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 ABSTRACT 

 In this work, nonlocal elasticity theory is applied to analyze 

nonlinear free vibrations of slightly curved multi-walled carbon 

nanotubes resting on nonlinear Winkler and Pasternak 

foundations in a thermal and magnetic environment. With the 

aid of Galerkin decomposition method, the systems of 

nonlinear partial differential equations are transformed into 

systems of nonlinear ordinary differential equations that are 

solved using homotopic perturbation method. The influences of 

elastic foundations, magnetic field, temperature rise, interlayer 

forces, small scale parameter and boundary conditions on the 

frequency ratio are investigated. It is observed form the results 

that the frequency ratio for all boundary conditions decreases 

as the number of walls increases. In addition, it is established 

that the frequency ratio is highest for clamped-simple 

supported and lowest for clamped-clamped supported. Further 

investigations on the controlling parameters of the phenomena 

reveal that the frequency ratio decreases with increase in the 

value of spring constant (k1) temperature and magnetic field 

strength. It is hoped that this work will enhance the 

applications of carbon nanotubes in structural, electrical, 

mechanical and biological applications especially in a thermal 

and magnetic environment. 

                          © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 IJIMA [1] discovered the novel nanostructure materials and due to their promising applications of the 

nanomaterials in Nano devices, Nano electronics, and nanocomposites, this novel discovery has led to 
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considerable number of studies on carbon nanotubes (CNTs). In fact, it could be said that the excellent mechanical, 

electrical, structural and thermal properties coupled with high strength to weight ratio property of carbon nanotubes 

have continuously and tremendously expanded their applications in various industrial, engineering, physical and 

natural sciences processes. Indisputably, the nanostructures have merits when applied to the function ability of 

transistors and diodes. However, carbon nanotubes are capable of undergoing large deformations within the elastic 

limit and vibrate at frequency in the order of GHz and THz. Consequently, logical investigations and analysis of 

carbon nanotube have been a subject of interest such as the vibrations of a micro-resonator that is excited by 

electrostatic and piezoelectric actuations. Various studies have been carried out on beams, CNT, nano-wires, nano-

rods and nano-beam so as to specifically understand and achieve their area of best fit [2-13]. In achieving this, the 

well know beam models were employed and dynamic ranges were obtained in the scope of the structures. In such 

studies, Liew et al. [5], Pantano et al. [6,7], Qian et al. [8] and Salvetat et al. [9] examined the mechanics of single 

and multiwalled carbon nanotubes. Sears and Batra [10] analyzed carbon nanotubes buckling under the influence of 

axial compression. Yoon et al. [11] and Wang and Cai [12] investigated the impacts of initial stress on multiwall 

carbon nanotube with a focus on non-coaxial resonance. Wang et al. [13] explored the dynamic response of multi-

walled carbon nanotubes using Timoshenko beam model. Zhang et al. [14] scrutinized the influence of compressive 

axial load on the transverse dynamic behaviour of double-walled carbon nanotubes. Elishakoff and Pentaras [15] 

presented another study on the vibration of double-walled carbon nanotubes. In addition, studies on nonlinear 

vibration of nanomechanical resonator, nanotube and nanowire-based electromechanical systems have been carried 

out by Buks and Yurke [16] and Postma et al. [17] while Fu et al. [18] examined nonlinear vibration analysis of 

embedded carbon nanotubes. In the same year, Xu et al. [19] considered the dynamic response of a double-walled 

carbon nanotube under the influence of nonlinear inter-tube van der Waals forces. The vibration of carbon nanotube-

based switches with focus on static and dynamic responses was analyzed by Dequesnes et al. [20]. Few years later, 

Ouakad and Younis [21] investigated the nonlinear vibration of electrically actuated carbon nanotube resonators. In 

an earlier work, Zamanian et al. [22] presented the non-linear vibrations analysis of a micro resonator subjected to 

piezoelectric and electrostatic actuations. As a continuation of the tremendous work, Abdel-Rahman, Hawwa, 

