
 

© 2019 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 11, No. 1 (2019) pp. 91-104  
DOI: 10.22034/JSM.2019.664221 

Fracture Parameters for Cracked Cylindrical Shells 

M. Kadri
 1,*

, A. Sahli 
2
, S. Sahli

 3
 
 

 
1
Laboratoire de Mécanique Appliquée, Université des Sciences et de la Technologie d’Oran , Algeria 

2
Laboratoire de Recherche des Technologies Industrielles, Université Ibn Khaldoun de Tiaret, Algeria 

3
Université d'Oran 2 Mohamed Ben Ahmed, Algeria 

Received 27 September 2018; accepted 14 December 2018 

 ABSTRACT 

 In this paper, 2D boundary element stress analysis is carried out to 

obtain the T-stress for multiple internal edge cracks in thick-walled 

cylinders for a wide range of cylinder radius ratios and relative crack 

depth. The T-stress, together with the stress intensity factor K, provides 

a more reliable two-parameter prediction of fracture in linear elastic 

fracture mechanics. T-stress weight functions are then derived from the 

T-stress solutions for two reference load conditions corresponding to 

the cases when the cracked cylinder is subject to a uniform and to a 

linear applied stress variation on the crack faces. The derived weight 

functions are then verified for several non-linear load conditions. Using 

the BEM results as reference T-stress solutions; the T-stress weight 

functions for thick-walled cylinder have also been derived. Excellent 

agreements between the BEM results and weight function predictions 

are obtained. The weight functions derived are suitable for obtaining T-

stress solutions for the corresponding cracked thick-walled cylinder 

under any complex stress fields. Results of the study show that the two 

dimensional BEM analysis, together with weight function method, can 

be used to provide a quick and accurate estimate of T-stress for 2-D 

crack problems.             © 2019 IAU, Arak Branch. All rights reserved. 

 Keywords : Fracture mechanics; T-stress; Contour integral approach; 

Thick-walled cylinders; Boundary element method. 

1    INTRODUCTION 

RACTURE behaviour is generally characterized by a single parameter such as the stress intensity factors 

(SIFs) or path independent J-integral [1]. These quantities provide a measure of the dominant behaviour of the 

stress field in the vicinity of a crack-tip. In order to understand the effect of the structural and loading configuration 

on the ‗constraint‘ [2] conditions at the crack-tip, another parameter is required. A second fracture parameter often 

used is the elastic T-stress. In two dimensions, the T-stress is defined as constant stress acting parallel to the crack 

and its magnitude is proportional to the nominal stress in the vicinity of the crack. Various studies have shown that 

the T-stress has significant influence on crack growth direction, crack growth stability, crack-tip constraint and 

fracture toughness [3-8]. In order to calculate the T-stress, researchers have used several techniques such as the 

stress substitution method [9], the variational method [10], the Eshelby J-integral method [11,12], the weight 

function method [13], the line spring method [14], the Betti–Rayleigh reciprocal theorem [15,16], and the interaction 
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integral method [15,17]. The determination of the elastic T-stress for cracked geometries has been receiving much 

attention in recent years [16, 18-20]. This term corresponds to the second, non-singular term of William_s Eigen 

function expansion of the linear elastic stress field at the crack-tip [21]. It is increasingly being recognized as an 

important additional parameter besides the stress intensity factor for fracture mechanics analysis. Omission of the T-

stress can, for example, lead to predicting substantially different extent of the plastic zone at the crack-tip, Larsson 

and Carlsson [9], Rice [22], as well as introducing significant errors in certain linear elastic fatigue crack-growth 

analysis, Suresh [23]. Several analytical and numerical schemes have been employed to evaluate the T-stress for 

cracked geometries. For example, Leevers and Radon [10] incorporated the Eigen functions into a variational 

formulation in elasticity and computed the coefficients of these Eigen functions directly. Kfouri [12], Nakamura and 

