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 ABSTRACT 

 This paper derives kinematic admissible bending moment – axial 

force (M-P) interaction relations for mild steel by considering 

strain hardening idealisations. Two models for strain hardening – 

Linear and parabolic have been considered, the parabolic model 

being closer to the experiments. The interaction relations can 

predict strains, which is not possible in a rigid, perfectly plastic 

idealization. The relations are obtained for all possible cases 

pertaining to the locations of neutral axis. One commercial rolled 

steel T-section has been considered for studying the 

characteristics of interaction curves for different models. On the 

basis of these interaction curves, most significant cases for the 

position of neutral axis which are enough for the establishment of 

interaction relations have been suggested. The influence of strain 

hardening in the interaction study has been highlighted. The 

strains and hence the strain rates due to bending and an axial 

force can be separated only for the linear-elastic case because the 

principle of superposition is not valid for the nonlinear case. The 

difference between the interaction curves for linear and parabolic 

hardening for the particular material is small. 

                              © 2019 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 TUDY of structural failure under impact loading is of importance for the safety and hazard assessment of 

structures. Simple structural elements like beams, plates and shells fail in different modes under dynamic 

loading. The beams being relatively critical elements have attracted more attention of scientists and engineers. The 

membrane force plays an important role in the dynamic response of a beam when the transverse deformations are 

sufficiently large, thus requiring axial force – bending moment interaction relations up to failure. Standard static 

methods of analysis with dynamic magnification factors, for example, are not adequate in many dynamic plastic 

structural problems. Structural designers are often required to estimate the failure load of structural members for 

which they employ numerical techniques, such as the finite element method, but the analysis up to failure with large 
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displacements and strains is usually difficult.  An early experimental study on the dynamic, inelastic failure of 

beams was reported by Menkes and Opat [1] who investigated the dynamic plastic response and failure of fully 

clamped metal beams which were subjected to uniformly distributed velocities over the entire span. They observed 

that the beams responded in a ductile manner and acquired permanently deformed profiles when subjected to 

velocities less than a certain value. However, when the impulsive velocities were equal to this critical value, then the 

beams failed owing to tearing of the beam material at the supports. As the impulsive velocities were further 

increased beyond this critical value, failure occurred, and the plastic deformation of the beams become more 

localized near the supports until another critical velocity, which was associated with a transverse shear failure at the 

supports, was reached. The experimental results of Menkes and Opat [1] were later analysed by Jones [2] using a 

simple rigid-plastic method. A systematic study on the deformation and failure of fully clamped ductile beams 

struck by a mass has been conducted by Liu and Jones [3,4]. Two modes of failure – Tensile tearing and shear 

failure modes – have been observed in experiments depending on the uniaxial rupture strain of the materials, the 

location of impact point and support conditions. The experiments on Aluminium beams showed that the geometry 

changes for finite deflection play an important role in the dynamic response and higher modal dynamic plastic 

response of the beams is more efficient in absorbing kinetic energy than single modal response [5]. In a rigid-plastic 

structure, Shen and Jones [6] assumed that the rupture occurs when the absorption of plastic work per unit volume 

reached a critical value. To calculate the actual plastic work in beams, a hinge length was estimated from 

experimental data obtained by Menkes and Opat [1] on impulsively loaded aluminium beams. Continuum damage 

mechanics has been used recently by Alves and Jones [7] for predicting the static and dynamic failure of beams, but 

the method requires the values for several parameters, some of which are difficult to obtain. The theoretical 

anomalous dynamic response of beams [8,9] and plates [10] for a short pulse loading causing small deflections has 

been studied by elastic-plastic material model. Another simpler and more attractive option for some problems is to 

carry out a rigid perfectly plastic analysis that have been used by several authors e.g. Lellep and Torn [11], Ma et 

al.[12]  and Ghaderi et al. [13]. The accuracy of which has been compared with the predictions of an elastic-plastic 

material [14-18] However, a rigid, perfectly plastic analysis does not predict strains so that it is difficult to study 

failure unless some assumptions are made to overcome this difficulty. 