Hajnayeb, and Belhadj [23-26] performed a vibration and instability studies of a DWCNT using a nonlinear model 

and considering an electrostatic actuation as an external excitation agent. In their work, a DWCNT was situated and 

conditioned to a direct and alternating voltage and different behaviors of the nanotubes were recorded as the exciting 

agent is varied. They went further to determine the bifurcation point of the DWCNT and concluded that both walls 

have the same frequency of vibration under the two resonant conditions considered. Belhadj et al. [26] carried out 

the vibration analysis of a pinned-pinned supported SWCNT employing nonlocal theory of elasticity and obtained 

natural frequency up to third mode. The authors also put forward an explanation on the advantages of the high 

frequency obtained in their work to optical applications. Lei et al. [27] studied the dynamic behaviour of DWCNT 

by employing the well-known Timoshenko theory of beam. The nonlinear governing equations generated by 

Sharabiani and Yazdi [28] derived relations in the application to Nano beams that are graded and have surface 

roughness. Wang [29] generated a close form model for the aforementioned surface roughness effect for an unforced 

fluid conveying nanotubes and beams based on nonlocal theory of elasticity and ascertained the significance of the 

study for reasonably small thickness of the tube considered. Interesting foundation studies have been considered 

after modelling of CNTs as structures resting or embedded on elastic foundations such as Winkler, Pasternak and 

Visco-Pasternak medium [30-35]. Other interesting works through modelling and experiment have also been 

presented to justify the widespread application of SWCNTs [36-41]. However, the development of internal non-

coaxial deformation and distort due to van der Wall forces in the MWCNTs has been considered [42,43]. In another 

study, Ansari and Hemmatnezhad [44] applied variational approach to analyze nonlinear vibrations of embedded 

MWCNTs while Ghorbanpour et al. [45] utilized averaging method to theoretically investigate the nonlinear 

vibrations of MWCNTs embedded in an elastic medium. Yoon et al. [46] explored the resonant frequencies and the 

modes of vibration of embedded in a Winkler elastic medium. Fu et al. [47] adopted continuum mechanics to study 

the nonlinear free vibration of embedded MWCNTs. With the aids of Timoshenko beam model and differential 

quadrature method, Wang et al. [48] presented the analysis of a free vibration of MWCNTs. Aydogdu [49] presented 

the free vibration of MWCNTs applying generalized shear deformation-beam theory.  

The dynamic behaviour of SWCNTs, DWCNTs and MWCNTs have been characterized and their dynamic 

behaviour have been investigated with the aids of experimental measurements, density functional theory, molecular 

dynamics simulations, and continuum mechanics. However, there are difficulties in performing experiment at the 

nanoscale level. Consequently, over the years, the classical continuum models (which do not consider the small-

scale effects) have been widely applied to the small-scale structures as reviewed in the preceding section. The 

demerit of such classical continuum theories is witnessed in their scale-free models, as they cannot incorporate the 

small-scale effects in their formulations. Therefore, in other to correct the inadequacy in the classical continuum 
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models, Eringen [50-53] developed nonlocal continuum mechanics based on nonlocal elasticity theory. The nonlocal 

elasticity theory considers the stress state at a given point to be a function of the strain field at all points in the body. 

Therefore, in this work, nonlocal elasticity theory is used to analyze nonlinear vibrations of slightly curved multi-

walled resting on nonlinear Winkler and Pasternak foundation in a thermal and magnetic environment. With the aid 

of van der Waals interlayer interaction, the nested slender multi-walled nanotubes are coupled with each other. Such 

study on the simultaneous influences of thermal and magnetic field, Winkler and Pasternak foundations on the 

vibration of multi-walled carbon nanotubes using nonlocal elasticity theory has not been presented in literature. 

Additionally, the development of analytical expressions for the frequencies, frequency ratio and deflections of the 

multi-walled carbon nanotubes is shown to be another novel idea of the present study. The analytical solutions are 

used to investigate the influences of elastic foundations, magnetic field, temperature rise, interlayer forces, small-

scale parameter and boundary conditions on the frequency ratio. 