Parks [17] and Wang [19] used the interaction integral method, based on Eshelby_s theorem, in conjunction with the 

finite element method (FEM) while Sham [13] employed higher order weight functions to determine the T-stress 

term. Fett [18] has also developed Green‘s functions and has used the weight function approach with the method of 

boundary collocation for the evaluation of T-stresses for various cracked geometries. Sladek et al. [16] derived 

contour integrals based on Betti‘s reciprocal work theorem in two dimensions and implemented it together with the 

boundary element method (BEM) for fracture mechanics analysis; the work was recently being extended to three 

dimensions, Sladek and Sladek [24]. In order to apply this two-parameter fracture mechanics methodology, it is 

important to provide accurate stress intensity factor solutions and T-stress solutions for the crack problems of 

practical interests. Although several handbooks [25, 26] devoted solely to stress intensity factors have been 

published, the available solutions for T-stress are very limited. Several analytical and numerical methods were 

developed to obtain the T-stress for different test specimens. The closed-form T-stress solutions for infinite plate 

crack problems have been analytically obtained by [27] using complex potential theory. Based on Shelby‘s theorem, 

the interaction integral method, in conjunction with finite element method has been used by [19] to obtain the T-

stress solutions for several commonly used test specimens under remote and crack face loading conditions. The 

boundary integral equation method, commonly known as the boundary element method (BEM), is an alternative to 

finite element method (FEM); it has distinct advantages in fracture mechanics analysis. Some researchers have 

explored formulas [28, 29] to obtain stress intensity factors using BEM. Unfortunately, the BEM solutions for T-

stress are still very limited in literature. Recent work conducted by [30] has derived a direct approach, analogous to 

the displacement formula of stress intensity factor solution for plane crack problems. Sladek et al [20] developed an 

integral formula to calculate the T-stress on a contour away from the crack tip. The present study is the expansion of 

the two above-mentioned works to develop the T-stress solutions for 'low constraint' geometries, e.g. cracked thick-

walled cylinders under different loading conditions. 

In practice, the loading conditions of cracked components are usually quite complex. This can be due to the 

existence of residual stresses, stress concentrations, or thermal stresses. The weight function (WF) method, 

mathematically, the Green's function method, is one of the most efficient methods to derive stress intensity factor 

solutions for complex nonlinear stress distributions. This method has been extended by [19] to derive the T-stress 

solutions under complex stress conditions in his recent work using the finite element results. However, the weight 

function analysis of T-stress using the boundary element results as reference T-stress solutions has not yet been 

carried out previously. Hence, to derive the weight functions for cracked thick-walled cylinders using BEM 

solutions is a focus of the present study as well. 

2    FRACTURE PARAMETERS: T-STRESS AND STRESS INTENSITY FACTORS 

Williams‘ asymptotic solution [21] for crack-tip stress fields in any linear elastic body is given by a series of the 

form 

 

     
1 1

02 2 ...ij ij ij ijAr f Br g Cr h   


     (1) 

 

where r and   are polar coordinates centered at the crack tip, ij  is the stress tensor. The functions  ijf  ,  ijg    

and  ijh   contain trigonometric functions of the angular location relative to crack tip. Parameters A, B and C are 

proportional to the applied load. As r O, the leading term dominates and exhibits 1/r singularity, while the higher 

order terms remain finite values or approach zero. Therefore, the stress field near the crack tip is expressed in the 

following form by only involving the first singular tern of Eq. (1):   
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where IK  is the stress intensity factor. Over the past thirty years, increasing attention has been put to study the 

effect of higher order terms of Williams' series expansion on the initiation of mode I, fracture under predominantly 

linear elastic deformation. Larsson and Carlson [9] carried out investigation on elastic-plastic problem for cracks in 

different type of specimens using finite element method (FEM) and found that the solutions for the stress state near 

the crack tip cannot be related to Eq. (2) through the stress intensity factor IK  alone, even when the requirements 

for "small scale yielding' are all met. They noted that the discrepancies would be resolved if the first non-singular 

term of Williams' series expansion (Eq. (1)) is included in the near tip stress solution, which is, 

 

1 1( )
2

I
ij ij ij i i

K
f T

r
   


   (3) 

 

In fact, there is only one non-singular term in this expansion for the elastic stress field in mode I, namely, T11. 