In the present paper, kinematic admissible interaction curves for the simultaneous action of bending moment and 

an axial force on a T-section have been developed for strain-hardening material idealisations. Two models for strain 

hardening – Linear and parabolic have been considered. The interaction curves developed for T-section may be 

easily degenerated to rectangular section. The procedure requires only the results from a standard uniaxial tensile 

test on the material. The strains and hence the strain rates due to bending and an axial force can be separated only for 

the linear-elastic case because the principle of superposition is not valid for the nonlinear case. The difference 

between the interaction curves for linear and parabolic hardening for the particular material is small. 

2    STRESS-STRAIN DIAGRAM 

Direct tensile test results by Alves and Jones [19] for a mild steel specimen ‘t036’ as shown in Fig. 1 are taken as a 

reference for the modelling of stress-strain diagram, which is thus idealised as linear for elastic strains followed by 

flat yielding zone without strain hardening. Therefore, the strain hardening has been modelled by linear and 

parabolic models (Fig. 1). Thus, there are three zones in the idealised diagram: elastic zone from k = 0 to k = 1; yield 

zone without any strain-hardening from k = 1 to k = k1; and the strain-hardening zone from k = k1 to k = k2, where, 

yk   is the strain. The stress in the strain-hardening range, d , at any strain, yk    1 2k k k  , can be 

obtained from the following relations: 

 

 d yd ud yd m        for Linear-Hardening  (1) 

 

  22d yd ud yd m m         for Parabolic-Hardening  (2) 

 

where,  
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where, h (= 1 yk  ) is strain corresponding to the initiation of strain hardening and u (= 2 yk  ) is the ultimate 

strain, yd  and ud  are the yield and ultimate dynamic stresses respectively. The suffix d in the above expressions 

has been used to indicate dynamic values. The stress-strain curve can be used for high strength steel by substituting 

k1 = 1 and many other materials can be easily represented by these equations for different values of the parameters. 
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Fig.1 

Experimental stress-strain curve and different models of 

mild steel. 

3    BENDING MOMENT-AXIAL FORCE (M-P) INTERACTION 

Considering a T-section of beam with width of flange, B, thickness of flange, h, overall depth, H, and the thickness 

of web, b, for studying the interaction of a bending moment, M, and an axial force, P (Fig. 2). The geometry of the 

section is defined by the following non-dimensional parameters: 

 

 

 1

/

/

1

h H

B b B

b B







  

 


  


 
  

   (4) 

 

The T-section converts to the rectangular section when, 0   or 1, 0  , 1  , 1 0  . The bending moment 

is assumed to cause compression at the top face. The axial force considered in the present analysis is tensile and the 

same relations can be used for a compressive axial force because the material behaviour in compression has been 

assumed to be the same as in tension. The interaction curves for different states of stresses have been obtained in the 

subsequent subsections. 

The extreme fibre strain in tension (i.e. at the bottom fibre) is taken as yk   and the strain at the interface of web 

with top flange is t yk  . The extreme fibre strain at the top fibre is taken as ' yk   which is compressive when the 

neutral axis is inside the section, whereas, it is tensile when the neutral axis is outside the section. The value of 'k  

and tk  when the neutral axis lies inside the section (Fig. 3) are given by 
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and  
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where, 1r H H ; H1 = distance of the neutral axis from the extreme compression fibre. Whereas, when the neutral 

axis lies outside the section (Fig. 3), the value of 'k  and tk  are given by: 

 

 '
1

r
k k

r



  (7) 

  

and 

  

1
t

r
k k

r





 (8) 

 

There are well-established interaction curves for elastic and a rigid, perfectly plastic section having a rectangular 

cross-section [5] (see Jones, 1997), whereas for T-section these are derived in this Section. 
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Fig.2 

(a) Section of beam, (b) An element subjected to external 

pull and bending moment. 
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Fig.3 

Positions of neutral axis: (I) Neutral axis in web, (II) 

Neutral axis in flanges and (III) Neutral axis outside the 

section. 

