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 ABSTRACT 

 The effects of flexoelectricity on thermo-electro-mechanical behavior 

of a functionally graded electro-piezo-flexoelectric nano-plate are 

investigated in this paper using flexoelectric modified and the 

Kirchhoff classic theories. Moreover, using the variation method and 

the principle of minimum potential energy for the first time, the 

coupled governing nonlinear differential equations of the nano-plate 

and their associated boundary conditions are obtained.  The 

functionally graded nano-plate is modeled using a power law 

equation along the plate thickness direction. The nano-plate behavior 

is analyzed under mechanical, electrical, and thermal loadings with 

different boundary conditions. It should be noted that the direct and 

reverse flexoelectric effects under different loading conditions were 

investigated.  Finally, the important quantities such as: the nano-plate 

deflection, the induced electrical voltage for different values of the 

length parameter, the power index related to the functionally graded 

behavior model and the geometric ratio parameter are determined. 

The results indicate that in the presence of flexoelectricity, the 

rigidity of the nano-plate increases. Also, the deflection and the 

generated electric potential along nano-plate thickness decreases. 

Finally, induced polarization decreases as a linear temperature 

variation is applied on the nano-plate. 

                                 © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Piezo-flexoelectricity; Functionally graded nano-plate; 

Theory of flexoelectricity; Size effect; Thermal effect. 

1    INTRODUCTION 

 N recent years, researchers have paid much attention to the use of the micro-electromechanical systems (MEMS), 

which have important applications in the mechanical, chemical and aerospace industries. As these materials have 

electro-mechanical behavior, they are able to convert mechanical energy (tension, pressure, buckling, and torsion) to 

electrical power (voltage, electric field, and electrical polarization). Thus, these materials can be used in transducers, 
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including nano-transducers, nano-sensors [1], nano-actuators, nano-resonators [2], and nano-energy absorbents. 

Materials with a central non-symmetric molecular structure which can be electrically bipolar in response to uniform 

mechanical strain, are called piezoelectric materials. All dielectric materials with center-symmetrical crystalline 

structure are electrically bipolarized under non-uniform mechanical strain or strain gradient. This strain gradient 

results in an induced electrical potential is in these materials. This electromechanical effect is known as the 

flexoelectricity phenomenon, first discovered by Cogan [3]. Experimental observations and molecular dynamics 

(MD) simulations have shown that mechanical properties and piezoelectric coefficients depend strongly on the 

length scale parameter. Thus, reducing the structure dimensions to the nano-scale, the structural properties change 

strongly [4]. So far, many efforts have been made to determine the flexoelectric coefficients of materials. For the 

first time, Kogan estimated these coefficients for some dielectrics with various crystals [5]. Marangati used general 

flexoelectric theory to estimate the flexoelectricity coefficients of dielectrics which indicate bipolarization due to the 

strain gradient [6]. This investigator used theoretical and experimental approaches to show that a non-uniform strain 

could eliminate the symmetry of the crystalline structure in piezoelectric materials and generates electric bipolarity 

in them. Hu and Shen developed the variation principle for determining the electric enthalpy energy in nano-

dielectrics by taking into account the flexoelectric effect, size effects, and electrostatic force effects. They divided 

the electrostatic stress into two parts. A part is related to the polarization and strain tensor and another part is related 

to polarization gradient and strain gradient [7]. Yan investigated the effects of flexoelectricity on the electrostatic 

vibrational and flexural behavior of Timoshenko and Euler-Bernoulli nano-beams by considering the size effects 

and various boundary conditions using the Hamilton’s principle. He showed that the flexoelectric effect plays an 

important role on the electromechanical behavior of the beams with small thicknesses [8-9]. Li et al. proposed a new 

formulation for flexoelectricity theory by dividing the strain gradient tensor into two independent parts. These 

investigators showed that the high-order coefficients of the strain gradient tensor reduce to three [10]. Also, the 

relation between the strain gradient tensor and the polarization tensor is expressed only by the dilatation gradient 

tensor and the anti-symmetric part of the deviatoric rotary gradient tensor. It should be noted that the classic 

atomistic continuum mechanics theories are not suitable for analyzing the behavior of nanostructures. The reason of 

this fact is that continuum mechanic theories ignore the space between the atoms and the particle bonds compared to 

the main dimensions of the structure. Hence, the other methods such as experimental methods and molecular 

dynamic simulations should be used to evaluate the properties of nanostructures. However, these methods are costly 

and are limited to small number of atoms and time consuming. In recent years, several non-classical elasticity 

theories, such as nonlocal elasticity theory, modified strain gradient elasticity theory, and modified couple stress 

theory have been proposed to incorporate small-scale effects in nano-scale and micro-scale structures. Among these, 

the nonlocal elasticity theory has been widely used because of its simplicity and proper application in the nonlinear 

behavior of the micro and nano-structures and their high accuracy [11-12]. The piezoelectric beam and the 

piezoelectric plate models have been improved and expanded to determine the effects of the piezoelectricity on 

structure response, using flexoelectric theory. Li introduced a three layer Euler-Bernoulli beam model to investigate 

the piezoelectric and the size effects on the static bending and free vibrations of the nano-beam [13]. For this 

purpose, he used the flexoelectric theory proposed by Hadjesfandiari [14]. Liang and Shen [15] considered an Euler-

