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 ABSTRACT 

 This paper aims at investigating the nonlinear behavior of a system 

which is consisting of two free-free beams which are connected by a 

nonlinear joint. The nonlinear system is modelled as an in-extensional 

beam with Timoshenko beam theory. In addition, large amplitude 

vibration assumption is taken into account in order to obtain exact 

results. The nonlinear assumption in the system necessities existence of 

the curvature-related and inertia-related nonlinearities. The nonlinear 

partial differential equations of motion for the longitudinal, transverse, 

and rotation are derived using the Hamilton’s principle. A set of coupled 

nonlinear ordinary differential equations are further obtained with the aid 

of Galerkin method. The frequency-response curves are presented in the 

section of numerical results to demonstrate the effect of the different 

dimensionless parameters. It is shown that the nonlinear bolted-lap joint 

structure exhibits a hardening-type behavior. Furthermore, it is found that 

by adding a nonlinear spring the system exhibits a stronger hardening-

type behavior. In addition, it is found that the system shows nonlinear 

behavior even in the absence of the nonlinear spring due to the nonlocal 

nonlinearity assumption. Moreover, it is shown that considering different 

engineering beam theories lead to different results and it is found that the 

Euler-Bernoulli beam theory over-predict the resonance frequency of the 

structure by ignoring rotary inertia and shear deformation. 

                                          © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 YNAMIC characteristics of a structure with mechanical joints certainly depend on the dynamic 

characteristics of the joints. Thus, the dynamic characteristics of the joints should be identified accurately 

before conducting the vibration analysis for the structure [1]. In recent years, the lack of a complete research work in 

the literature on the mechanical response of the bolted lap joint structures have motivated investigator on the subject 

[2, 3]. Ahmadian and Jalali [4] both experimentally and analytically have identified the parameters of bolted joints 

in assembled structures. The authors used the first three natural frequencies to identify the linear lateral stiffness and 
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torsional stiffness of assembled structure. Ma et al. [5] performed a similar experiment and studied the effect of the 

joints in dynamics of beam structure. The authors detected three levels of joint tightening by investigating the 

nonlinear and loosing effect which comes from damping of joint. The authors concluded that their method can be 

used to every bolted structure with the aim of identifying the system parameters. Jalali et al. [6] represented the 

bolted lap joint with a damper which has linear viscous and cubic stiffness. The authors by employing steady state 

response of the structure and force state mapping technique identified joint parameters for different excitation levels. 

Based on the literature there are two kinds of modeling methods for joints: non-linear joint models [7-17] and linear 

joint models [18-21]. Generally, considering friction related nonlinearities in the interface surfaces necessitates 

using nonlinear joint models. Because a frictional joint owns complex mechanism (macro-slip and micro-slip 

behavior), deep understanding and analytical descriptions of the joints and interface is a mandatory for the nonlinear 

models [22]. From researchers’ perspective, nonlinear joints modeling applicability in experimental researches and 

their validity in practical applications are not completely satisfactory [23]. Liao and Zhang [7] built a non-linear 

damping model of bolted-joint interface by considering viscous damping and coulomb friction. The authors 

conducted vibration experiments with different bolted preloads. Their results illustrated that in lower excitation 

levels the most interface of bolted joint occurs stick-slip motions. Chatterjee and Vyas [8] presented an approach of 

identification of parametric system in their study. The authors have carried out a numerical simulation for a typical 

Duffing oscillator and investigated robustness of the estimation procedure in the presence of measurement noise. 

Later, the same authors Chatterjee and Vyas [9] have developed a structured response representation of various 

harmonics under multi-input harmonic excitations by employing multi-input Volterra series. In their modeling the 

nonlinearity has considered in the form of polynomial with general square and cubic terms. The authors observed 

that a high accuracy in their estimation due to the existence of the higher order component in harmonic amplitude. 

Kerschen et al. [10] have published an overview paper with focusing on structural system identification in the 

presence of nonlinearity. Thothadri et al. [11] studied a MDOF system with purpose of identification of the 

nonlinear systems parameters by using theoretical approaches namely, harmonic balance and bifurcation methods. 