This represents the uniform stress acting parallel to the crack plane. In the notation of Rice [22], this second tern of 

Williams' series expansion is denoted as the T-stress or elastic T-stress. T-stress is directly proportional to the load 

applied to the cracked structure and depends on the geometrical parameters. 

To normalize the effect of the T-stress relative to the stress intensity factor in mode I, Leevers and Radon [10] 

proposed a dimensionless parameter called the biaxiality ratio  , which is, 

 

 
I

T a

K


   (4) 

 

where a is crack depth and IK  is mode I, stress intensity factor. The stress field variation and fracture toughness 

discrepancies due to geometric differences are usually caused by the different 'constraint' effects in various specimen 

geometries. For so-called 'high constraint' geometries, such as compact tension and three point bending specimens, a 

single parameter cK  was able to fully describe the stress field and fracture properties; whereas for "low constraint" 

geometries, such as center cracked and double edge cracked specimens, the fracture toughness estimated would be 

lower than its actual value. 

The constraint effect could be better incorporated into fracture mechanics evaluation by the elastic T-stress. 

Work by [23] indicated that the sign and magnitude of T-stress could substantially change the level of crack tip 

stress triaxiality, hence influence crack tip constraint. Positive T-stress enhances the level of crack tip stress 

triaxiality and leads to high crack tip constraint; while negative T-stress reduce the level of crack tip stress triaxiality 

and leads to the loss of crack tip constraint. The works by [7, 31-33], further indicated that the T-stress, in addition 

to the stress intensity factor IK , provides a more appropriate two-parameter characterization of plain strain elastic-

plastic crack tip fields in a variety of crack configurations and loading conditions. 

3    BOUNDARY ELEMENT METHOD (BEM) FOR FRACTURE MECHANICS 

The displacement boundary integral equation (or conventional BIE (CBIE)) relating the boundary displacements 

( )ju P with the boundary tractions ( )jt P in the absence of body forces can be written as: 

 

 0 0 0 0( ) ( , ) ( ) ( , ) ( ) ( )ij j ij j ij jC P u P U P P t P T P P u P d P


      (5) 

 

where i,j denote Cartesian components; and 0( , )ijT P P and 0( , )ijU P P  represent the traction and displacement 

fundamental solutions at a boundary point 0P  due to a unit load placed at location P. The term  0ijC P  is generally 
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a function of the geometry variation at the boundary point 0P . Providing that 0P  is a smooth boundary point, that is, 

the outward normal vector to the boundary is continuous at 0P , then it can be shown that  0 1/ 2ij ijC P  [34]. 

3.1 Direct approach for T-stress evaluation using BEM 

A simple formula for obtaining the elastic T-stress using boundary element method (BEM) fracture mechanics 

analysis is presented by [30]. It is obtained by comparing the displacement variation on the 'quarter-point crack-tip 

boundary element' with the classical field solutions. 

The displacements and stress field in the vicinity of crack tip are proportional to r and 1/r respectively. In 

order to obtain the correct variation of the field parameters, alternative shape functions have been introduced [35, 36 

and 37] respectively. [38 and 39] have show, however, that by moving the mid-side node of a quadratic element to a 

quarter point position as shown in Fig. 1, the desired r variation for displacement can be achieved. 

 

 

 

 

 

 

 

Fig.1 

Node symbols for quarter-point crack type element. 