Bernoulli beam model and the size effect to study the electromechanical behavior of a piezoelectric nanowire using 

the theory introduced by Hu and Shen [16]. The obtained deflections from their models were smaller than those 

obtained from the classical beam theory. Also, they claim that the coupling between the electric field and the strain 

gradient results in an increase in the effective electromechanical coupling coefficients.Yang studied the extensional 

and flexural displacement of an electrostatic plate under a large electric field using the variation method for small 

strains and 3D electric field.  In order to determine the mechanical displacement and electric potential along the 

plate thickness direction, they derived the two-dimensional equations [17]. Liu et al. studied free vibrations of a 

piezoelectric nano-plate under thermo-electro-mechanical loadings using a non-local elasticity theory and the 

Kirchhoff plate model. They investigated the effects of non-local parameters, axial force, external electrical voltage 

and temperature variations on the nano-plate vibrations [18].Yang and Jiang studied the surface effects on the 

electrostatic behavior of a piezoelectric curved nano-beam using a surface layer-based model and Young-Laplace 

equations. Their results showed that surface effects play a significant role in the induced electrostatic field and the 

response of a piezoelectric nano-beam [19]. Ke and Wang studied the non-local effects on vibrations of a 

piezoelectric nano-beam using the non-local Timoshenko's nano-beam theory. They derived the governing equations 

of the nano-beam vibration under thermo- electro-mechanical loadings, using the Hamilton’s principle [20]. Zhang 

et al. studied the flexoelectric effects on electrostatic response and free vibrations of a piezoelectric nano-plate using 

a developed piezoelectric theory and the classic Kirchhoff plate theory. They showed that the flexoelectric effect is 

dependent on the aspect ratio in presence of the external applied electric potential [21]. Zhang and Jiang, using the 

developed linear piezoelectric theory, investigated the size, surface, and flexoelectric effects on the 
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electromechanical behavior of nano-plate. In this research, static bending and vibrations of the nano-plate were 

investigated using modified Kirchhoff model. They tookresidual surface stress, surface piezoelectric effect, and 

surface flexoelectric effect into account [22]. Yang et al. examined the electromechanical behavior of piezoelectric 

nano-plate with flexoelectric effects. These researchers derived the governing equations of the problem using the 

Hamilton’s principle and the Kirchhoff plate theory. They also determined analytical solutions for the displacement 

of the plate and its natural frequencies. They considered the piezoelectric and flexoelectric effects on the static and 

dynamic behavior of the plate, simultaneously [23]. Considering the influence of the surface tension, Yan and Jiang 

studied the vibrations and the bending of a piezoelectric nano-plate using the modified Kirchhoff plate model. In this 

study, to determine the effects of surface stress on plate vibration and buckling, they sued the piezoelectric model 

and the Young-Laplace generalized equations [24]. Yan and Jiang studied the vibrations and bending of a 

piezoelectric nano-beam under the influence of a flexoelectric and size effect. The differential governing equations 

of the beam behavior were determined using the expanded linear piezoelectricity theory and the Timoshenko's nano-

beam model. They extracted the equilibrium equations using the principle of minimum potential energy [25]. 

Murmua et al. studied the vibrations of a piezoelectric nano-plate under the thermo-electro-mechanical loadings 

based on the Kirchhoff plate model and the nonlinear elasticity theory. They investigated the effects of non-local 

parameters, size effect, geometric characteristics, axial force, external electrical voltage and temperature variations 

on the vibrational behavior of piezoelectric nano-plate [26]. Li et al. studied buckling and free vibration of the 

magneto-electro-elastic a nano-plate mounted on an elastic foundation using the non-local elasticity theory. They 

obtained the governing equations and the magneto-electric boundary conditions of the plate using the Maxwell 

equations and the principle of minimum potential energy [27]. Liang et al. examined surface and flexoelectric 

effects on static bending of a piezoelectric nano-beam by introducing a non-classic Euler-Bernoulli beam model 

[28]. They also used the piezoelectricity theory for this purpose. Governing equations of the beam bending were 

obtained by applying the variation theory principal on virtual displacement theory. Their results indicated that 

bending rigidity of silicon nano-beam was larger than bending rigidity of silver nano-beam. They also claimed the 

flexoelectricity has a significant effect on bending rigidity of the nano-beam. In another investigation, Liang et al. 

investigated the size effect and the flexoelectricity effect on buckling and vibrations of the piezoelectric 

nanostructures [29]. The analysis and the piezoelectric nano-beam was carried out using the atomistic-continuum 

theory and the Euler-Bernoulli beam model. The effects of electrical and mechanical loadings, electrical field, 

flexoelectricity, and non-local electrical voltage on the nano-beam behavior were investigated. Their numerical 

results showed that the bending rigidity, Young's modulus, and critical buckling voltage depend strongly on the 

surface effects of piezoelectricity, the flexoelectricity effect, and the residual surface stresses. Yan and Jiang studied 

the effect of flexoelectric on the electrostatic field around the piezoelectric nano-cylinder under electric and 

mechanical loadings. In this study, considering the non-local elastic effects caused by strain gradient, the governing 

equations and boundary conditions of the nano-cylinder were extracted using the theoretical framework by applying 