2    PROBLEM DESCRIPTION AND THE GOVERNING EQUATIONS   

Consider a slightly curved triple-walled carbon nanotube under the influence of stretching effects and resting on 

Winkler and Pasternak foundations in a thermal and magnetic environment as depicted in Fig. 1. We applied the 

Eringen’s nonlocal elasticity theory, Euler-Bernoulli beam theory, Hamilton’s principle and followed Sobamowo 

[54], the governing equation becomes 

 

 

 
 

 
 

Fig.1 

The embedded slightly curved clamped TWCNT on two-parameter elastic foundation. [55, 56, 60] 
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(1) 

 

where i=1,2 and 3 and 3

1 3wk w k w k w  , w(x,t) is the bending deflection of the tube, t is the time coordinate, EI is 

the bending rigidity,  mc  is the mass of tube per unit length and Zo is the initial curvature of the tube. The term 

xEA T  denotes the constant axial force due to thermal effects and the term 2

xAH   is the magnetic force per unit 

length due to Lorentz force exerted on the tube in z-direction.   In addition, A is the cross-sectional area of the tube, 

x  is the coefficient of thermal expansion and T is the change in temperature. In addition, the term η is the magnetic 

field permeability and Hx is the magnetic field strength.  Further works on the SWCNTs can be found in Sobamowo 

[57, 58] and Sobamowo et al. [59].  In order to incorporate the interlayer interactions for the TWCNTs with 3 layers, 

it is established that the pressure at any point between any two adjacent tubes depends on the difference of their 

deflections at that point. Therefore, one can express the linear form of the van der Waals forces as: 
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1(w )i i i iF c w    (2) 

 

where iF  is the van der Waals force between the ith tube and the (i-1)th tube, 
ic is the coefficient of the van der 

Waals force between the ith tube and the (i-1)th tube.  Assuming that all nested individual tubes of the TWCNT 

vibrate in the same plane. Using the van der Waals forces in Eq. (2), the developed nonlinear governing equations of 

vibration for the embedded TWCNT in a thermal and magnetic environment with N layers are given as: 
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It should be noted that the k1 and k3 would not enter into the equations of the inner tubes since only the outer tube 

interacts with the elastic medium. The displacements of the nanotubes are subjected to the following boundary 

conditions: 

For simply supported (S-S) nanotube, 
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For clamped-clamped supported (C-C) nanotube, 
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For a clamped-simply supported (C-S) nanotube, 
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The basic functions corresponding to the above boundary conditions [37]. 
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3    SOLUTION METHODOLOGY  

Using the Galerkin’s decomposition procedure to separate the spatial and temporal parts of the lateral displacement 

functions, 
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maximum amplitude of oscillation of the ith layer of the nanotube and  x  is a trial/comparison function that will 

satisfy both the geometric and natural boundary conditions. 

Applying one-parameter Galerkin, we have 
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where  ,R x t
 
is the equation of motion for each wall. For the outer wall of multi wall carbon nanotubes, 
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One arrives at  
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2 2 2 23 3 3 2

6 0 3 7 0 3 8 0 0

2 2

5 0 1 1 5 2 0 1 1

2

6 3
2

( ) ( ) ( ) 0

N N N

N N CN N N N cN N

N

N N N N x t N x N

N N N tN N N N N N

d W EA d W
EI W m k W k W W a a m a a k W

Ldt dt

EA
a a k W a a k W a a W a a EA T A H W

L

a a C W W N Q W a a C W W

      

     

     

     

    

      

           
 

 

 

 

(12) 

 

After collecting like terms, we have 

 

 
   

 

22
1 1 2 1 5 1 1 5 2 5 1

12

2 5 2 5

3 3 4 6 3 7 3 8
3

2 5

( ) ( )
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6 3
2 2 0

N x t N x pN N

N N

N N

N N

N

N

EI k k EA T A H kd W c
W W

A Adt

EA EA
k k k

L L W
A

           

       

       

   





        
          

 
    

 
  

 

           
 

 

 

 

 

(13) 

 

where 

 

 
 4

1 4

0

L d x
x dx

dx


    

,     2

2

0

L

x dx   ,  4

3

0

L

x dx       

 
     

2 22

4 2 2

0 0

L L

o o
x x xZ Z

x dx dx
x x x x x

  
 

                               

  ,  

 
 2

5 2

0

L d x
x dx

dx


   ,     

 
2

2

6

0

L d x
x dx

dx


 

 
  

 
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(14) 

 