 

 

Let 0, / 4A Bx x L   and Cx L  (for 0y  ) where L is the length of the element. Superscripts denote the 

nodes in Fig. 1. The coordinate x becomes: 

 

21 1
(1 ) (1 )

2 4
x L       (6) 

 

Expressing   in terms of x, result in the following: 

 

1 2 1 2
x r

L L
        (7) 

  

The displacements along a quarter-point element can be written as: 

 

( 3 4 ) 2( 2 2( 2 )A A B C A B A C

i i i i i i i i i

r r
u u u u u u u u u

L L
          (8) 

 

Williams' series expansion (Eq. (1)) represents the classical solution for the elastic stress in the vicinity of a 

crack-tip. The corresponding displacement can be written, for plane strain, as: 

 

2

1 1 2( ) ( ) (1 ) cos
4 2 4 2

I IIK Kr r Tr
u f f

E
   

   
     (9a) 

 

2 3 4( ) ( ) (1 ) sin
4 2 4 2

I IIK Kr r Tr
u f f

E
    

   
     (9b) 

 

where   is the shear modulus, E is the Young's modulus and  is Poisson's ratio. The displacement formula for the 

computation of the stress intensity factor IK  have been obtained by equating the coefficient of the r term in Eq. 

(8) to the classical solutions in Eqs. (9a),(9b). An analogous formula can be obtained for elastic T-stress by 
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comparing the coefficient of r term in Eq. (8) with that in Eq. (9a). The displacements of the quarter-point crack-tip 

element on the crack face with 180   can be written as: 

 

21
2( 2 ) (1 )A B C

i i i

T
u u u

L E
      (10) 

 

which results in 

 

2

2
( 2 )

(1 )

A B C

i i i

E
T u u u

L
   


 (11) 

 

The T-stress can then be evaluated directly from BEM computed nodal displacements on crack face quarter point 

element. 

3.2 Contour integral approach for T-stress evaluation using BEM 

An alternative approach of obtaining the elastic T-stress was introduced by Sladek et al. [16]. This is based on Betti-

Rayleigh's reciprocal work theorem and some auxiliary fields. A contour integral formula is obtained which can 

evaluate T-stress along a closed path remote from the crack-tip, thus circumventing the more difficult task of 

establishing the accurate crack-tip fields and eliminating the numerical errors for near field solution associated with 

the crack-tip stress singularity. The required field variables along the integration path are obtained from the BEM 

analysis. 

Consider a cracked isotropic, elastic domain R shown in Fig. 2 enclosed by the boundary S. Inside this domain, a 

closed integration path composed of ,  0 c , and c
 is considered. For two sets of equilibrium states of the sub-

domain, using Gauss's divergence theorem, Hooke's law and strain-displacement relation equations, Betti-Rayleigh's 

reciprocal work theorem can be written as: 

 

   ' ' ' '

ij i j ij i j i i i iu n u n d X u X u d 
 

       (12) 

 

where iX  and '

iX are body forces in two load states respectively; and jn  is the outward normal at the contour   

of integration sub-domain  . 

Because of the stress singularity at the crack-tip, a small circular region bounded by r, in the vicinity of the 

crack-tip has to be excluded, as shown in Fig. 2. The radius    is considered to be very small and is shrunk to zero 

in the limiting process. Contour ,
      0 c c  is a closed integration path in the anticlockwise direction. 

With no loss of genera1ity, assume that in Eq. (12), the primed state corresponds to an auxiliary field. The non-

primed state corresponds to the unknown field. Assume an auxiliary field where 0ij   on crack faces and body 

forces 0iX   . Eq. (12) can then be written as: 

 
  

 

 

 

 

 

 

 

 

 

 

Fig.2 

Integration paths and coordinate definitions. 
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     
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 

 
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
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 
  

            
(13) 

   

where 
Jn   and 

Jn   are outward normal vectors on upper and lower crack face respectively, and J Jn n   . For small 

equilibrium stress loads, assume ij ij   . Using the familiar relationship between traction and stresses ,i ij jt n , 

Eq. (13) can be re-written as: 

 

   
0

' ' ' ' ' '