the principle of minimum potential energy and the variational principle. Numerical and analytical solutions were 

obtained by taking into account the inverse flexoelectric effect [30]. Ke et al. examined free vibration of a 

piezoelectric rectangular nano-plate under different boundary conditions and electrical, mechanical, and thermal 

loads using nonlocal elasticity theory. They considered the plate is subjected to bi-pivot force loading, external 

electrical voltage, and uniform temperature variations. Differential governing equations of the nano-plate vibration 

were obtained using the Mindlin plate theory and the principle of minimum potential energy. The effects of nonlocal 

parameters, mechanical, thermal and electrical loadings, boundary conditions, and geometric characteristics on 

vibration of nano-plate were investigated by these authors [31]. Liu et al. discussed the thermo-electromechanical 

free vibration of a single layer piezoelectric plate using nonlocal elasticity theory and Kirchhoff plate model [32]. 

These investigators determined the effects of nonlocal parameters, axial force, external electrical voltage, and 

temperature variations on thermo-electro-mechanical behavior of the piezoelectric nano-plate. Liang et al. studied 

the buckling and vibration of flexoelectric nano-plate under mechanical loading using general flexoelectricity 

theory. Using the principle of variation and Kirchhoff's classic plate model, they determined the plate governing 

equations. Then, they obtained the critical buckling load and natural frequencies of the nano-plate [33]. Alibeigi et 

al., using modified couple stress theory, examined the buckling behavior of a magneto-electro-elastic nano-beam. 

They obtained the governing equations of the nano-beam based on the Euler-Bernoulli beam model, the nonlinear 

strain of Von-Karman and the principle of minimum potential energy. These investigators also examined the effects 

of electrical potential and temperature variations on the nano-beam thermal critical buckling load [34]. Due to the 

special characteristics of the functionally graded materials, many scientists have focused their researches on 

investigating  the  thermo-electro-mechanical behavior of them in recent years. Therefore, static and dynamic 

behavior of functionally graded nano-beams used in nano-electro-mechanical systems (NEMS) and micro-electro-

mechanical systems has been investigated [35-38]. Due to the special properties of the functionally  grade materials 
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and piezo-flexoelectric effect, the materials that have both these properties can exhibit unique behavior. Moreover, 

these materials can have very useful applications in sensor, actuator, and transducer manufacturing. Considering the 

size effects, many scientists have also studied the behavior of piezoelectric nanoscale structures considering the size 

effects. In these investigations, the effects of small dimensions of the structure and the piezoelectric effect on 

electromechanical behavior have been investigated [39-41]. Kiani et al. examined the thermal buckling of a 

functionally graded piezoelectric beam under thermal stresses and constant voltage. The material properties were 

considered to vary according to power law function along the thickness direction. They derived the beam governing 

equations using the Euler-Bernoulli beam model and Von-Karman non-linear displacement relations. These 

investigators examined the effects of the power law index, the boundary conditions, and geometry of the beam and 

the applied voltage on thermal buckling of the beam [42]. Kiani et al. studied thermal-electric buckling of a 

functionally graded Timoshenko beam using variational theory. Along the investigation, mechanical and thermal 

properties of functionally graded beam were modeled with a power law equation along the beam thickness direction. 

Thermal buckling load was determined for various length to thickness ratios and different values of functionally 

graded power index [43]. Ebrahimi and Barati investigated the thermo-electro-elastic free vibration of flexoelectric 

nano-plate using the non-local elasticity theory and Kirchhoff classic plate model. They assumed the thermal 

loading with uniform and linear variations along the nano-plate thickness. The governing equations and associated 

boundary conditions were derived using Hamilton’s principle. The natural frequencies of the nano-plate were 

determined by solving the differential governing equations using the Galerkin’s method. They showed that the 

natural frequencies of flexoelectric nano-plate are dependent on the parameters such as: the flexoelectricity, nonlocal 

parameter, surface elasticity, temperature rise, plate thickness and boundary conditions [44]. Ebrahimi and Barati 

studied the size-dependent electro- mechanical buckling of a flexoelectric nano-beam using the nonlocal and surface 

elasticity theories [45]. The nano-beam was assumed to be on a two-parameter elastic foundation with infinite linear 

springs and a shear layer. Applying the Hamilton’s principle, the governing equations and boundary conditions were 

derived. The obtained results indicated the influences of nonlocal parameter, surface effects, plate geometrical 

parameters, elastic foundation, and boundary conditions on the buckling behavior of nano-beam. In other 

investigations, Ebrahimi et al. analyzed thermal bucking of functionally graded nano-plates [46], magneto-thermo-

electro-mechanical buckling of piezoelectric nano-beams [47,48], free vibration of the nano-beam by considering 

the surface and flexoelectric effects [49] and electro-mechanical buckling of size-dependent flexoelectric nano-

beam[50]. Tadi Beni developed the piezoelectric Timoshenko nano-beam theory to study bending behavior and non-

linear free vibration of piezoelectric nano-beam. He applied the size-dependent piezoelectricity theory for this 

purpose. Using the Hamilton’s principle and variational method, the governing equations and boundary conditions 

were extracted. He assumed that nano-beam was simply supported at two ends. The obtained results indicated that 

the flexoelectricity effect has a significant influence on the static bending and free vibration of nano-beam [51]. It 

should be noted that, there are few researches in the literature focused on studying the flexoelectric nano-plate [21, 

