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 ABSTRACT 

 This article provides a fully analytical approach for nonlinear 

equilibrium path of rectangular sandwich plates. The core of 

structure is made of symmetric cross-ply laminated composite and 

the outer surfaces are piezoelectric actuators, which perfectly 

bonded to inner core. The structure is subjected to electro-thermo-

mechanical loads simultaneously. One side of plate is rested on 

Pasternak type elastic foundation. The equilibrium equations of 

plate are derived based on the higher-order shear deformation 

theory of Reddy taking into account initial geometrical 

imperfection, nonlinear strain-displacement relations of von-

Karman, temperature dependent properties, and different types of 

boundary conditions. Some numerical examples are presented to 

verify the accuracy of the proposed formulation. The effects of 

various parameters such as voltage on actuators, elastic foundation, 

imperfection, and pre-load condition on the buckling and post 

buckling behaviors are studied. As an important finding of current 

research, there may be exists bifurcation point for imperfect plates 

by applying voltage on actuators. 

                                 © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

SOTROPIC materials gradually replaced by fibrous composite materials in the industries. In order to extremely 

usage of these materials, researchers are constantly seeking new ways to improve mechanical behavior of 

composites, in which sandwich piezo-composite material is one of the ways to increase of durability of bare 

composites. Furthermore, elastic foundations have positive influence on the buckling and post buckling behavior of 

structures. A lot of real engineering problems can be modeled as moderately thick plates and shells on elastic 

foundations such as oil, gas, water, and sewage pipelines in the seabed and/or ground. For isotropic materials, the 

post buckling studies of plates on Winkler and or Pasternak type elastic foundations can be found in [1-3]. In the 

case of laminated composites, Shen [4-6] and Shen and Li [7] investigated effect of the Pasternak elastic foundation 
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on buckling and post buckling of imperfect laminated composite plates under thermal, mechanical, and combined 

loads using perturbation technique. Yang and Zhang [8] presented mechanical post buckling of imperfect laminated 

plates on Pasternak elastic foundation using a semi-analytical approach based on classical theory. Singh et al. [9] 

and Singh and Lal [10] studied post buckling of laminated composite plates with random system properties on 

elastic foundation using finite element method based on higher-order theory. Pandey et al. [11] presented buckling 

and post buckling response of laminated composite plates resting on elastic foundation utilizing finite double 

Chebyshev polynomials based on higher-order theory. Compared to the several investigations on post buckling 

behavior of laminated composite plates for example [12-16], there exist limited studies on post buckling of sandwich 

piezo laminated plates. Oh et al. [17] presented post buckling and vibration of piezoelectric-composite plates by 

nonlinear finite element equations based on the layer wise plate theory. In their study, the piezoelectric layers fully 

and partially bonded to composite. Shen [18] studied thermal post buckling of shear-deformable laminated plates 

with piezoelectric actuators. In that study, a mixed Galerkin perturbation technique was employed to determine 

thermal critical loads and post buckling equilibrium paths, and the material properties were assumed independent of 

the temperature. In the same year, Shen [19] investigated electro-thermo-mechanical buckling and post buckling of 

shear-deformable [piezoelectric/composite/piezoelectric], using a mixed Galerkin perturbation technique, and 

temperature-independent material properties. Varelis and Saravanos [20] analyzed coupled electrical and mechanical 

fields together with finite element method for predicting of buckling and post buckling response of laminated 

composite plates with piezoelectric actuators and sensors, which included nonlinear effects due to large rotations 

and stress stiffening. In their work, nonlinear equations formulated using mixed-field shear-layer wise kinematic 

assumptions, then linearized and solved using an incremental-iterative method based on the Newton–Raphson 

technique. Recently, Bohlooly and Mirzavand [21]  presented buckling and post buckling of imperfect very thin 

laminated composite plates with surface mounted and embedded piezoelectric actuators under electro-thermo-

mechanical loads and various boundary conditions. In that study, the formulation is based on the classical laminated 

plate theory and then using Galerkin procedure, the resulting equations are solved to obtain fully closed form 

expressions for nonlinear equilibrium paths. This survey in the literature reveals that, there is no any presentation for 

electro-thermo-mechanical buckling and post buckling of moderately thick [piezoelectric/composite/piezoelectric] 

plates resting on elastic foundations. The novelty of this paper is to obtain fully closed form solutions for post 

buckling of shear deformable sandwich piezo laminated plates, importing elastic foundation, which could be useful 

from the engineering's point of view. 