The authors observed that using methodology of bifurcation theory system identification excellently capture the 

stable and unstable limit cycles within the experimental regime. Thothadri et al. [12] used the same approach, 

harmonic balance method, for the nonlinear system. The authors found that if the model structure is well known, 

their methodology performs well in capturing the unknown parameters. And also they found that if the model is not 

well known, the methodology is able to capture the stable limit cycle but not the unstable limit cycle. Hajj et al. [13] 

have combined perturbation technique and spectral moments to characterize and quantify the damping and nonlinear 

parameters of the first mode of a three-beams and two-frames, which frame is harmonically excited near to twice its 

lowest natural frequency. They determined the damping and nonlinear parameters of their structure by using 

amplitude and phase difference between the excitation and response mode with different frequencies. Noël et al. 

[14] have presented a comprehensive review on the parameter identification of the nonlinear structural dynamics. 

Maio [15] both experimentally and numerically investigated the identification of the nonlinear behavior of bolted 

structures. The author developed correlation methods by using experimental tests and parameters. Ahmadian et al. 

[16] studied the stability of a beam subjected to thrust which acts as a follower non-conservative force. Their system 

includes two interconnected beams with a nonlinear joint. Authors have obtained the flutter and divergence and 

post-critical behaviors in their considered system.  

It is worthy to mention that the importance of joint nonlinear influence to the dynamic behavior of structures 

could be changed from case to case. For instance, for the low levels of excitation, a friction joint can behave such a 

linear component [24]. On the other hand of what have presented a short review on the nonlinear modeling of joints 

above, linear modeling which consists of constant mass, stiffness and damping properties which are considered as 

firm fastened connection are introduced. In addition, the influence of the substrates on the dynamic behavior of 

structures is very important and should be taken into account. The nonlinear dynamics behavior of nonlocal 

Timoshenko beam theory has widely studied by Ghorbanpour Arani et al. [25-27]. 

Based on the literature, most of researchers have been mostly focused on the localized nonlinearities induced by 

a nonlinear spring derived from nonlinear joint modeling. The present study focus on the obtaining stable and 

unstable bifurcation points of a nonlinear system with the presence of the local and nonlocal nonlinearities 

simultaneously. In addition, in the past works most of the researchers are simplified the transverse vibration of the 

substructures by employing Euler-Bernoulli model assumption. Which this theory ignores the influence of the shear 

deformation and rotary inertia. Therefore, we have taken into account the effect of these parameters on the nonlinear 

joint structures behavior, and the substructures are modelled by the Timoshenko model. Accordingly, it seems that 

studying two bolted free-free beams by using Timoshenko beam theory by considering large amplitude vibration and 

nonlinear springs and a torsional damper located in the joint interface of the beams, gives interesting results. The 

numerical results are presented in the form of frequency-response curves to demonstrate the effect of the different 
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parameters. It is shown that in the presence and in the increasing value of the linear spring and absence of the 

nonlinear spring, natural frequency is occurred at higher frequency and the corresponding maximum amplitude is 

decreased. Numerically, it is shown that increasing in values of the linear damping coefficient and forcing amplitude 

resulted in decreasing and increasing in maximum amplitude of the system, respectively. 

2    MATHEMATICAL FORMULATIONS 

Fig. 1 shows the considered bolted lap joint structure that consists of two free-free beams and an attached tip mass at 

free ends of one of the beams. In order to model the bolted joint interface, a combination of the linear spring, linear 

and nonlinear torsional spring, and linear torsional damping are used. The beams of length biL , thickness bit , and 

width biw ; where i  indicates the number of the beams. A block tip mass, tM  is of length and height of 1h  and 2h , 

respectively. It is assumed that one single harmonic base excitation in the form of 0( ) sin( )F t F t , with 0F  being 

excitation amplitude and   is the frequency amplitude. In addition, ( , )iw x t , ( , )iu x t , and ( , )x t  are used in 

order to denote the transverse, axial and rotation displacements as shown in figure. Also, uniform mass distribution 

assumption is considered in order to avoid the complexity in the theoretical procedure in this paper. 

 

 

 

 

 

 

Fig.1 

A schematic of the free-free assembled beam with 

nonlinear joint and nonlinear substructures. 