44-49], but all of these articles investigate the flexoelectric nano-plate behavior using non-local elasticity theory of 

Eringen, strain gradient theory and general piezoelectric theory. While, the present study used the reformulated 

flexoelectric theory [10] to analyzed the non-linear bending of the nano-plate. Hence, the obtained results using the 

present theory have a significant difference compared to those using the applied theory in the mentioned other 

references. Due to the above discussion and considering the previous researches, the behavior of flexoelectric nano-

plate was not investigated using new modified flexoelectric theory (reformulated flexoelectric theory [10]), and, so 

far, the researchers have not investigated the electromechanical behavior of functionally graded nano-plate under 

thermal loading using this new modified flexoelectric theory. Hence, this research is considered a new study on the 

behavior of these nano-plates.  

In this paper, for the first time, a nonlinear thermo-electro-mechanical nonlinear couple formulation for piezo-

flexoelectric functionally graded plate was extracted based on new reformulated flexoelectric theory, and then direct 

and inverse flexoelectric effects under different loadings were investigated. In order to indicate the contribution of 

the strain gradient tensor components, the reformulated flexoelectric theory [10] is applied in this paper. For this 

purpose, the strain gradient tensor is divided into independent part. Then, two set of higher order strain gradient 

tensor is employed to reformulated the internal energy density function for isotropic dielectrics. 

2    PRELIMINARIES  

The general form of internal energy density function for dielectric materials, which is a function of 36 homogeneous 

and quadratic variables as strain, strain gradient, polarization and its gradient, was introduced by Shen and Hu [52]. 
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where, the εij, ηijk, Pi, Qij, are strain tensor, strain gradients tensor, polarization vector and polarization gradient 

tensor, respectively. 
Parameters li, βi, respectively, are the length scale parameters related to the strain gradient, the length scale 

parameters related to the electric polarization gradient, and the quantities pi,
 1

ijk and ijm  are the higher-order stress 

tensors. These tensors are related to dilatation gradient tensor i , deviatoric stretch gradient tensor 
 1

ijk  and 

deviatoric rotation gradient tensor ij ,  respectively [52]. 

The remaining material property tensors for isotropic dielectrics must be homogeneous linear functions of 

products of Kronecker delta, δij. Thus, the dielectric tensor ij ,is taken to be constant, ,and the flexoelectric tensor 

fijkl is expressed as constants f1, f2 [10]. In addition, the moduli λ and μ are the Lamé constants for an isotropic 

material in Cauchy elasticity. Finally, the energy density function is written as [52]: 
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In this study, the effects of temperature rise are investigated. Thus, all constitutive equations in Eq. (2) will 
remain in the pervious form except the stress (ζij)and electric field (Ei) relations. These two relations were modified 

as follows [54]: 
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In the above equations, ij is the thermal modulus tensor given by: 
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3    GOVERNING EQUATIONS AND BOUNDARY CONDITIONS  
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plate model, the displacement field is given by: 
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where u, v, and w are the each point displacements of the plate along the x-, y- and z-directions, respectively. u0(x,y) 

and v0(x,y) are the neutral plane displacement along the x and y directions, respectively. 

In general, the displacement field is a function of the local and time coordinates, but in static analysis, this field 

is only a function of local coordinates. Regarding the displacement field, the strain-displacement relations are 

obtained as follows: 
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In an electrostatic analysis, it is necessary to determine the electrical enthalpy energy density. This function is 

divided into the internal energy density and an additional part as suggested by Toupin [55]. 
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In Eq. (10), 0  is the vacuum electrical permittivity constant, 8.854*10
-12

 (C/V.m), φ is the Electric Potential of 

the Maxwell electric field, Pi is the polarization vector in the nano-plate. Maxwell's electric field is determined via 

the following equation [10]: 
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The generalized electrostatic stress is also defined as follows [10]: 
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iD is the electrical displacement field, given by[10]: 
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Using the strain-displacement relations, the parameters in the constitutive equations and the total electrical 

enthalpy ( s ) are obtained. The total electrical enthalpy is defined as follows [10]: 
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The work done by the external classical forces is also defined as [21]: 
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In order to derive the governing equilibrium equations and related boundary conditions of the nano-plate, the 

variational method and the principle of minimum potential energy, are employed as [21]: 
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The principle of minimum potential energy is simplified by substituting the electric enthalpy density and the 

work done by the external forces, Eqs. (14) and (15) in Eq. (16), as follows: 
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(17) 

 

According to Reynolds transport theory,

V

HdV  is written as follows[10]: 
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Substituting the enthalpy energy (Eq. (10)) in Eq. (18), the above expression is simplified to be: 
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(19) 
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Substituting the strain components Eq. (9) in Eq. (1), the internal energy density, which contains 47 components, 

is obtained. Finally, using the variation method and direct mathematical simplifications, the integral

V

UdV  is 

evaluated. The upper and lowers surfaces of functionally graded piezo-flexoelectric nano-plate are made ofPZT-4 

and PZT-5H, respectively (Fig. 1). 

 

 

 

 

 

 

 

 

 

Fig.1 

Schematic of functionally graded flexoelectric nano-plate. 