In recent years, different plates and shells surrounded by the Pasternak elastic foundation began to be 

investigated in a variety of industrial applications. In this context, Abdollahian et al. [22] and Ghorbanpour Arani et 

al. [23] studied electro-thermo-mechanical wave propagation and buckling in an embedded armchair double and 

three-walled boron nitride on Pasternak foundation. Also, Ghorbanpour Arani et al. [24,25] worked on nonlinear 

vibration analysis of bioliquid-filled microtubules embedded in cytoplasm and embedded smart composite micro 

tube conveying fluid with Pasternak elastic foundation. The effects of Pasternak type elastic foundation on the post 

buckling and deflection response of thin imperfect piezoelectric-composite plates are investigated by Bohlooly and 

Mirzavand [26]. 

It can be seen in previous work [21], a number of mechanical, electro-thermal, and electro-thermo-mechanical 

post buckling of plate in the absence of elastic foundation are verified with known literature. This paper extends the 

previous work to investigate closed form expressions for buckling and post buckling behavior of moderately thick 

sandwich composite plates with surface mounted piezoelectric actuators resting on Pasternak type elastic foundation 

under mechanical, thermal, electrical, and combined loads based on third order shear deformation theory of Reddy 

with von-Karman nonlinear kinematic relations. Initial geometrical imperfections are also accounted, and by 

applying Galerkin procedure, the resulting equations are solved to obtain closed form expressions for nonlinear 

equilibrium paths. Temperature dependency of thermo-mechanical properties is considered. Three cases of boundary 

conditions are investigated. Effects of elastic foundation parameters, initial geometrical imperfections, in-plane 

compressive loading, temperature dependency and independency of properties, and electrical loading are discussed. 

Results for various states are verified with the known data in the literature. 

2    GOVERNING EQUATIONS 

Consider a rectangular sandwich plate of length a, width b, and total thickness h as shown in Fig. 1. The plate is 

composed of perfectly bonded orthotropic cross-ply laminas of total thickness 2 ch , and each piezoelectric films of 

thickness
ah , perfectly bonded on the top and bottom surfaces as actuators. Rectangular Cartesian coordinates 
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( , , )x y z  are assumed for derivations, the angle of fibers   in laminated composites is expressed with reference to 

the x coordinate, and the structure is symmetrically laminated.  

 

 

 

 

 

 

 

 

 

Fig.1 

The geometry and structure of the piezo laminated sandwich 

plate on elastic foundation. 

 

In this study, third order shear deformation plate theory of Reddy is used to establish governing equations and 

determine the nonlinear equilibrium path of the sandwich plate. According to this theory, the displacement field is 

assumed as [27] 
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Here ( , , )u v w  are the plate displacements parallel to the coordinates ( , , )x y z  and a comma indicates the partial 

derivative. The components 
0 0 0( , , )u v w  represent the displacements on the middle plane ( 0)z  of the plate, 

x  

and y  are the middle plane rotations of transverse normal about the y and x axes, respectively. Here
2

1 4/( )3c h , 

where the traction-free boundary conditions on the top and bottom faces of the piezo-laminated plate are satisfied.  

The nonlinear strain-displacement relations of von-Karman including initial geometrical imperfection 
*( , )w x y  

are expressed as: [28] 

 

2 *

, , , ,

2 *

, , , ,

* *

, , , , , , , ,

, ,

, ,

1

2

1

2

xx x x x x

yy y y y y

xy y x x y x y x y

yz z y

zx z x

u w w w

v w w w

u v w w w w w w

v w

u w











 

 

 





 







 

 
(2) 

 

where 
xx  and yy are the normal strains and xy , yz , and 

xz  are the shear strains.  

Substituting Eq. (1) into the nonlinear strain-displacement relations (2) results the kinematic relations as: 
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where 
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The load-deflection relation of Pasternak foundation is defined as: [29,30] 
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where efq the foundation reaction per unit area is, 1K  Winkler foundation modulus, and 2K  is the shear layer 

foundation stiffness of Pasternak model. 