 

The total kinetic energy of the system is composed of the kinetic energies of the free-free beams, and the tip 

mass. The kinetic energy of the free-free beams can be written as follows [28]: 
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where A, ρ and I are cross sectional, the mass density and area moment of inertia of the beams, respectively. The 

vector Mr  as a distance of the base of the beam to the center of the tip mass is defined in order to formulate the 

kinetic energy of the block mass : 
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where ( , )x t  is the slope of the beam with respect to the horizontal axis (see Ref. [29]). 1e , 2e  and tL  are unit 

axial vectors in the u  and v  directions, and whole length of the system, respectively. Accordingly, time derivative 

of the position vector Mr , is given by [30]: 
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The tip mass kinetic energy’s is defined as follows: 
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21 1
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where MI  is the moment of inertia of the tip mass about its center of gravity. The total kinetic energy of the bolted 

lap joint structure can be found by summing the Eqs. (1), (2), and (5). 

The variation of the work done by the external forces, which is generally comprised of the harmonic excitation 

force and the viscose damping force due to the surrounding medium, are expressed as [31]: 
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where dc  and rc  are the viscos damping coefficients for the displacements and rotation coordinates, respectively. 

And c  is the damping coefficient from the bolted lap joint structure modelling. 

The total potential energy of the system which is consists of potential energy of each beam, linear and nonlinear 

transverse and torsional springs, and is written as following: 
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where 1bU  and 2bU  are potential energies of the beam #1 and #2 respectively, and LSU  and NTSU  are potential 

energies of the linear spring and linear and nonlinear torsional springs respectively. In what follows, the equation of 

each potential energy is obtained. Any axial displacement which can be caused by shear deformation are neglected 

in current research, in the Timoshenko beam theory are given by [28]: 
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where w is the total transverse displacement, 
sw  and 

bw  are shear and bending displacements, respectively,   is 

the shear deformation or shear angle, and v is lateral displacement. Where the strains corresponding to the 

displacement fields given by Eq. (9), and using Von-Karman strain Equation [32], one may obtain Eq. (10) as 

follows: 
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which for the sake of completeness, the effect of the longitudinal displacement in the equation of motion of the 

system is taken into account. The components of stress corresponding to the strains of Eq. (10) are given by: 
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where 
bE , G and 10(1 ) / (12 11 )k       are Young’s modulus, shear modulus, and shear factor for the rectangle 

cross section, respectively, where   being Poisson ratio. The strain energy of the beam 
bU  occupying region V can 

be determined as: 
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By substituting Eqs. (10) and (11) into Eq. (12), one may obtain the Eq. (13) as follows: 
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where 
bI  and 

bA  are area moment of inertia and cross sectional area of the beams, respectively. The potential 

energies of the linear spring, and linear and nonlinear torsional springs can be written as follows: 
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3    FULL NONLINEAR EQUATIONS OF MOTION AND THE METHOD OF SOLUTION 

In what follows, following [31], the Hamilton’s principle (Eq. (16)) is utilized to drive the nonlinear equation 

motion of the nonlinear system [33]: 
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where   denotes variational operator.  Substituting, Eqs. (4) -(7) and (13) -(15) into the Hamilton’s principle which 

is given by Eq. (16) yields the following nonlinear electromechanical partial differential equations of motion 

governing the longitudinal, transverse, rotational motions, of the nonlinear structure as follows: 
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Substituting parameters introduced in Eq. (23) into Eqs. (17)-(22), and dropping asterisk notation for briefness, 

the results in the following dimensionless nonlinear partial differential equation of motion for the longitudinal, 

transverse, rotation motions, and the electromechanical relation, respectively, are expressed as: 
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 (29) 

4    THE REDUCED ORDER MODEL BASED ON GALERKIN METHOD 

To obtain the reduced order model of the partial equations of motion, Eqs. (24)-(29), the Galerkin discretized 

method is utilized, and the displacements of the system are assumed as the following approximate series expansion 

[31, 34]: 
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u x t x r t
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  (32) 

 

where ( )k x  and ( )k x  are the thk  Eigen functions for the transverse and rotation vibrations of a linear and 

undamped cantilevered piezoelectric beam, as comparison functions, respectively, and ( )kq t , ( )kp t , and ( )kr t  are 

the associated time-varying generalized coordinates of transverse, longitudinal, and rotational motions, respectively. 