 
 3

7

0

L d x
x dx

dx


   ,  

     
2 44

4 4 4

0 0

L L

o o
x x xZ Z

x dx dx
x x x x x

  
 

                               

  , 

 
2

0e a  , cN Nm A ,  

 

 

(15) 

              

Similarly, the same procedure is applied to other inner walls appropriately. Therefore, the general governing 

equations of motion for nonlinear vibrations of embedded MWCNTs in a thermal and magnetic environment in 

ODE form is obtained as: 

 

 
   

122 8 4
1 1 1 5 31 1

1 2 1 12

2 5 1 1 2 5 1

( )( )
2( ) 0

N x t N x p
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EI EA T A H kd W c LW W W W

A A Adt

       

        

 
      

      
      

 

 

 

 

(16) 
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         

 
      

        
      

 

 

 

 

(17) 
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         

 
      

        
      

 

 

 

 

(18) 
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and the initial conditions are 

 

 0iW X  (19) 

 

and 

 

 0
0

idW

dt


             

i=1,2, 3,…,N  
 

(20) 

3.1 Homotopic perturbation method     

The nonlinear terms in Eqs. (16)- (18) make the development of exact analytical solution tedious. Therefore, for the 

purpose of generating a symbolic solution for the nonlinear equations, we made a recourse to homotopic 

perturbation method. The principle and the procedures of the method can be found in our previous works [60, 61]. 

Substituting the following dimensionless parameters 

 

1

1

I
r

A
 ,   1

1 ,
W

a
r



  

2

2 ,
W

a
r



   

3

3 ,
W

a
r



 
0t 

             

 
 

(21) 

 

These equations are transformed to the following dimensionless nonlinear system of equations using the 

dimensionless parameters in Eq. (21) 
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(24) 

 

where, 
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(25) 

 

 We construct a homotopy on Eqs. (22-24) as follows: 
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 
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(28) 

 

Assuming the solution of Eqs. (26), (27) and (28) to be in the following form 

 

         2 3
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Substituting Eqs. (29-32) into the homotopic in Eqs. (29)- (32), collecting and rearranging the coefficients of the 

terms with identical powers of p, we have a series of linear differential equations 
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In order to calculate the nonlinear natural frequencies for TWCNT, we assumed initial zeroth approximations 

given as: 

 

 10 1a X cos 

             

 (36) 

 

 20 2a X cos 

             

 (37) 

 

 30 3a X cos 

             

 (38) 

 

Substituting Eqs. (33-35) into Eqs. (22-24), we have the following nonlinear system of equations  
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From Eq. (39)  
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Substituting and making X3 the subject to obtain,  
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Substituting again, we arrived at 
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(44) 

                                                                                                                                                     

The above Eq. (44) gives a nonlinear algebraic equation of degree 18. Although, it is very difficult to develop 

analytical expressions for such equation, recourse is made to numerical method using Newton-Raphson to solve the 

equation by finding the roots of solving for
0  in the equation. The smallest real value of 

0 obtained from the 

solutions is the nonlinear natural frequency for TWCNT. 

To calculate the linear natural frequencies for TWCNT, substitute 

 

 10 1a X cos 

             

 (45) 

 

 20 2a X cos 

             

 (46) 

 

 30 3a X cos 

             

 (47) 

 

 Into Eqs. (39-41) and neglecting the nonlinear terms give 

 
2

1 1 1 3 2 0X f X f X   

             

 (48) 

 
2

12 32 1 0X g X Xg   

             

 (49) 

 
2

1 1 2 3 1 0X h X Xh   

             

 (50) 

 

These equations can be written in matrix form as: 
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1

2

2

2

3

1 3 0 0

3 1 4 0

0 3 1 0

f f X

g g g X

h h X


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
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(51) 

 

Since,

1

2

3

X

X

X

 
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 cannot be equal to zero, for nontrivial case, then 

 
2

1 3

2

3 1 4

2

3 1

0

0

0

f f

g g g

h h







   
 

    
   

             

 

 

 

(52) 

 

By equating the determinant of the matrix of Eq. (52) to zero, the characteristic equation is obtained as: 

 

     1 1 1 1 3 3

6 4 2

1 3 4 1 1 1 1 3 41 11 3 3 02f h f g f g h g f g h f h g f hf g h g           

             