The constitutive equations for the 
thk  ply of laminated composite (1 )k N  , taking into account the thermal 

effects are given by [27] 
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and for the piezoelectric layers [27] 
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where 
xx and yy are the normal stresses and xy , yz , and 

xz  are the shear stresses,   is the temperature rise 

from a reference temperature corresponding to zero thermal strain, 
x , y , xy , 

a
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a
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a
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coefficients of thermal expansion, , ( , 1,2,4,5,6)a

ij ij i jQ Q  are the elastic stiffness, 
31e , 
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24e , and 

15e  are 

piezoelectric stiffness, 
xE , yE ,  and 

zE are electric field components and letters "a" means actuator. The 

coefficients of thermal expansion, elastic stiffness, and piezoelectric stiffness are provided in detail in Appendix A. 

In addition, the electric field components are given by [18,21,31] 

 

0, a
x y z

a

V
E E E

h
    (8) 



Higher-Order Stability Analysis of Imperfect Laminated….                       554 

 

© 2019 IAU, Arak Branch 

where aV  is the applied voltage across the thickness of a piezoelectric layer. 

The stress resultants are related to the stresses by the equations [32] 
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Using the constitutive Eqs. (6, 7), the stress resultants are found to be 
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The thermal resultants can be described as: [27] 
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and stiffness components and inertias are given as: [27] 
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The nonlinear equilibrium equations of the sandwich plate [piezoelectric/composite/ piezoelectric] resting on 

Pasternak type elastic foundation based on the higher-order shear deformation theory are [33] 

 

* *

1 0 2 0, 2 0, 0, 0, 0,

1

0,

*

0, 0,

2 2 2

21 2

1 1

) 2 )

) (

0

0

( (

)

3 ( ) )

3 ) (

(

( 2 0

(

x xy

xy y

xx yy x xx xx xy xy xy

y yy yy x y

x y x xy y

x x x xy x

N N
x y

N N
x y

K w K w K w N w w N w w

N w w Q Q
x y

R R P P P
x y x yx y

Q R M M P
x

c

c
y x

c

c

 
 

 

 
 

 

   

 

 

    
    

    

  


 





 

  
  

 





1 1

) 0

( )3 )( 0

xy

y y xy y xy yc

P
y

Q R M M P P
x y x

c
y








   
     

   

 
(13) 

 

By introducing the Airy stress function   as [21,33-35]: 
, , ,, ,x yy y xx xy xyN N N    , the first and 

second equilibrium Eqs. (13) satisfy and the third, fourth, and fifth equilibrium equations reduce to one as: 
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On the other hand, the compatibility equation [21,35] of sandwich piezo laminated plates in terms of the Airy 

stress function   and the lateral displacement component 
0w  may be obtained by using Eqs. (4) and (10), and also 

definition of Airy stress function as below 
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where the matrices ( , 1,2,6)ijAQ i j   are given by 
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Eqs. (14) and (15) are two basic equations in terms of  four variables 
x , y , 

0w , and  , which Eq. (15) is the 

same as one derived based on the classical laminated plate theory [21]. 

3    ANALYSIS OF EQUILIBRIUM PATH  

In this study, the sandwich plate is assumed to be three types of simply supported in all edges i.e. freely movable for 

mechanical loading, immovable (where normal to edge displacements are prevented at boundaries) for electro-

thermal loading, and freely movable in the y direction and immovable in the x direction for electro-thermo-

mechanical loading as follow [7,21,34,36] 

All edges are freely movable simply supported (FM): 

 

0

0

0, : 0

0, : 0

x xy y x

y xy x y

x a w M N P

y b w M N P





     

     
 (17) 

 

All edges are immovable simply supported (IM): 

 

0 0

0 0

0, : 0

0, : 0

x y x

y x y

x a u w M P

y b v w M P





     

     
 (18) 

 

Two edges are freely movable simply supported and two others are immovable simply supported (FMIM): 
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with the consideration of the three cases of boundary conditions in Eqs. (17), (18), and (19), we assume the 

following approximate solutions for lateral displacement, imperfection, stress function, and rotations [4,27,28] 
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where m and n are number of half waves in x and y directions, respectively, W is amplitude of deflection, 

 represents imperfection size, 0xN  and 0yN  denote pre-buckling force resultants in x and y directions, 

respectively. 