0 0
lim 2 lim

c

i i i i i i i i it u t u d t u t u d t u d X u d

 

 




 
  

           
(14) 

 

By choosing different auxiliary fields, the Eq. (14) can be employed to derive integral formulas for computing 

various fracture parameters, For instance, Buecker [40] selected singular auxiliary fields to derive the integral 

expression for stress intensity factor IK . In order to obtain a non-vanishing contribution of the elastic T-stress, and 

at the same time, eliminate the contribution due to singular integrand tern, a special auxiliary field solution has to be 

found. Sladek et al. [16] suggested a auxiliary field that has one order higher singularity than that used by [41]. The 

auxiliary displacements and tractions are proportional to 1r  and 2r  respectively; they are actually obtained by 

differentiating auxiliary field proposed by [41] with respect to IX . The exact expression of the auxiliary field is, 
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 



 

 (15) 

 

where f  is a static point force (see Fig.2) applied to the crack tip in the direction parallel to the crack plane. The 

unknown asymptotic displacements and stresses can be divided into two parts 

 
s T

i i iu u u   (16) 

 
s T

ij ij ij     (17) 

 

where terms with superscript s are associated with the singular stress field and they correspond to first terns of Eqs. 

(9a),(9b) and Eq. (2), respectively those with superscript T are 

 

1 1

T

ij i jT    (18) 

 

   2

1 21 cos 1 sinT

i i j

Tr
u

E
          
 

 (19) 

 

Substituting the above auxiliary field solution and second term of Williams series expansion (T-stress term) into 

the left hand side of Eq. (14), gives 

 

 
2

' '

0

1
lim T T

i i it u t u d Tf
E











    (20) 
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Substituting Eq. (15) and the singular terms s

iu  and s

it  into the left hand side of Eq. (14), gives a vanishing 

contribution as: 

 

 ' '

0
lim 0s s

i i it u t u d






    
(21) 

   

By further substituting Eq. (20) and Eq. (21) into Eq. (14), the integral representation of T-stress can finally be 

derived as follows: 

 

 
 

 0

' ' '

2 2

2

1 1
c

i i i i

E E
T t u t u d t u d

f f  



 

   
 

   (22) 

   

when body forces are absent. Furthermore, it can be proved that for mode I, cracked problems, even with non-zero 

crack face traction in the 2X direction, the second term of Eq. (22) is always zero. So the general contour integral 

formula for T-stress, in the absence of body force, can then be expressed as: 

 

 
 

0

' '

21
i i i

E
T t u t u d

f  

  


  (23) 

 

It would be more explicit if Eq. (15) is substituted into the above equation. The T-stress expression is as follows: 

 

  0

22

( )
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1

ij

ij i i

FE f
T F u t d

Erf




 

 
   

  
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where the function ( )ijF   contain trigonometric functions of the angular location. The above integral expression 

can be numerically evaluated by using Gaussian quadrature scheme. The corresponding nodal parameters iu and it  

along the integration path can be obtained from BEM analysis. 

3.4 Weight function for T- stress 

For mode I, crack problems, using the superposition method, it has been demonstrated by [19] that for a cracked 

body, loaded by stress field Q, the T-stress is the superposition of T-stresses for two cases: 

The first is the T-stress for the same cracked body loaded by the crack face pressure ( )x , which is induced by 

the stress field Q in the uncracked body.  

The second case is the T-stress in the uncracked body under stress field Q.  

Therefore, the T-stress for the problem can be calculated from the summation of the T-stress for these two sub-

problems, 

 

remote loading crack face pressure uncrackedT T T   (25) 

 

Note the regular stress field  has no singularity at the crack tip element, the corresponding stress intensity factor 

is zero. However, the T-stress has a finite value. The corresponding T-stress for the regular field is [19], 

 

 uncracked x y
crack tip

T     (26) 

 

The T-stress for a cracked body with loading applied to the crack face can again be calculated by integrating the 

product of the weight function ( , )t x a and the stress distribution ( )x on the crack face, 
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0

( , )
a

crack face pressure xT t x a dx   (27) 

 

where ( , )t x a is the weight function for T-stress. Similar to the weight functions for the stress intensity factor, the 

weight function for T-stress is also only dependent on crack geometry and is independent of the loading conditions. 