 (53) 
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Eq. (53) can be written as: 

 
6 4 2

1 2 3 0        

             

 (54) 

 

where 

 

 1 1 1 1f g h    

   2 1 1 1 1 3 3 3 42f h f g f g h g    

   3 1 1 1 1 3 4 3 1 3f g h f h g f h g    

           

 

 

 

The roots of the sextic equations are 
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The fundamental linear vibration frequency of TWNT is the lowest root which gives. 
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4    RESULTS AND DISCUSSION  

Using the material and geometric parameters of the carbon nanotubes, E = 1.1 TPa, ρ =1300 kg/m
3
, l =45 nm, the 

outer diameter do= 3 nm, and the thickness of each layer, h= 0.68 nm, the frequency ratio against non-dimensional 

maximum amplitude for the nonlinear vibrations of SWCNTs and DWCNTs in a thermal and magnetic environment 

are presented.  The results of the simulation and the effects of various parameters on the frequency ratio of nonlinear 

vibrations of embedded single- and double-walled carbon nanotubes in a thermal and magnetic environment are 

presented and discussed.  

4.1 Effects of boundary conditions on the frequency ratio of the carbon nanotubes 

Fig. 2 shows the effects of boundary conditions on the frequency ratio for the nonlinear vibrations of CNTs in 

thermal and magnetic environment, (k1=10
7
N/m

2
, k3=10

8
N/m

2
, T=40K, Hx=10

7
A/m, eoa=1.5×10

-9 
and 

c1=c2=c3=0.3×10
12

N/m
2
). As it is depicted in the figures, the frequency ratio for all boundary conditions decreases 

as the number of wall increases. This is due to the fact that carbon nanotubes generally have weak shear interactions 
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between adjacent tubes and become more predominant as the number of walls increases.  It could therefore be 

inferred that in an application where linear vibration is preferred for system stability, MWCNTs will perform better 

than SWCNTs of the same geometry and size. In addition, the figures show that for both the SWCNTs and 

MWCNTs, the frequency ratio is highest for clamped simple supported and least for clamped-clamped supported. 

This establishes that the clamped-clamped supported system provided the best grip (support) for the nanotubes and 

this can be used to control  
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Fig.2 

Frequency ratio versus non-dimensional amplitude for 

TWCNT under various boundary conditions. 

4.2 Effects of spring stiffness (k1) on the frequency ratio of the carbon nanotubes 

The impacts of the spring stiffness (k1) on the dimensionless frequency ratio of the carbon nanotubes in thermal and 

magnetic environment is shown in Fig 3. It is depicted that he frequency ratio decreases with increases in the value 

of spring constant (k1) for CNTs. This is because, the linear frequency increases as the value spring constant 

increases. At large value of k1 (k1= 10
10

N/ m
2
), the vibration of the system becomes stable and this can be used as 

good measure in controlling nonlinear vibration of the system. 
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Fig.3 

Effect of Winkler constant (k1) on amplitude-frequency ratio 

curve for TWCNTs. 

 

4.3 Effects of nonlinear spring stiffness (k3) on the frequency ratio of the carbon nanotubes 

Fig. 4 shows the effect of nonlinear spring stiffness (k3) on the frequency ratio of outer walled of embedded 

DWCNTs in a thermal and magnetic environment. It could be seen that the frequency ratio increases with increases 

in the value of the nonlinear spring constant. This is because the nonlinear frequency increases as the value of the 

nonlinear spring constant increases without producing any effect on the linear frequency. The value of nonlinear 

spring constant should be kept as low as possible since it makes the vibration of the system to be nonlinear and this 

can lead to the instability of the system.  
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Fig.4 

Effect of nonlinear spring constant constant (k3) on amplitude-

frequency ratio curve for TWCNTs. 

 

4.4 Effects of Van der Waal force on the frequency ratio of the carbon nanotubes 

Fig. 5 presents the effects of Van der Waal force on the frequency ratio of the SWCNTs and DWCNTs, respectively, 

in a thermal and magnetic environment. It can be seen that when the coefficient of the van der Waals forces is zero 

i.e. c=0 N/m
2
, it means a single-walled carbon nanotube with the same dimension and geometry with double-walled 

carbon nanotubes. The results reveals that the frequency ratio decreases as the number of walls increases. Increasing 

the number of walls can be used as a good parameter to control the nonlinear vibration of the system.  
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Fig.5 

Effect of Van der waals force on amplitude-frequency ratio 

curve for TWCNTs. 