3.1 Elastic  

Case I 

Neutral axis lies in the web i.e. '0 1k  (Fig. 4(a)). 

The M-P interaction relation obtained for this case is: 

 

      
3 3 31

1
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 (9) 

 

where,  
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1 1yd ydM M   (10b) 

 

1 1yd ydP P   (10c) 

 

1yd ydP BH  (10d) 
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2
1 6yd ydM BH  (10e) 

 

ydP P P  (10f) 

 

 
 

2 21

1

  


  

 


 
 

(10g) 
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M
  (10h) 

 

  yd ydP BH B b H h       (10i) 
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Eq. (9) converts to the rectangular section for 0   or 1, 0  , 1  , 1 1   and 1 1   thus giving 
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Case II  

Neutral axis lies in the flange i.e. '0 1k   (Fig. 4(b)). 

 

The M-P interaction relation obtained for this case is: 
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 (12) 

 

The non-dimensional distance of the neutral axis, r, required for determining the value of 'k  from Eq. (5) may 

be obtained from the equation: 
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Case III 

Neutral axis is outside the section i.e. 
'0 1k   (Fig. 4(c)). 

The M-P interaction relation obtained for this case is: 

 

      
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 (14) 

 

The non-dimensional distance of the neutral axis, r, required for determining the value of 'k  from Eq. (7) may 

be obtained from the equation: 
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(b) Neutral axis lies in the flange i.e. 
'0 1k  . 
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(c) Neutral axis is outside the section i.e. 
'0 1k  . 

 

 

 

 

 

 

 

Fig.4 

Stress and strain variation in the section of a beam for 

different positions of neutral axis in the elastic model. 

3.2 Plastic 

For Rigid Perfectly Plastic case, there are two cases – one in which the neutral axis lies in the web and the other 

wherein neutral axis lies in the flange. These two cases are discussed in subsequent sub-sections.  

 

Case I  

Neutral axis lies in the web i.e. 11 'k k   (Fig. 5(a)). 

The M-P interaction relation obtained for this case is: 

 

     
2 2 2
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 (16) 
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The above equation converts to the rectangular section for 0   or 1, 0  , 1  , 1 1   and 1 1   thus 

giving 

 

22
1

3
M P   (18) 

 

Case II  

Neutral axis lies inside the flange i.e. 11 'k k   (Fig. 5(b)). 
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The M-P interaction relation obtained for this case is: 

 

     
2 2 2

1 13 1 2M r r r P r            
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 (19) 
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P
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  (20) 

 

The cross-section can only become fully plastic when the extreme fibre strain is infinite, which practically, is not 

possible. The advantage of Eqs. (16) and (19) lies in their simplicity but the main disadvantage is that it cannot 

predict strains. To overcome this difficulty the strain hardening case is considered in the next subsection, which 

almost reduces to the rigid, perfectly plastic model for a large yield zone. 
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(a) Neutral axis lies in the web i.e. 11 'k k  . 
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(b) Neutral axis lies inside the flange i.e. 11 'k k  . 

Fig.5 

Stress and strain variation in the section of a beam for different positions of neutral axis in the rigid perfectly plastic model. 

3.3 Strain-hardening models 

For linear as well as parabolic strain hardening, there are eleven cases depending upon the position of the neutral 

axis, six cases for the neutral axis inside and five cases for neutral axis outside the section as shown in Figs. 6 and 7. 

The extreme fibre strain at the top is compressive when the neutral axis lies inside the section, whereas, it is tensile 

when the neutral axis is outside the section. The relations obtained for these cases for the two types of hardening are 

given in the subsequent sections. The proof of Case I for parabolic-hardening, is given in Appendix A. The 

remaining expressions can be derived in a similar way. 

3.3.1 Linear-hardening 

For the linear hardening model, the ten cases, which depend upon the position of the neutral axis, are presented 

below: 

 

Case I  

Neutral axis lies in the web i.e. 1 2'k k k   and 1 2tk k k   (Fig. 6(a)). 