The weight function ( , )t x a , is the Green's function for the T-stress. It represents the T-stress at the crack tip for a 

pair of unit loads acting along the crack face as the location x. 

Substituting Eq. (26) and Eq. (27) into Eq. (25), the T-stress for the cracked body, loaded by a stress field Q, is 

obtained, 

 

 
0

( , )
a

remote loading x x y
crack tip

T t x a dx      (28) 

 

Eq. (28) provides a very efficient way for T-stress calculation for arbitrary load situations. Once the weight 

function ( , )t x a is determined, and a stress analysis of uncracked body is conducted to obtain  x y
crack tip

   and 

( )x , the corresponding T-stress can be calculated for any arbitrary loading conditions. Several authors have 

proposed different approaches to obtain weight functions for T-stress. For example, Sham [13] has provided 

numerical methods for the determinations of weight functions for T-stress. In the other researches [19, 42 and 43] 

proposed different methods for the derivation of weight functions from reference T-stress solutions. 

4    CRACKED THICK-WALLED CYLINDERS 

In practice, failure of thick-walled pressurized cylinders (e.g. gun tubes, pipes and pressure vessels) is often due to 

the presence of internal or external cracks. A long internal single radial crack may be treated as a through crack in 

two-dimensions and is commonly seen in such components. Generally, cracked cylinders under internal pressure can 

be considered as "low-constrained" geometries. Thus the fracture toughness measured from "high-constrained" test 

specimens, such as compact tension and three-point bending specimens may be conservative when applied to this 

geometry. Therefore, accurate T-stress solutions for thick-walled cylinder with internal radial crack are needed to 

reliably predict the failure loads. Unfortunately, these solutions are not available in the literature at present.  

The purpose of this section is to extend the BEM analysis to thick-walled cylinders to obtain the T-stress 

solutions using both the direct approach as well as the contour integral approach, as before. At the same time, the 

stress intensity factor solutions were also calculated and compared to the published results in the literature [44, 45] 

to verify the accuracy of the BEM model. 

To facilitate the T -stress calculations for more complex loading conditions, for example, high residual stresses, 

stress concentrations or thermal stress, the weight function for T -stress needs to be developed. The two-term weight 

function approximation proposed by [19] is used to obtain the T-stress in cracked thick-walled cylinders. The BEM 

solutions under constant and linear crack face loading conditions are fitted with empirical formulas, which are then 

used to obtain the coefficients of weight functions. Finally, the weight functions are verified using T -stress solutions 

for internal pressure, parabolic and cubic stress distributions on the crack face obtained directly. 

4.1 Numerical modeling 

A thick-walled cylinder with an internal single radial crack, as shown in Fig. 3, was analysed in this study. The 

geometry of the cylinder in the 1 2,x x plane was defined by relative crack length /a W and 0 / iR R ratio, where 

0 iW R R  . As before, plane strain conditions are assumed in the analysis. All BEM analysis were carried out 

using the computer program BEMC2D which have developed by Professor O. Rahmani at USTO MB University. 

Two separate FORTRAN subroutines for calculating the T-stress directly based on the above two BEM approaches 

were developed. 
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Fig.3 

A thick walled cylinder with a single radial crack. 

 

In this study, the relative crack length was varied with /a W   0.1, 0.2, 0.3, 0.4, 0.5 and 0.6. For a given 

/a W ratio, the following radius ratios were analysed, 0 / iR R   l 5, 1.75, 2.0, 2.25 and 2.5 to investigate the effect 

of wall thickness on the T-stress. Different load conditions were also investigated. Uniform internal pressure, p, was 

first applied, then, as before, the four types of basic crack face loading conditions corresponding to n=0  to 3 in the 

following stress distribution: 

 

  1
1 0 1

n
x

x
a

 
 

  
 

 (29) 

 

were analysed, where 0  is the nominal stress, a is the crack length, they correspond to the uniform, linear, 

parabolic and cubic crack face loading, respectively. 

