed through r direction. For more illustration and as an example, the schematic view of 

defining of boundary conditions for a plate with two part with one side clamped and one side simply supported edge 

is presented in Fig. 5. As it is considered, for all of the white grid points on the right part pf the plate, the clamped 

boundary conditions and for all the grid points on the left part of the plate, the simply supported condition are 

defined. The results are in good agreement for all types of boundary conditions. From the results, it is considered 

that by dividing the plate to two parts, a plate with clamped-simply supported (C-S) edges shows less deflection than 

symmetric simply edge and more than symmetric clamped edge. The free edge shows more deflections besides 

simply edge than clamped edge. In addition, by increasing the percentage of clamped edge the decreasing effect on 

the deflection of the other parts is observed. These observations show that in the plates with asymmetry boundary 

conditions, the boundaries of each part affect the maximum deflection of other parts. 

 

 

 
 
 

 

 

 

Fig.5 

The schematic view of defining of asymmetric clamped-

simply supported edges for two part plates. 

 

The nonlinear mechanical bending for the same annular plate with asymmetric boundary conditions by 

asymmetry through two directions (r and directions) is reported in Table 7. The plate is divided to two parts 

through direction and various boundary condition is used for each part. The analyses are under two categories with 

different inner radius (clamped and simply supported edges). The results of 3D elasticity and FEM (ABAQUS 

model) show good agreement in this case too and the same influence as last part is considered. When the simply 

supported inner edge is replaced by clamped inner condition, considerable reduction is considered in the maximum 

deflection for all types of outer radius boundary conditions.  

 
Table 7 

The asymmetric non-dimensional deflections of orthotropic annular plate for various boundary conditions with asymmetry 

through two directions (two parts). 

 

Method 

w* 

Simply supported inner radius Clamped inner radius 

Outer radius B.Cs Outer radius B.Cs 

C-S C-F S-F C-S C-F S-F 

3D elasticity 0.00542 0.1439 0.1464 0.0030 0.00738 0.00745 

ABAQUS 0.00514 0.1407 0.1500 0.0030 0.00736 0.00745 
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Another nonlinear mechanical bending analysis for the same annular plate with asymmetric boundary conditions 

by asymmetry through two directions (r and directions) is reported in Table 8. The plate is divided to three parts 

through direction and various boundary condition is used for each part. The analyses are under two categories with 

different inner radius (clamped and simply supported edges). The results are in a same range, which it shows that the 

asymmetry model and solution procedure presented in this study can simulate the asymmetry bending behavior of 

annular/circular plates with high accuracy. 

To investigate the influence of elastic foundations, the nonlinear bending of the same annular plate with four 

types of boundary conditions is investigated: (a) asymmetry through direction with two parts S-C edges, (b) 

asymmetry through direction with three parts S-C-C edges, (c) asymmetry through and r directions with two 

parts S-C outer edges and S inner edge, and (d) asymmetry through and r directions with three parts S-C-C outer 

edges and C inner edge. 

 
Table 8 

The asymmetric non-dimensional deflections of orthotropic annular plate for various boundary conditions with asymmetry 

through two directions (three parts). 

 

Method 

w* 

Simply supported inner radius Clamped inner radius 

Outer radius B.Cs Outer radius B.Cs 

C-C-S C-C-F C-S-S S-S-F C-S-F C-C-S C-C-F C-S-S S-S-F C-S-F 

3D elasticity 0.00489 0.0850 0.00626 0.0660 0.0587 0.00296 0.0390 0.00302 0.0430 0.0542 

ABAQUS 0.00483 0.0852 0.00628 0.0652 0.0603 0.00295 0.0392 0.00306 0.0428 0.0550 

 

The analysis for
w p

k k* *0.001; 0.001  versus the mechanical loading variations is reported in Fig. 6. It is 

considered that by increasing the loading its nonlinear increasing effect changed to linear increasing effect.  Also its 

increasing influence on deflection in two parts boundary conditions is more than three parts boundary conditions due 

to the increase in the portion of clamped areas. No considerable different is observed in the case of one or two 

directions asymmetry about two parts boundary conditions while it is considerable in the case of three parts 

boundary conditions. 

 

 

 
 
 

 

 

 

 

Fig.6 

The variation of non-dimensional deflection of orthotropic 

annular plate rested on elastic foundation versus the loading 

for various boundary conditions. 

 

Also, the influence of variations of elastic parameters under q* 0.0001
 
are illustrated in Figs. 7 and 8. It is 

observed that by increasing the elastic foundation parameters, the deflection of the plates reduces for all four types 

of boundary conditions and for both two elastic parameters, and converges to the same value. This convergence is 

occurred in w
k* 0.01  which non-dimensional deflections converged to about 0.001 while for Pasternak parameter 

in 
p

k* 0.015
 
the convergence is observed which reaches to the less than 0.001. 

The effect of thermo-mechanical loading on deflection and thickness of the same plate with the same boundary 

conditions as what used for investigation of influence of elastic parameters, is examined. The variation of non-

dimensional deflection and thickness under
w p

k k q* * *0.01; 0.01; 0.0001   and temperature variations are illustrated 

in Figs. 9 and 10 respectively. The results show the same linear increasing influence of temperature for all types of 

boundary conditions. It is considered that the thickness variation versus temperature is not depend on boundary type 

and condition.  
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Fig.7 

The variation of non-dimensional deflection of orthotropic 

annular plate versus the Winkler elastic parameter for 

various boundary conditions. 

  

 

 

 

 

 

 

 

 

 

Fig.8 

The variation of non-dimensional deflection of orthotropic 

annular plate versus the Pasternak elastic parameter for 

various boundary conditions. 

  

 

 

 

 

 

 

 

 

Fig.9 

The variation of non-dimensional deflection of orthotropic 

annular plate versus the temperature for various boundary 

conditions. 

  

 

 

 

 

 

 

 

 

Fig.10 

The variation of non-dimensional thickness variation of 

orthotropic annular plate versus the temperature for various 

boundary conditions. 

6    CONCLUSIONS 

In this study, a new numerical solution of asymmetric 3D thermo-mechanical nonlinear bending analysis of 

orthotropic annular and circular plates using SAPM is presented. The influence of elastic foundations and different 

boundary conditions is investigated. The asymmetry is due to the employed asymmetric boundary conditions. The 

plats are divided to two and three parts and two types of asymmetry for each case is considered: the asymmetry 
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through one and two directions. In one case, the inner and outer radius boundary conditions are the same (on 

asymmetry direction) and for another, different boundary conditions are used (two asymmetry directions). Due to 

the lack of study in this case in the literature, the results for symmetric conditions are validated by literature to 

validate the produced model and solution procedure and the results related to the asymmetry conditions are validated 

by the aim of FEM. The accuracy of the results shows that the presented 3D model can simulate the bending 

behavior of the orthotropic annular and circular plates under asymmetric boundary conditions. Due to the agreement 

of the results, it can be claim that this solutions method is useful to solve the equation related to the 3D bending of 

plates under asymmetric conditions. It is observed that the 3D elasticity theory estimates higher values of deflections 

than other theories of plates such as CPT, FSDT and TSDT. Nevertheless, the obtained results by 3D elasticity 

theory and those obtained by FEM analysis in the case of asymmetric conditions are so close. The influence of 

temperature is linearly increasing on both deflection and thickness variations. In addition, the deflections in all 

boundary conditions decreased and reached to the same value by increasing the coefficient of elastic foundations. 
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