The coefficients 1C , 2C , 3C and 4C  can obtain with substituting Eqs. (20) into Eq. (15) as: 



557                           B. Mirzavand and M. Bohlooly 

 
 

© 2019 IAU, Arak Branch 

2 2 2 2 2 2 2 2 2 2

1 2 3

22 11

44 4

2 2
, , 0

32 32

W m n W hm n W m n W hm n
C C

A
C

AQ
C

m nQ

  
     (21) 

 

The coefficients 
5C  and 

6C  can obtain with employing Eqs. (4) and (10) in two last equilibrium equations in 

(13) and exploiting the definition of 
x and y in (20) into resulting equations as: 
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where expressions of coefficients ( 1 6)iX i   are given in Appendix B. 

Subsequently, substituting the Eq. (20) into Eq. (14) and using the Galerkin method [27,37], reveals the final 

form of the equilibrium equations of the piezo laminated plate as: 
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 (23) 

3.1 Mechanical post buckling 

The simply supported piezo laminated plate with FM boundary conditions resting on elastic foundation is assumed 

to be subjected uniformly distributed in-plane compressive loads xP  and yP  in x and y directions, respectively. In 

this type of loads and boundary conditions, the pre-buckling force resultants are [21] 
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Substitution of Eq. (24) into Eq. (23) leads to closed form relation of buckling and post buckling behavior of 

shear deformable imperfect laminated composite plate with piezoelectric actuators on elastic foundation under in-

plane compressive loads as: 
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in which 
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3.2 Electro-thermal post buckling 

The simply supported piezo laminated plate with IM boundary conditions on elastic foundation is assumed at 

reference temperature
iT . Then, the uniform temperature may be raised to 

iT T , and two piezoelectric actuators 

are subjected to constant applied actuator voltage in thickness direction simultaneously. Substituting temperature 

difference T  in the thermal stress resultants in Eq. (11) and integrating results 
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where 
T

xA  and T

yA are given by 
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In order to access pre-buckling force resultants, with consideration of IM boundary conditions, two end-

shortening relations can be written as follow [18] 
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From Eqs. (4) and (10) one can obtain the following expressions as: 
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Substituting Eq. (20) into Eq. (30) and solving end-shortening relations give pre-buckling force resultants as: 
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with introduction of Eq. (31) into Eq. (23) leads to closed form relation of buckling and post buckling behavior of 

shear deformable imperfect laminated composite plate with piezoelectric actuators on elastic foundation under 

uniform temperature rise and applied actuator voltage as: 

 



559                           B. Mirzavand and M. Bohlooly 

 
 

© 2019 IAU, Arak Branch 

22 12 11 12 11 22

2

22 1111 22 12

11 1 12 1 12 1 22 1

31 32

11 1 12

2 2 2 2 2 2 4 4

2

2 2

2 2

1

2

12

( ( )
2

1

)

[
( 2 )

16( ) ( ) ]

2 2

( )[ (

a a Ta a a a

x y x x y y

a a a

x y x x

a a T

a a

a a T a

m n m n m n n m

W W h

AQ AQ AQ AQ AQ AQ

AQ AQAQ AQ AQ
T

Q I Q I A Q I Q I A

e e

Q I Q I A

m n

V

m Q

m V n

  






 

   


  










   

  1 22 1

11 2 11 11 3 11

2

3

6 2 3 5 1

2 2

1 5 4 2

3

6 1 3 4 1

2 4 5

11 1 12 1 12 1 22 1

22 2 22 22 3 2

11

2

11 1 2

[( (

[

[( (

[

) ]

) )]

( ) ( ) ]

) )]

(

a

y y

a a

a a a a

x y x

a T

a a

x y y

a a

a a

x y

T a a T

a

I Q I A

Q I D Q I F

Q I Q I A Q

n

X X

I Q

X X c m W

X X X X W hI A

Q I D

m n

X X X X c n

X X

Q

X

F

Q IX

I

Q



  









 

 


   



 






   