Because of symmetry, only one-half of the physical problems need to be modeled (even if the cracks are 

symmetrically formed in the cylinder). A typical BEM model is presented in Fig. 4. The following boundary 

conditions were applied: along the horizontal plane of symmetry, elements in the uncracked ligament were 

constrained in the 2x  direction, but were free to displace in the 1x  direction. Also, one node along the plane 

symmetry was constrained in 1x  direction to prevent rigid body motion in that direction. As before, quarter-point 

elements were used for those elements adjacent to the crack-tip. For the contour integral approach to obtain the T-

stress, an integration path, 0 , with relative radius / 0.5r a   as shown in Fig. 4 was employed for both internal 

pressure and crack face loading conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Typical boundary element mesh for thick walled cylinder. 

4.2 BEM results and discussions 

T-stress solutions obtained in the analysis were normalized as follows: 

 

*

0

T
T


  (30) 
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where 0  is the nominal stress for crack face loading case, and equals p in the internal pressure case. For the 

internal pressure case, the normalized values of T
*
 are obtained using both direct approach and contour integral 

approach and shown in Figs. 5 and 6 for the radius ratios 0 / 2.0iR R  and 2.25.  It can be seen that the 

discrepancies of the solutions obtained using this two approaches varied from 5% to 10%. From model verification, 

the contour integral solutions can be considered as more stable and accurate results. For the crack face loading cases, 

the normalized T-stress solutions under uniform, linear, parabolic and cubic crack face loading are  shown in Figs. 5 

and 6. It can be seen that all the T-stress values for each of the different crack face loading conditions show a trend 

of decreasing value with the relative crack length from / 0.1a W  to 0.6. This suggests that deeply cracked thick 

walled cylinders have lower constraint effects at the crack tip when compared with those with shallow cracks under 

crack face loading. From these figures, it can also be seen that, compared to non-linear crack face loading (e,g, 

parabolic and cubic) conditions, the T-stress curves under the uniform and linear crack face loading conditions show 

relatively steeper declines when the crack length grows. This implies that the cracked cylinders with lower 

constraint conditions can be more easily obtained under uniform and linear crack face loading conditions increasing 

crack length.  

In order to better demonstrate the effects of radius ratio, 0 / iR R , on the T-stress solutions, these T-stress data for 

internal pressure and the four types of crack face loading conditions were re-organized and re-plotted in Fig. 7 and 

Fig. 8, respectively. The T-stress solutions under crack face loading showed a decreasing trend when 0 / iR R varied 

from 1.5 to 2.5. On the other hand, the T-stress results for internal pressure showed a trend of increasing value when 

0 / iR R increased from 1.5 to 2.5. These figures also showed that the effect of radius ratio 0 / iR R on T-stress is 

more evident when the relative crack length increased.  

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Comparison of nomalized BEM T-stresses and weight 

function predictions for thick-walled cylinder with internal 

single radial crack under different crack face loading  

( 0 / 2.0iR R  ). 
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Fig.6 

Comparison of normalized BEM T-stresses and weight 

function predictions for thick-walled cylinder with internal 

single radial crack under different crack face loading  

( 0 / 2.25iR R  ). 
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Fig.7 

Comparison of normalized T-stresses, 0/T  , between 

BEM contour integral approach and BEM direct approach 

for different relative crack lengths, /a W ,  thick-walled 

cylinder under internal pressure loading. 
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Fig.8 

Normalized T-stresses for thick-walled cylinder under crack face loading. 
 