4.5 Effects of Temperature on the frequency ratio of outer wall of TWCNTs 

Fig. 6 illustrates the influence of temperature on the frequency ratio the outer wall of DWCNTs in a thermal and 

magnetic environment. The result presents that as the temperature increases, the frequency ratio decreases. This 

shows that increase in temperature leads to increase in the value of linear natural frequency of the system.  
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Fig.6 

Effect of magnetic force strength on amplitude-frequency ratio 

curve on outerwall of TWCNTs. 

 



                                                                                Analysis of Nonlinear Vibrations of Slightly Curved ….                            311 

 

© 2020 IAU, Arak Branch 

4.6 Effects of magnetic force strength on the frequency ratio of outer wall of TWCNTs 

Fig. 7 presents the impact of magnetic force strength on the dimensionless frequency ratio. From the figure, it is 

established that as the magnetic field strength increases, the vibration of the system approaches linear vibration and 

become linear at higher value of magnetic force strength, H=10
9
 A/m. 
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Fig.7 

Effect of magnetic force strength on amplitude-frequency ratio 

curve on outerwall of TWCNTs. 

4.7 The linear and nonlinear vibration deflection-time curve of outer wall of TWCNTs 

Fig. 8 shows the comparison of the linear vibration with nonlinear vibration of the TWCNT. It could be seen in the 

figure that the discrepancy between the linear and nonlinear amplitudes increases as the vibration time progresses. 

 

0 5 10 15 20 25 30
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time,  ( sec ) 

 m
id

 p
oi

nt
 d

ef
le

ct
io

n 
w

(x
,t

) 
 

 

 

linear vibration

nonlinear vibration

 

 

 

 

 

 

 

 

 

 
Fig.8 

The linear and nonlinear vibration deflection-time curve of 

outer wall of TWCNTs. 

4.8 Verification of the results 

In order to verify the results of the developed approximate analytical solutions, the results are compared from the 

used scheme with the results of the numerical solutions in previous work of Pentaras and Elishakoff [60] where 

Bubnov–Galerkin and Petrov–Galerkin methods were used. Table 1, shows the comparison of results between the 

homotopy perturbation method and the numerical method for the linearized models as presented [60]. From, the 

table, it is established that there is an excellent agreement between the numerical solutions and the approximate 

analytical solutions computed in the present study. 
 

Table 1  

Comparison of Natural frequencies for the first 5 vibrational modes and L/d = 10 (simply supported TWCNTs at both ends). 

Mode number, n      
(1)n  [60]      

(1)n  (Present)         
(2)n  [60]     

(2)n  (Present)         
(3)n  [60]      

(3)n  (Present)                                  

         1                    0.647954          0.647955              5.953946          5.953945               9.642204           9.642207 

         2                    2.531134          2.531136              6.302394          6.302397               9.879866           9.879863 

         3                    5.038042          5.038047              7.915761          7.915765             10.965936         10.965932 

         4                    7.131562          7.131565            11.299882         11.299882            14.266972          14.266975               

         5                   12.069053        12.069051            15.452939         15.452935            20.559854          20.559858 
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5    CONCLUSION 

In this work, nonlocal elasticity theory has been used to analyze the nonlinear vibrations of slightly curved multi-

walled carbon nanotubes resting on Winkler and Pasternak foundations in a thermal and magnetic environment. The 

effects of the various controlling parameters on the nonlinear to linear frequency ratio have been analyzed and 

discussed. The results established that the frequency ratio for all boundary conditions decreases as the number of 

wall increases. In addition, it is established that the frequency ratio is highest for clamped-simple supported and least 

for clamped-clamped supported. Additionally, the results revealed that the frequency ratio decreases with increase in 

the value of spring constant (k1), temperature and magnetic field strength. This work will enhance the applications of 

carbon nanotubes in structural, electrical, mechanical and biological applications especially those nano-devices in a 

thermal and magnetic environment. 
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