To obtain the Eigen functions for the transverse and rotation vibrations, one may apply the exact Timoshenko beam 

theory which are provided in Ref. [35]. In this study, according to Refs. [28, 31], for the transverse vibrations Eigen 

function, it is sufficient to use from Euler-Bernoulli beam theory for the clamped-free conditions, and for the 
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Timoshenko beam theory to satisfy the exact mode shape based on Rayleigh-Ritz method, one may use  

( ) /x x    , to obtain the rotation vibrations Eigen function. Hence, Eigen functions for the cantilevered beam 

are expressed as follows: 

 

 1( ) cos( ) cosh( ) sin( ) sinh( )k k k k kx x x x x          (33) 

 

 1( ) sin( ) sinh( ) cos( ) cosh( )k k k k kx x x x x           (34) 

 

where 
1  is given by: 
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where the eigenvalue 
k  are obtained by solving frequency equation of the cantilevered beam as follows: 

 

1 cos( ) cosh( ) 0L L     (36) 

 

In order to obtain a set of nonlinear ordinary differential equations of motion of the system, the Galerkin 

technique, Eqs. (30) -(32), are substituted into Eqs. (24) -(29), and the resultant equations are multiplied by the 

corresponding Eigen function and integrated with respect to x from 0 to 1, and considering the single mode 

vibration, one may obtain the following nonlinear ordinary differential equations: 
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where 
iN  coefficients are presented in the Appendix.  
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5    NUMERICAL RESULTS AND DISCUSSION 

The numerical results are presented in this section. The mechanical properties of the case study are adopted from 

[4], and are listed in Table 1. 

At first, the nonlinear behavior of the system in the presence of the nonlocal nonlinearity (large amplitude 

vibration of the substructures assumption) and absence of the local nonlinearity was examined. Which it means the 

nonlinear spring in the interface modelling was neglected. In order to obtain the frequency response of the system, 

the variable excitation frequency was chosen as a parameter which is varies around the natural frequency of the 

system, for which the first natural frequency of the system can be obtained by linearizing the equations of motion 

and can be expressed as 2 4/n n EI AL   , where   is eigenvalues of the cantilever beam, and can be obtained 

from Eq. (33), and the other utilized parameters which are expressed in Table 1. Numerical simulations have been 

carried out for nonlinear system, Eqs. (34)-(39), by varying dimensionless excitation frequency  , the other non-

dimensionalzed parameters which are assumed to be equal to   138.564,  103.395,  1.43×10
4
,
 0b  0.001, 

dc  0.0035 and 
rc  0.0234. The frequency responses of the first generalized coordinate of the transverse and 

rotation motions, are illustrated in Fig. 2, which shows the stable solutions of the nonlinear structure. It is seen that 

frequency curves are titled to the right which means system displays a hardening type for transverse motion and 

rotation. Depending on the initial values and excitation frequency, there might be two stable solutions or one stable 

solution in the frequency response of the system. Due to the existence of the stable and unstable points, there are two 

limit point bifurcations in the system, which the first one is responsible for a downward jump from a high amplitude 

motion to the low amplitude one, and the second one for a reverse scenario. Where the first and second bifurcation 

points correspond to   1.653 (point A), and   1.694 (point B), respectively. As shown in Fig. 2(a), when the 

nonlinear parameter starts from   1 and continuously is increasing, the amplitude of the stable response gradually 

increased with increasing dimensionless excitation frequency until is reached to point A; as   is increased further a 

sudden jump occurs in the system, and takes place from point A to lower stable branch, point B, and if the excitation 

frequency is increased further the system continues stable branch by decreasing the stable amplitude of response. 

 
 

Table 1 

Physical properties of the bolted lap joint structure [4]. 