For the purpose of validating the BEM model of thick-walled cylinder, the stress intensity factors were first 

calculated. The stress intensity factor were nomalized as follows: 

 

*

0

I
I

K
K

a 
  (31) 

 

The normalized stress intensity factor results under internal pressure are presented in Fig. 9 and compared with 

the solutions from Wu and CarIsson (1991). The largest discrepancy was found to be only 1.2%. 
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Fig.9 

Comparison of normalized stress intensity factor solutions, 
*

0/I IK K a  from present BEM analysis and 

solutions by Wu and Carlsson (4994): thick- walled 

cylinder under internal pressure, 0 p  . 

 

 

The normalized stress intensity factors for crack face loading, i.e. constant, linear, parabolic and cubic load 

cases, with the wall thickness ratio 0 / 1.75iR R   were also obtained and are shown in Table 1. In this Table, 

comparison between the BEM stress intensity factor solutions and those from Andrasic and Parker [44] using 

modified mapping collocation (MMC) technique are also presented. The percentage differences are generally less 

than 2% - The excellent agreement between the current BEM stress intensity factor solutions and these numerical 

results in the literatures demonstrated the reliability of the current BEM model for thick-walled cylinder analysis. 
 

Table1 

Comparison of normalized stress intensity factor solutions, *
0/I IK K a   from present BEM calculation and solutions by 

Andrasic and Parker [44], thick-walled cylinder under cubic crack face loading, 0 / 1.75iR R  . 

/a W  n=0 n=1 n=2 n=3 

 
*
IK  

BEM 

*
IK  

[44] 

*
IK  

BEM 

*
IK  

[44] 

*
IK  

BEM 

*
IK  

[44] 

*
IK  

BEM 

*
IK  

[44] 

0.1 1.129 1.127 0.442 0.441 0.283 0.282 0.212 0.209 

0.2 1.189 1.2 0.48 0.485 0.314 0.314 0.232 0.235 

0.3 1.286 1.3 0.54 0.547 0.362 0.359 0.266 0.269 

0.4 1.427 1.427 0.63 0.625 0.417 0.416 0.319 0.314 

0.5 1.577 1.563 0.715 0.708 0.48 0.476 0.366 0.361 

0.6 1.725 1.718 0.804 0.801 0.544 0.542 0.413 0.413 

5    CONCLUSIONS 

Two-dimensional BEM T-stress analysis of thick-walled cylinders with different 0 / iR R  ratios and loading 

conditions were analysed for a range of relative crack lengths, /a W ,  varying from 0.1 to 0.6, These results are new 

and have not been available previously in the literature. They can be used for failure assessment analysis of cracked 

thick-walled cylinders, For internal pressure case, T-stress solutions show a typica1 "low constraint" effect. The T-

stress weight functions for cracked thick walled cylinders with different radius ratio have also been derived. The 

weight function technique has been verified by using the BEM T-stress solutions for crack face loading conditions 

and internal pressure case. All the comparisons demonstrate the reliability of weight function method in engineering 

T-stress analysis. 

The following general conclusions can be made from the analyses conducted in this study. First, the crack tip 

element size is a critical parameter which affects the accuracy of the BEM direct displacement approach T-stress 

solutions. Generally, a crack tip element size of 5% of the crack length can limit the numerical error of the T-stress 

obtained to be within 5%. 

Second, because the computations in the contour integral approach are carried out away from crack tip, it is 

numerically more stable and accurate than direct approach in BEM T-stress analysis. The results are generally 

independent of the contour size and geometry. By choosing a circular contour with radius which equals half of the 

crack length, the numerical results for T-stress were generally less than 2% in discrepancy with those in the literature 
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using the finite element method and with the BEM direct approach. Third, the thick-walled cylinder exhibits typical 

―low constraint‖ characteristics under internal pressure loads. For decreasing crack face loading conditions, the 'low 

constraint' effect is more obvious with deeper cracks. This indicates that using the two-parameter fracture 

mechanics, which include the constraint effect, will likely lead to less conservative life prediction in service. 
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