 

 

In this figure: 

 

cz z z 

                    

 (20) 

 

cz  is the distance of the neutral plane to the bottom surface and z   is the distance between any arbitrary layer 

measured from the bottom surface. 

It should be noted that the initial created strain in one of the middle surfaces of the nano-plate will be zero due to 

the bending axial stress [56]. Thus, the neutral plane position is determined from: 
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(21) 

 

Substituting the stress in Eq. (21), the distance of neutral plane to the lower surface is [47]: 

 

2

2

( )

1 ( )

( )

1 ( )

A
c

A

E z
zdA

z
z

E z
dA

z












                     

 

 

 

(22) 

 

The functionally graded behavior of the nano-plate is modeled using a power law equation. Thus, the nano-plate 

properties such as elastic constants (E(z), 𝜈(z), 𝜆(z), 𝜇(z)), electrical properties (piezoelectric coefficients, 

flexoelectric coefficients, dielectric constants) and thermal properties (thermal expansion constant, pyroelectric 

coefficients, thermal modulus) are defined in the following form. 
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c
1 2 1

z+z
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(23) 

 

where, M1 and M2 are the material properties corresponding to the lower and the upper plate surfaces, respectively. 

In addition, n is the power index of the functionally graded model. Finally, M (z) is the desired quantity of the FGM 

nano-platalong the thickness direction. 

The equilibrium equations and boundary conditions are obtained by substituting Eqs. (2) and (3) in Eq. (19) and 

using the principle of minimum potential energy (Eq. (17)). The resulting relations are: 
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The boundary conditions are determined to be: 
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(31) 

 

and the electrical boundary conditions are as follows: 
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(32) 

 

Applying the variational principle on the integral

V

HdV , the expressions for the resultants first and higher order 

stress and moment in Eqs. (24) to (26) are found to be: 
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(35) 

 

Nf and Mf  in the right hand side expressions in Eqs. (33) to (35), are defined as follows. 
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where, f can be a vector (fi), a second-order tensor (fij),or a third-order tensor (fijk). 

Also, the terms , , , ,h h
ij ij ij ijM M N Q N  on the left hand side of the Eqs. (33) to (35), are respectively the axial 

stress resultant, the shear stress resultant, the higher-order axial stress resultant, the moment resultant, and the 

higher-order moment resultant. Using the constitutive Eqs. (2) and (13), the electrical equilibrium equations are 

simplified as follows: 
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(38) 

where 2 2 2 2
1 2 3      , [10]. It should be noted that the temperature variation along the plate thickness is 

assumed linear, as given by; 
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Due to the power law model of FGM nano-plate, the modified pyroelectric coefficient  T z  is defined as 

follows; 
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(40) 

4    BENDING SOLUTION OF FLEXOELECTRIC NANO-PLATE  
4.1 Direct flexoelectric effect 

In this section, the governing equations of functionally graded nano-plate subjected to a distributed mechanical 

loading are obtained in terms of the nano-plate displacement field components. Using the boundary conditions (32) 
and φ (-zc)=0, [10], the system of differential Eqs. (27) and (28) are solved to determine the polarization, P3(z),and 

electrical potential, φ(z), as follows: 
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where: 

 

   
 

 

T

a a

a

w x y w x y
f T T

x y
A

2 2

1 0 02 2

0

, ,
4 2 1

1
2 1

  

 

  
        


 

 

 h h

a

g
A S f S f0

1 1 2 2

0

2
1



 


    

 
 

 h h

a

g
A S f S f0

1 3 2 4

0

3
1



 


    

 
 

 

 

 

 

(43) 

 

        a

a

u x y v x y w x y w x y R
S f zc

x y x y g

2 2 2 2 2
0 0

1 1 2 2 2

, , , ,         
             

 

   
a

w x y w x y
S f h

x y

2 2

2 1 2 2

, ,  
      

 

 

 

 

(44) 

 

c cg z g zg h g h

h h h hg h g h g h g h g h g h g h g h

e e e e
f f f f

e e e e e e e e

. .. .

1 2 3 4. . . . . . . .
, , , ,

 

   
   

   
 

 

(45) 

 

 
c

c

n
h z

a
z

z
dz

h h
1 2 1

1 1
,

2
   





  
     

   


 

 
c

c

nh z

a

z

z
f f f f dz

h h
1 11 12 11

1 1

2





  
     

   


 

 

 

 

 

(46) 



  Size Dependent Nonlinear Bending Analysis of a Flexoelectric.…                     45 

 

© 2020 IAU, Arak Branch 

c

c

h z
T T T T n a

a
z

a

z
dz g

h h

2

1 2 1 2

11 1
( )( ) ,

2 .

 
   

  





 
     

 
  

T

a

a

T T
R

h

2 1

2

( )

 




 
 

   c cg z g z c

c

R zA
B B B z A e A e

g g

2
. .1

0 0

1
1 , 2 1 2 3

2 

 
      

  
 

 

 

(47) 

 

The constants 
T

a a af 1, ,   are the FG nano-plate modified pyroelectric coefficient, flexoelectric coefficient, f1, and 

reciprocal dielectric susceptibility coefficient along the plate thickness, respectively. Also, the constants 𝛼1, 𝛼 2 are 

dielectric cofficients, f11, f12 are the flexoelectric coefficients and T T

1 2,  are the modified pyroelectric coefficients for 

the bottom and upper nano-plate surfaces, respectively. 