The M-P interaction relation obtained for this case is: 
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(21) 

 

The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (5) may be obtained from the quadratic equation: 
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The extreme fibre strain at the top fibre is taken as ' yk   which is compressive when the neutral axis is inside 

the section, whereas, it is tensile when the neutral axis is outside the section. The value of 'k  and 
tk  when the 

neutral axis lies inside the section (Fig. 3) are given by 
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Case II 

Neutral axis lies in the web i.e. 1 2'k k k   and 11 tk k    (Fig. 6(b)). 

The M-P interaction relation obtained for this case is: 
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 (24) 

 

The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (5) may be obtained from the quadratic equation: 
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Case III 

Neutral axis lies in the web i.e. 11 'k k   and 0 1tk   (Fig. 6(c)). 

The M-P interaction relation obtained for this case is: 
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 (26) 

 

The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (5) may be obtained from the quadratic equation: 
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Case IV  

Neutral axis lies in the web i.e. 11 'k k   and 0 1tk   (Fig. 6(d)). 

The M-P interaction relation obtained for this case is: 
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The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (5) may be obtained from the quadratic equation: 
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Case V 

Neutral axis lies in the flange i.e. 0 ' 1k  and 0 1tk    (Fig. 6(e)). 

The M-P interaction relation obtained for this case is: 
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The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (5) may be obtained from the quadratic equation: 
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 (31) 

 

Case VI  

Neutral axis lies in the flange i.e. 0 ' 1k   and 0 1tk    (Fig. 6(f)). 

The M-P interaction relation obtained for this case is: 
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The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (5) may be obtained from the quadratic equation: 
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Case VII  

Neutral axis lies outside the section i.e. 0 ' 1k   and 0 1tk   (Fig. 7(a)). 

The M-P interaction relation obtained for this case is: 
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where,  

 
'

1 1g k   (35a) 

 
'

1 1 2h k   (35b) 

 

The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (7) may be obtained from the quadratic equation: 
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Case VIII 

Neutral axis lies outside the section i.e. 0 ' 1k   and 11 tk k   (Fig. 7(b)). 

The M-P interaction relation obtained for this case is: 
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The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (7) may be obtained from the quadratic equation: 
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Case IX  

Neutral axis lies outside the section i.e. 11 'k k   and 11 tk k    (Fig. 7(c)). 

The M-P interaction relation obtained for this case is: 
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The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (7) may be obtained from the quadratic equation: 
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Case X  

Neutral axis lies outside the section i.e. 11 'k k   and 1 2tk k k   (Fig. 7(d)). 

The M-P interaction relation obtained for this case is: 
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where  

 

1 1f k k   (42) 

 

The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (7) may be obtained from the quadratic equation: 
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Case XI 

Neutral axis lies outside the section i.e. 1 2'k k k   and 1 2tk k k   (Fig. 7(e)). 

The M-P interaction relation obtained for this case is: 
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The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (7) may be obtained from the linear equation: 
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The M-P interaction curves of linear hardening model for the T-section taken earlier have been plotted in Fig. 8 

by taking different values of k. 
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3.3.2 Parabolic-hardening 

Eleven cases which depend upon the position of the neutral axis are required for the parabolic hardening model, 

which are discussed in this section. 

 

Case I  

Neutral axis lies in the web i.e. 1 2'k k k   and 1 2tk k k   (Fig. 6(a)). 

The M-P interaction relation obtained for this case is: 
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 (46) 

 

The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (5) may be obtained from the quadratic equation: 
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15 3Pf k k   (49a) 

 

15 3P tg k k   (49b) 

 
'

15 3Ph k k   (49c) 

 

Case II  

Neutral axis lies in the web i.e. 1 2'k k k   and 11 tk k    (Fig. 6(b)). 

The M-P interaction relation obtained for this case is: 
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 (50) 

 

The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (5) may be obtained from the quadratic equation: 
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Case III  

Neutral axis lies in the web i.e. 11 'k k   and 0 1tk   (Fig. 6(c)). 