Symbol Value Unit Description 

Lb 260 mm Length of the beams 

Lt 500 mm Total length of the system 

tb 5 mm Thickness of the beams 

Mt 0.1888 kg Tip mass 

h1 30 mm Length of the tip mass 

h2 32 mm width of the tip mass 

kaL 8.089×108 N/m Linear translational spring 
kθL 3264 N/rad Linear torsional spring 
kθNL 3.722×108 N/m3 Cubic torsional spring 

c 0.281 N.s/m Linear torsional damper 

                S 250 mm Location of the bolted joint 

 

 

Fig. 3 depicts the influence of the dimensionless parameter   on the frequency-response curves of the first 

generalized coordinate for the transverse and rotation motions, for the conditions and values of the Fig. 2. In 

addition, the different values of the   which are denoted on the figure, and the value of the   is selected as 

  0.75   due to the relation 5 / (7 6 )    . As shown in the Fig. 3, the dimensionless parameter   

significantly affects the nonlinear resonance frequency and hysteresis region. It is seen that increasing   results in 

shift the nonlinear resonance frequency to higher excitation frequencies, and results decreasing in the maximum 

amplitude of the beam displacement. For instance, while   138.564, and for the transverse motion, the nonlinear 

resonance frequency occur at   1.649, and by increasing the value of the   to values of 152.4204, 166.2768, it is 

observed that the corresponding nonlinear resonance frequencies altered to the values of   1.792, 1.935, 

respectively. 
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Fig. 4 illustrates the influence of the dimensionless parameter   on the frequency-response curves of the first 

generalized coordinate for the transverse and rotation motions, for the conditions and values of the Fig. 2, and the 

different values of   which are denoted on the figure. It is seen that, the dimensionless parameter   significantly 

affects the nonlinear resonance frequency and hysteresis region, and the resonance region for the system gradually 

shifts from the right to the left as the   increases. Due to the fact that two limit point bifurcations get away from 

each other, hence, the entire region of the response becomes wider, which it results in increasing the maximum 

amplitude of the oscillation, and the corresponding nonlinear resonance frequency occurs at low excitation 

frequencies. 

Fig. 5 shows the effect of the different values of the dimensionless base acceleration on the frequency-response 

curves of the system, for the values and conditions of the Fig. 2, and the dimensionless parameter   is assumed to 

be  1.859×10
4
. As it can be seen, as the forcing amplitude increases the maximum amplitude values of the 

oscillations increased, the frequency bandwidth of the system becomes wider. 

Fig. 6 depicts the influence of the axial linear spring coefficient on the first generalized coordinate for the 

transverse and rotation motions for the conditions and values of the Fig. 2, and for different values of the linear 

spring constant which are denoted on the curves. It is seen that as the linear spring constant value increased the 

resonance frequency of the system increased and the maximum values of the transverse and rotation motions values 

are decreased. For instance, when the linear spring constant is assumed to be equal to 
aLk  0.4 MN/m, the 

resonance frequency and maximum amplitude are equal to 1.245 and 3.84×10
-5

, respectively. As the linear spring 

stiffness is increased to the values of 0.7 MN/m and 1 MN/m the corresponding resonance frequencies are altered and 

occur at 1.306 and 1.367, respectively, and also the corresponding maximum amplitudes are changed to the values 

of 3.641×10
-5

 and 3.42×10
-5

. 

Fig. 7 depicts the effect of the nonlinear spring stiffness constant in the joint modelling on the first generalized 

coordinate for the transverse and rotation motions for the conditions and values of the Fig. 2, and for different values 

of the nonlinear spring constant which are denoted on the curves. It is seen that as the nonlinear spring constant 

increased, it resulted in strong hardening behavior in the system. For instance, while the nonlinear spring stiffness is 

equal to 
NLk  1 GN/m

3
 the resonance frequency and maximum amplitude are equal to 1.229 and 6.508×10

-5
, 

respectively. As the linear spring stiffness is increased to the values of 1.4 GN/m
3
 and 2 GN/m

3
 the corresponding 

resonance frequencies are altered and occur at 1.240 and 1.249, respectively, and also the corresponding maximum 

amplitudes are changed to the values of 4.997×10
-5

 and 4.089×10
-5

. 