1 12 1 22 1

12 2 1

2 2

2 26 1 3 4 6 2 3 5

2 4 5 1 1 5 4 2

12 12 3 12 66 2 66 66 3 61 6

11 1 12 1 12 2

2

1 2 1

) ( ) ]

( )

) ) 2[( ( (( ) 2 )

([

]

) (

a a

x x y y

a a a a

a a a a

x y x

a T

x y

a a T

a a T a a

W

W hm n

X X X X X X X X
m n mn

X X

I A Q I Q I A

Q I D Q I F Q I D Q I F

Q I Q I A Q I Q I A

X X X X X X

c c

m

 





  



 


 

      

  



   

11 3 11 22

2

4 4

1 1 3 22

11 1 12 1 12 1 22

2

1

2

) ]

) )

( )

(

(

(

[ ) ]

T

a

y

a a

a a a a

x y x x y

a T a a T

y

Q I F Q I F

Q I Q I A Q I Q

W

W hn

c m c n W

WI hm nA



   













 




 

12 3 12 66 3 66 12 3 12

11 1 12 1 12 1 22

2 2

1 1 1

2 2

2 2

1 2 2

2

1

11 1 12 1 12 1 22 1

2

[ ( ( () 4 ) )]

( ) ( ) ]

( ) ( )[ ]

[ a a T

a a a

a a a aa a

x y x x y y

a a a a

x y x x y y

T

a a T a a T

c c c m n W

W

Q I F Q I F Q I F

Q I Q I A Q I Q I A

K K

Q I Q I A Q I Q I A

hm n

m K n W

W hm n

   

 



 

     




 


  

  





 

(32) 

 

3.3 Electro-thermo-mechanical post buckling 

The simply supported piezo laminated plate resting on an elastic foundation is uniformly compressed by xP  on two 

movable edges 0,x a  and simultaneously exposed to uniform temperature rise and constant applied actuator 

voltage through the thickness direction. The two edges 0,y b  are assumed to be immovable (FMIM). In this case, 

the pre-buckling force resultant in x direction may be written as: 0 /x x bN P . In order to obtain the pre-buckling 

force in y direction, an end-shortening relationship may be written (like the second of Eq. (29)), which results 
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Substitution of Eq. (33) into Eq. (23) leads to closed form relation of buckling and post buckling behavior of 

shear deformable imperfect laminated composite plate with piezoelectric actuators on elastic foundation under 

compressive load, uniform temperature rise, and applied actuator voltage as: 
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Eq. (34) is used to determine the dependence of the in-plane compressive edge loads vs. lateral deflection (for 

given uniform temperature rise and voltage) and conversely, the variation of the temperature difference vs. lateral 

deflection (for given compressive load and voltage) can be written as: 
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4    RESULTS AND DISCUSSION  

The efficacy of the present fully analytical method is assessed through some simply state comparisons. In addition, 

some numerical examples were conducted in order to examine the effects of different characteristics on the buckling 

and post buckling responses. The Graphite/Epoxy is used for composite part of structure, which thermal and 

mechanical properties are [18,38] 
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6 6

11 22
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 (36) 

 

The material properties of PZT-5A as surface mounted piezoelectric actuators are [18] 
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(37) 

 

The following dimensionless foundation parameters
1k , 

2k have been used in this study [10] 

 
4 2

1 2

1 23 3

22 22

,
K b K b
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E h E h

   (38) 

 

Here, 
22E  is a property of composite material. The comparison of the present Galerkin procedure based on HSDT of 

Reddy, for a FM perfect composite plate [0/90/0] with or without elastic foundation subjected to equal biaxial load 

( 1)R   is presented in Table 1. 

  
Table 1  

Comparisons of non-dimensional mechanical buckling loads 3

xcr 22P b/E h  for [0/90/0] laminated composite plate on elastic 

foundation. 