The parameters in Eq. (2) are determined by employing the Eqs. (41, 42) and strain–displacement relation. 

Substituting these parameters in Eqs. (33) to (35), the terms in Eqs. (24) to (26) are obtained in terms of 

displacement field of the functionally graded nano-plate. The resulting relations are: 
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(50) 

 

The constants Ai, Bi, Ci, Di, E, Qi, Fi, Gi, Hi, Ii, Ji, Ki, Li, Mi, Ni, Pi and Qi are material derivative that are 

calculated by integration of the respective parameters along the z-direction. 

Sinusoidal displacement field components are considered in the following form [44]: 
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(51) 

 

The above displacement fields satisfy all of the nano-plate boundary conditions with four simply supported 

edges. Using the Galerkin's method, the mentioned mechanical equilibrium equations are simplified into system of 

the non-linear algebraic equations in terms of the displacement field and constants in Eqs. (48-50). for this plate, the 

relevant Boundary conditions are given by [44]: 
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(52) 

 

Once the constants A, B, C, are determined. Also, the displacement field of the functionally graded nano-plate is 

obtained. Afterwards, the polarization functions and electric potential are extracted. 

Substituting Eqs. (48) through (50) in equilibrium equations, these equations are written in terms of displacement 

field components as follows: 
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4.2 Inverse flexoelectric effect 

In this section, the displacement field, the electrical polarization function and the electrical potential of the nano-

plate are determined for the plate subjected to a distributed mechanical loading q and an external applied voltage V0 

along the plate thickness direction. With the boundary conditions related to mentioned applied loadings, the system 

of differential Eqs. (27) and (28) were solved, and the functions of electric polarization P3(z) and electrical potential 
φ(z) are determined. 

The electrical boundary conditions of nano-plate under the external applied voltage along the thickness direction 

are as follows [10]. 
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The functions P3(z) and φ(z) are obtained by solving the system of Eqs. (56) and (57) and the new boundary 

conditions. The resulting relations are: 
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where: 
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Note that the other coefficients are the same as the ones presented in the previous section. Substituting Eqs. (56) 

and (57) in Eqs. (33) to (35) and applying Eqs. (48) through (50), the equilibrium equations are determined in terms 

of the displacement field of the nano-plate. The results of these analyses are presented in the following sections. 

5    RRSULTS AND DISCUSSION  

In this paper, the thermo-electro-mechanical behavior of a functionally graded piezo-flexoelectric nano-plate was 

studied using a reformulated flexoelectric theory as explained in previous section. In this section, the results are 

determined considering the direct and inverse flexoelectric effects. Therefore, the displacement field, the electric 

potential function, the electric field function, and the polarization function for both direct and inverse flexoelectric 

effect are determined. It assumed that the functionally graded nano-plate is simply support on all edges. 

Therefore, the effects of plate dimensions, the power law index related to the functionally graded behavior of FG 

material, applied electrical and mechanical loadings on the static bending of nano-plate are investigated. In this 

study, it is assumed that nano-plate is made up of PZT-5H, PZT-4 materials on the lower and upper surfaces, 

respectively. Due to the mentioned functionally graded model of nano-plate, the nano-plate material properties vary 

along the plate thickness based on the power law function. However, the properties of the top and bottom layers are 

constant. Properties of these materials are given in Table 1. [23-31-57] 

PZT-4 material can be used to build high power acoustic radiating transducers due to high resistance to loss of 

polarization (depolarization), as well as a very low loss of dielectric properties under high electrical stimuli. The 

high power of this material in maintaining the state of polarization under mechanical stresses has made that PZT-4 

to be very suitable for use in deep-submersion acoustic transducers as an active substance in electrical power 

generation systems [57].  

The PZT-5H material can be used in hydrophones or instrumentation equipment for reasons including high 

resistivity at elevated temperatures, high sensitivity and long-term stability. Because including the low temperature 

of the Curie point, the working temperature range of this material is limited and with a better stability only at low 

temperatures (-300-0 °C) [57]. 

Also, the length scale parameters associated with the strain gradient are considered to be: l0= l1= l2= l=3*10
-8

. In 
addition, the length scale parameters associated with electric polarization gradient, βi, are assumed to be equal to 1 

in some models.
 

5.1 Validation of results 

In this section, the accuracy of the developed models is determined by comparing the present study results with the 

results of similar cases found in the literature. For this purpose, the results presented by Zhang et al. have been used 

[21]. It should be mentioned that the characteristics of BaTiO3 are given in ref. [21]. Also, the displacement 

functions for the rectangular nano-plate with all edges clamped are presented by Ebrahimi and Barati [44].These 

investigators have modeled the bending and free vibration of a BaTiO3 flexoelectric nano-plate clamped on all 

edges. The results of presented  models are compared with the reference results in Fig. 2. Note in this figure that 

obtained results are in good agreement with the reference results. Thus, the presented models are capable of 

predicting the static bending of the nano-plate with a good accuracy. 
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Table 1 

Properties of PZT-4, PZT-5H materials. 