                                                                                        Strain Hardening Analysis for M-P Interaction.…                                  400 

 

© 2019 IAU, Arak Branch 

The M-P interaction relation obtained for this case is: 
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 (52) 

 

The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (5) may be obtained from the quadratic equation: 
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Case IV  

Neutral axis lies in the web i.e. 11 'k k   and 0 1tk   (Fig. 6(d)). 

The M-P interaction relation obtained for this case is: 
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The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (5) may be obtained from the quadratic equation: 
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Case V  

Neutral axis lies in the flange i.e. 0 ' 1k  and 0 1tk    (Fig. 6(e)). 

The M-P interaction relation obtained for this case is: 
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The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (5) may be obtained from the quadratic equation: 
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Case VI  

Neutral axis lies in the flange i.e. 0 ' 1k   and 0 1tk    (Fig. 6(f)). 

The M-P interaction relation obtained for this case is: 
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The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (5) may be obtained from the quadratic equation: 
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Case VII  

Neutral axis lies outside the section i.e. 0 ' 1k   and 0 1tk   (Fig. 7(a)). 

The M-P interaction relation obtained for this case is: 
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 (60) 

 

The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (7) may be obtained from the quadratic equation: 
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 (61) 

 

Case VIII  

Neutral axis lies outside the section i.e. 0 ' 1k   and 11 tk k   (Fig. 7(b)). 

The M-P interaction relation obtained for this case is: 

 

   

 

2
2
1 1'

1 2
2
1 1'

1
1 2 2

3
3

2
4

P
P

r
r r g h

k
M

S r
a f r P

k

  



  

  
     

  


 
        

 (62) 

 

The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (7) may be obtained from the quadratic equation: 
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 (63) 

 

Case IX  

Neutral axis lies outside the section i.e. 11 'k k   and 11 tk k    (Fig. 7(c)). 

The M-P interaction relation obtained for this case is: 
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The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (7) may be obtained from the quadratic equation: 
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Case X  

Neutral axis lies outside the section i.e. 11 'k k   and 1 2tk k k   (Fig. 7(d)). 

The M-P interaction relation obtained for this case is: 
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The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (7) may be obtained from the quadratic equation: 
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Case XI  

Neutral axis lies outside the section i.e. 1 2'k k k   and 1 2tk k k   (Fig. 7(e)). 

The M-P interaction relation obtained for this case is: 
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The non-dimensional distance of the neutral axis, r, required in the above equation and also for determining the 

value of 'k  from Eq. (7) may be obtained from the linear equation: 
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The M-P interaction curves of parabolic hardening model for the T-section taken earlier have been plotted in Fig. 

9 by taking different values of k. 
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Fig.6 

Stress and strain variation for positions of neutral axis inside the section for strain-hardening model. 
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Fig.7 

Stress and strain variation for positions of neutral axis 

outside the section for strain-hardening model. 

3.4  Discussion 

When there is no axial force, i.e. bending alone, the moment-curvature relations obtained from Eqs. (21), (22) and 

(46), (47) for the T-section considered earlier have been  plotted in Fig. 10 for linear and parabolic hardening by 

taking the material characteristics from the tension test results of specimen ‘t036’ . This curve has a strength stress 

endurance and linear curve has a weak status in stress curve. So the stress values of parabolic curve has a larger line 

in plastic. 

The variable on the abscissa is the parameter, k, which is proportional to the curvature and is equal to the ratio of 

extreme fibre strain to the yield strain: 

 

2 y

H
k

R
  (70) 

 

where R is the radius of curvature. It is observed from this figure that there is little difference (~6%) between the 

predictions of the linear and parabolic hardening models for the particular material considered in Fig. 1. The 

moment-curvature relation for the linear hardening model is nearly linear, whereas, for parabolic hardening model 

there is a small curvature. 