Fig. 8 illustrates the effect of the different engineering beam theories namely, Timoshenko, Rayleigh and Euler-

Bernoulli beam theories on the frequency response curves of the transverse motion for the values of the Fig. 2, and 

for the linear and nonlinear spring constants of the
aLk  0.4 MN/m and 

NLk  2 GN/m
3
, respectively. It is seen that 

the system for different engineering beam theories has similar behavior but different maximum amplitudes and 

resonance frequencies. For example, for Timoshenko, Rayleigh and Euler-Bernoulli beam theories are occur at 

  1.424, 1.83 and 2.234, respectively, and the corresponding maximum amplitudes are equal to 3.509×10
-5

, 

3.7×10
-5

 and 3.9×10
-5

, respectively. 

 

 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

-5



q 1

B

A

 
(a) 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-5



p 1

 
(b) 

 

Fig.2 

Frequency response of the system (a) The first generalized coordinate for the transverse motion (b) The first generalized 

coordinate for the rotation motion. 
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Fig.3 

Influence of the dimensionless parameter β on the frequency response curves of the system (a) The first generalized coordinate 

for the transverse motion (b) The first generalized coordinate for the rotation motion. 
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Fig.4 

Influence of the dimensionless parameter η on the frequency response curves of the system (a) The first generalized coordinate 

for the transverse motion (b) The first generalized coordinate for the rotation motion. 
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Fig.5 

Effect of b0 on the frequency response curves of the system (a) The first generalized coordinate for the transverse motion (b) 

The first generalized coordinate for the rotation motion. 
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Fig.6 

Effect of kaL on the frequency response curves of the system (a) The first generalized coordinate for the transverse motion (b) 

The first generalized coordinate for the rotation motion. 
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Fig.7 

Effect of kθNL on the frequency response curves of the system (a) The first generalized coordinate for the transverse motion (b) 

The first generalized coordinate for the rotation motion. 
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Fig.8 

Effect of the different engineering beam theories on the 

frequency response curves of the system for the first 

generalized coordinate of the transverse motion. 

6    CONCLUSIONS 

In this paper a model for a Timoshenko beam by considering large amplitude vibration with a nonlinear bolted lap 

joint was presented. The joint was modelled using a combination of linear and nonlinear springs and linear torsional 

damper in order to model the softening phenomenon and energy dissipation of the joint interface due to the slip. The 
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governing equations of motion were derived using the Hamilton’s principle. The reduced-order model equations 

were obtained based on Galerkin method. The set of coupled nonlinear equations were then solved using numerical 

simulation. A parametric study was carried out to reveal the influence of the different parameters such as, linear and 

nonlinear torsional spring, linear translational spring, and linear torsional damper on the vibration and stability of the 

bolted lap joint structure. The nonlinear behavior of the structure was examined in the absence of the nonlinear 

spring in the modelling of bolted lap joint. It was shown that the system in this case exhibit a hardening nonlinear 

behavior type due to the large amplitude vibration consideration in the substructures. Then, for the same system, the 

effect of the different dimensionless parameters on the frequency-response curves and hysteresis region of the 
system were investigated. It was shown that the dimensionless parameter β significantly affects the frequency-

response curves, in which as the value of the β increased, resulted in increasing the resonance frequency and 

decreasing in maximum amplitudes of the system. Moreover, the influence of the dimensionless parameter η on the 

frequency-response curves was studied. It was illustrated that η remarkably affect both natural and resonance 

frequencies, and as η increased it resulted in shifting the natural and resonance frequencies to the left. Furthermore, 

the effect of the forcing amplitude was investigated. It was shown that the forcing amplitude effect on the hardening 

behavior of the system and as the forcing amplitude increased it resulted in widening the frequency response 

amplitude. Then, the effect of the presence of the linear and nonlinear springs in the joint modelling was studied. At 

first, the effect of the linear spring, in the absence of the nonlinear spring, on the frequency-response curves was 

investigated. It was shown that presence of the linear spring increases both natural and resonance frequencies and 

decreases the maximum amplitudes of the system. In addition, the effect of the nonlinear spring, in the absence of 

the linear spring, on the frequency-response curves was demonstrated. It was shown that presence and increasing the 

nonlinear spring stiffness coefficient value results in strong hardening-type behavior and decreasing the maximum 

amplitude compared to the absence of the linear and nonlinear springs. Furthermore, the effect of the different 

engineering beam theories on the system response was studied. It was shown that Euler-Bernoulli beam theory by 

neglecting the effects of the shear deformations and rotary inertia over-predicts the natural frequency. 
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