Piezoelectric Coefficients(c/m2) Elastic Constants ( 109 pa) 
 

e33 e32 e31 e24 e15 C66 C55 C44 C33 C23 C22 C13 C12 C11 

14.1 -4.1 -4.1 10.5 10.5 30.6 25.6 25.6 115 74 139 74 77.8 139 PZT-4 

23.3 -6.5 -6.5 17 17 23.5 23 23 117 83.9 126 83.9 79.1 126 PZT-5H 

Pyroelectric Coefficients 
6 2( 10 / )c m k  

Flexoelectric 

Coefficients 6( 10 / )c m  

Thermal 
Modulus 5 2( 10 / )N m k  

Dielectric 

Constants 9( 10 / )c mV  
 

2

T  
1

T  
2f  

1f  
33 22

T T   T
11  𝛼33 11=𝛼22𝛼  

25 25 1 2 4.529 4.738 7.124 5.84 PZT-4 

5.48 5.48 0.5 0.10 - 4.27 13.015 15.052 PZT-5H 

Density 3 3( 10 / )kg m  Curie Point (°c) 
Thermal Expansion  Coefficients 

6(10 1/ )K     

  Tc 1𝛼 

7.5 328 1.923 PZT-4 

7.5 195 9.6384 PZT-5H 

 

In Fig. 2, our predictions of the induced electric field along the non-FGM nano-plate thickness direction, without 

the thermal effects are compared with the reference results. Note that, again, good agreement is observed between 

the results. This fact proves that the presented models can accurately predict the induced electric field in the non-

FGM nano-plate as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

The electric field in terms of z/h ratio. 

5.2 Effect of plate geometry and gradient index on the bending of flexoelectric nano-plate 

After validation of our models, the direct flexoelectric effect on nano-plate behavior such as plate displacement, 

induced polarization, induced electric field, and induced electrical potential were determined. In Fig. 3, the 

deflection of the nano-plate at y=b/2 and the surface z=0 is depicted for different power law indices is shown. As can 

be seen in this figure, plate deflection decreases with increasing the power law index. This is due to the fact thatan 

increase in n causes in an increase in the plate stiffness. In addition, the crystalline structure of the material along the 

z- direction changes as n increases, and the polarization changes along the thickness. By reducing the amount of 

polarization, the displacement caused by electrostatic force will also decrease. 

In Fig. 4, the deflection of the plate is depicted considering the flexoelectric effect and without flexoelectric 

effect for n=1, z=0, y=b/2. It can be inferred from this figure that in the presence of flexoelectric effect, the 

displacement of the plate decreases. The reason seems to be that flexoelectric effect results in an increase in the plate 

stiffness. 

The maximum deflection of the plate is shown in Fig. 5 with and without the flexoelectric effect at point 

(a/2,b/2,0) for n=1. These results also show the effects of the plate thickness. As can be seen, as the plate thickness 

increases, the maximum plate deflection decreases. According to this figure, the maximum plate deflections 

predicted by the two classic theories are close for thicknesses greater than 70 nm. For plate thicknesses less than 50 

nm, the results of the two models show larger differences. Therefore, flexoelectricity plays a significant role in the 

electromechanical response of the plates with small thicknesses. 
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Maximum plate deflections in terms of the plate length to thickness ratio (a/h) are presented in Fig.6 for n=1at 

point (a/2,b/2,0). Note that, at low length to plate thickness ratios, deflection increases slowly. At high values of this 

ratio, displacement increases sharply. Therefore, the maximum deflection increases with the increases in the plate 

length for constant values of the nano-plate thicknesses.  
 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Deflection of FGM nano-plate along the x-direction for 

different values of FGM indices.  

  

 

 

 

 

 

 

Fig.4 

Deflection of FGM nano-plate along the x-direction with 

and without regarding the flexoelectric effect. 

  

 

 
 

 

 

 

 

 

 

Fig.5 

Maximum deflection of FGM nano-plate in terms of plate 

thickness with and without considering the flexoelectric 

effect. 

  

 

 

 

 

 

 

 

 

 

 

Fig.6 

Maximum deflection of FGM nano-plate interms of a/h 

ratios with and without considering the flexoelectric effect. 
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Fig. 7 shows the electric field for different values of the power law index associated to the functional behavior of 

the material (n) and  for h=400 nm, along the z- direction, at the center of the nano-plate. Note that the induced 

electric field is minimum at the lower surface and increases in the plate thickness direction. Also, increasing the 

power law index results in a decrease in the induced electric field. The applied voltage is zero at the bottom surface 

and increases as we move towards the upper surface. Hence, the generated bipolarity increases along the plate 

thickness direction. As a result, the induced electric field also increases. 
Fig. 8 shows the polarization variation along the plate thickness and different values of the length scale 

parameters related to polarization gradient (β) and n=1, at the center of the nano-plate. According to this figure, at 

low values of β, the polarization changes near the upper and lower surfaces of the plate rapidly. Also, the 

polarization in most layers along the thickness is almost constant. For large values of β, the polarization has steep 

variations near the upper and lower surfaces of the plate. 

In Fig. 9, the polarization variation in terms of the thickness for n=1 at point (a/2, b/2, 0) is shown . These results 

correspond to the two cases as with and without flexoelectric effect. As can be seen, increasing the plate thickness 

results in a decrease in the induced polarization. This is due to the fact that plate stiffness increases with thickness. 