One quadrant of the M-P interaction curves for the T-section have been plotted already in Figs. 8 to 9 for linear 

and parabolic hardening models. The M-P interaction curves for all the models are plotted in Fig. 11. The 

observations made from these figures are: 

a) Cases VIII and XI of the strain hardening models in Figs. 8 and 9 are required for a continuous curve, but 

from a practical perspective, the portion of the interaction curve represented by these cases is very small 

and could be ignored for linear as well as parabolic hardening materials. Therefore, only five cases: I, II, 

III, IV and V (first five for the neutral axis inside the section) are sufficient for practical purposes for 

defining the interaction curve of mild steel T-sections. All the five possible cases are required to define the 

interaction curve for an elastic-plastic material. The perfectly plastic has shown a smooth curve of strain 

increasing without increasing the stress. So the bold line curve in Fig. 8 has smaller p/py to M/My. 

b) The strains and hence the strain rates due to bending and an axial force can be separated only for the linear-

elastic case because the principle of superposition is not valid for the nonlinear case.(Fig 11) 

c) The difference between the interaction curves for linear and parabolic hardening for the particular material 

illustrated in Fig. 1, is small (~6% when P  is zero) which was evident from the small gap between the 

moment-curvature plots for the two cases. 

d) The M-P interaction curves for elastic-plastic, as well as the strain hardening models, are non-convex for 

large values of the axial force when the neutral axis lies outside the section and are convex when the neutral 

axis lies inside the section.(Fig 11) 
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Fig.8 

M-P interaction curves for linear hardening model for T-
section (T 100  100  10). 
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Fig.9 

M-P interaction curves for parabolic hardening model for 
T-section (T100  100  10). 
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Fig.10 

Moment-Curvature relation for different models. 

  

 

 

 

 

 

 

 

Fig.11 

M-P interaction curves for different models ( 1 127k k   

for linear and parabolic hardening curves) for T-section 
(T100  100  10). 

 

4    CONCLUSIONS 

The M-P (Bending Moment – Axial Force) interaction curves have been developed for T-section with linear and 

parabolic strain hardening idealisations of mild steel. The M-P interaction relations are expressed in terms of the 

extreme fibre strains, which is not possible for a rigid, perfectly plastic model. The relations are obtained for 

different practically possible cases related to different locations of neutral axis. These relations easily degenerate to 

rectangular section by some simple substitutions. The interaction curves of rectangular section can be obtained by 

some simple substitutions. One T-section, T100  100  10 was considered for studying the characteristics of 

interaction curves. The conclusions derived from this numerical study are: 
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(i) Although there are many possible cases related to different locations of neutral axis, but the portion of the 

interaction curve represented by many of these cases is very small and could be ignored for linear as well as 

parabolic hardening materials. It is found that only five cases, four for the neutral axis inside the section 

and one for the neutral axis outside the section (Cases IV, VIII and XI) are sufficient for practical purposes 

for defining the interaction curve of mild steel T-section.  

(ii) The difference between the interaction curves for linear and parabolic hardening for the particular material 

is small (~6% when axial force is zero). 

The M-P interaction curves for elastic-plastic, as well as the strain hardening models, are non-convex for large 

values of the axial force when the neutral axis lies outside the section and are convex when the neutral axis lies 

inside the section. Though the above conclusions are derived for the one typical T-section considered in the study 

but other T-sections being similar, the above conclusions may be considered to be general for any T-section. 

APPENDIX  A 

Mathematical proofs  

Linear hardening (CaseI) 

The total compressive force on the section can be obtained by integrating the stress over the section in compression 

in Fig. 6(a), thus giving, 
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Similarly, the total tensile force in Fig. 6(a) is 
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The distance of the line action of the resultant compressive and tensile forces from the neutral axis can be found 

by taking the moment of the different force components, thus giving, 
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and  
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The position of the neutral axis can be found by considering the equilibrium of forces, 

 
P T C     (A.7) 

 

which using Eqs. (A.2) and (A.4) gives 
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from which the position of neutral axis is 
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which is same as Eq. (22) in this work. The moment of bending resistance of the section is 
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or, 
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which substituting Eqs. (A.2) to (A.8), we get Eq. (21), i.e. 
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