In addition, polarization variation has a higher gradient for low thickness nano-plates. 

The maximum nano-plate deflection along the thickness direction is shown in Fig.10 for different applied 

external voltages and n=1, at point (a/2, b/2, 0). Note along the this figure that, the variation of maximum plate 

deflection is much smaller in high thickness nano-plates. Again, this suggests that the plate stiffness increases with 

increase the plate thickness. Finally, increasing the applied voltage, at constant thickness, results in an increase in 

the amount of bipolarity and eventually increases the plate deflection. 

 

 

 

 

 

 

 

 

 

Fig.7 

Electrical field along the plate thickness for different 

powers index of the FG plate. 

 

  

 

 

 

 

 

 

 

 

Fig.8 

Polarization changes along the thickness for different 
values of β. 

  

 

 
 

 

 

 

 

 

Fig.9 

Polarization variations along thickness direction with and 

without flexoelectric effect. 
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Fig.10 

Maximum deflection in terms of thickness in the mode of 

inverse flexoelectric effect and different applied voltages. 

 

 

In Fig. 11, the deflection curve is plotted along the thickness for n=3, h=10 nm and an applied voltage of V=-0.1v 

at z=0. As is evident in this figure, the deflection is zero along the four edges of the plate. Due to the simply-

supported boundary conditions, the deflection slope near the edges is non-zero. Finally, the maximum plate 

deflection occurs at the center of the nano-plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 

Deflection along the plate thickness direction in the inverse 

flexoelectric effect case. 

 

Fig. 12 shows the polarization variation along the plate thickness for n=3 under the applied voltages 0.1 and -

0.1volts. These results correspond to the points (x,y) = (0, b/2) and (x,y) = (a/2, b/2), at z = 0. The analyses were 

performed the classical model without flexoelectric effect. These results suggest that increasing the nano-plate 

thickness results in a decrease in the polarity. Also, variations of polarization are approximately zero for high nano-

plate thickness. Note that, with increasing the plate thickness, its rigidity increases, thus the plate displacement and 

induced polarization decreases. Changing the applied voltage sign, the direction of the bipolar vectors is inversed. 

In Fig. 13, distributions of polarization on the z=0 surface are plotted for n= 3 and h=10 nm. The polarization is 

zero along the edges of the plate with a maximum value at the center.  

 

 

 

 

 

 

 

 

 

 

Fig.12 

Polarization variation along the plate thickness in the 

neutral plan for h=20 nm with applied voltage V0=0.1 v, -

0.1v. 
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Fig.13 

3-D Polarization variations on the neutral plan with applied 

voltage V0= -0.1v. 

 

Fig. 14, shows the polarization variations in terms of temperature for different power law indices of the 

functionally graded nano-plate at point (a/2, b/2, 0). These results indicate that increasing the nano-plate temperature 

results in an increase in the reaction forces along the plate edges. These reaction forces result in an additional plate 

deflection, which is much smaller than the deflections resulting from the other loadings. At temperatures near the 

material Curie point the material crystalline structure collapses, thus its magnetic and electrical properties of the 

material degrade [58]. At temperatures below the material Curie point, increasing the temperature results in a 

reduction in polarization. This is due to the fact that increasing temperature results in an increase in nano-plate 

deflection. Thus, strain gradient in the nano-plate decreases. 

 

 

 

 

 

 

 

 

 

Fig.14 

Variations of Polarization in terms of the temperature on 

the neutral plane for h=10 nm with applied voltage of V0 = -

0.1v. 

 

Fig. 15 shows the maximum plate deflection in terms of the temperature for different h/l ratios and n=1 at point 

(a/2, b/2, 0). Note in this figure that, maximum plate deflection increases slightly in terms of the temperature. 

 

 

 

 

 

 

 

 

 

Fig.15 

Variations of the maximum deflection in terms of the 

temperature for h=10 nm with applied voltage of V0 = -

0.1v. 

6    CONCLUSIONS 

In this paper, static analysis of the functionally graded piezo-flexoelectric nano-plate under electro-thermo-

mechanical loadings was performed. Based on the obtained results in this investigation, the following conclusions 

can be drawn: 
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1. Flexoelectric nano-plate has a lower displacement than nano-plate without flexoelectric effect. 

2. Increasing the power law index, associated with functional behavior of the nano-plate, results in a decrease 

in nano-plate deflection. 

3. Nano-plate deflection in both direct and inverse flexoelectric effect decreases with increasing the nano-

plate thickness. 

4. Increasing the nano-plate thickness results in a decrease in polarization of the nano-plate. Thus, polarization 

gradient is almost zero in high thickness plates. 

5. Changing the applied voltage sign reverses the induced electric field and polarization vectors direction. 
6. Increasing the length scale parameter related to the polarization gradient (β), the polarization decreases 

along the nano-plate thickness direction. Also, polarization gradient in the regions near the nano-plate 

neutral plane decreases.  

7. As temperature increases, polarization decreases. Conversely, nano-plate deflection increases with 

temperature.  

8. Increasing the length scale parameters, associated with strain gradient (li), the amount of displacement and 

polarization increases. 
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