 Solutions: (k1,k2)=(0,0) (k1,k2)=(100,0) (k1,k2)=(100,10) 

h/b=0.001, a/b=1 Shen 14.7035 16.7299 26.7299 

 Xiang et al. 14.7036 16.7300 26.7300 

 Present          14.7035(1,2)*        16.7299(1,2)        26.7299(1,2) 

h/b=0.1, a/b=1 Shen    9.9754     12.0018 22.0018 

 Xiang et al. 10.2024 12.2288 22.2288 

 Present         9.9754(1,2)          12.0018(1,2)        22.0018(1,2) 

h/b=0.001, a/b=2 Shen 3.6760  10.9929 20.9930 

 Xiang et al. 3.6760  10.9930 20.9930 

 Present        3.6760(1,1)         10.9929(1,2)        20.9929(1,2) 

h/b=0.1, a/b=2 Shen 3.2637    9.3743    19.3743 

 Xiang et al. 3.2868    9.5904    19.5904 

 Present        3.2637(1,1)           9.3743(1,2)           19.3743(1,2) 
*The numbers in brackets indicate the buckling mode (m,n). 

 

For this example, properties of composite are: 11 2240E E , 12 13 220.6G G E  , 23 220.5G E , 12  0.25  . The 

thickness to width ratio is 0.1 and 0.001 and thickness of piezoelectric layers is set to zero. It can be found that there 

is no big difference with those of Shen [4] and Xiang et al. [39]. For second example, mechanical post buckling 

load-deflection curve for a FM isotropic ( 200E GPa  and 0.3  ) square plate without initial imperfection 

subjected to uniaxial load ( 0)R   is compared in Fig. 2 with results of Shen and Li [7]. The width to thickness 

ratio is 100 and thickness of piezoelectric layers is zero. As shown, the plots are similar.  
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Fig.2 

Comparison of mechanical post buckling paths for an isotropic 

plate without elastic foundation. 

 

In order to conduct thermal loading, Table 2., shows critical temperatures for a perfect isotropic ( 150 GPaE  , 

0.3  , and 610 1/°C  ) plate with IM boundary conditions, in different length to width ratios. The length to 

thickness ratio is 100 and thickness of piezoelectric layers is set to zero. As seen, the results are compared with first-

order theory solution of Shen [40], classical theory solution of Boley and Weiner [41], finite element results of 

Chandrashekhara [42], and Ganapathi and Touratier [43]. In other case, thermal buckling and post buckling of a 

perfect isotropic plate ( 1GPaE  , 0.3  , and 610 1/°C  ) with geometrical parameters / 1a b  , / 100a h  , 

and 0ah   and IM edges under uniform temperature rise  is compared in Table 3., with results of Shen [44], Raju 

and Rao [1], and Kiani and Eslami [28]. As observed from Tables 2 and 3, we can conclude the method provided in 

this study is valid in predicting the thermal buckling and post buckling of plates. 

 
 

Table 2 

Comparisons of nondimensional thermal buckling loads 410xcrT   for an isotropic plate without elastic foundation. 

Solutions: a/b=0.25 a/b=0.5 a/b=1 a/b=1.5 a/b=2 a/b=2.5 a/b=3 

Shen 0.6720   0.7906   1.2646  2.0543  3.1589  4.5775  6.3101 

Boley and Weiner 0.6722   0.7908   1.2653  2.0562  3.1633  4.5868  6.3267 

Chandrashekhara  0.6727   0.7913   1.2657  2.0561  3.1617  4.5817  6.3144 

Ganapathi and Touratier 0.676 0.798 1.272 2.072 3.176 4.585 6.341 

Present 0.6720   0.7906   1.2646   2.0543   3.1589  4.5775  6.3089 

In all cases: (m,n)=(1,1) 

 

 

Table 3 

Comparisons of non-dimensional thermal buckling and post buckling loads αΔTxcr×104 for an isotropic plate with Winkler elastic 

foundation. 

k1 Solution: W/h=0 W/h=0.2 W/h=0.4 W/h=0.6 W/h=0.8 W/h=1 

0 

Shen  1.2653 1.3320 1.5330 1.8708 2.3499 2.9766 

Raju and Rao 1.2552 1.3322 1.5291 1.8681 2.3494 2.9729 

Kiani and Eslami 1.2653 1.3319 1.5318 1.8649 2.3312 2.9308 

Present 1.2646 1.3312 1.5311 1.8642 2.3305 2.9301 

 

4

10.92


 

Shen 1.5816 1.6483 1.8494 2.1875 2.6673 3.2954 

Raju and Rao  1.5728 1.6384 1.8461 2.1852 2.6775 3.3008 

Kiani and Eslami 1.5817 1.6483 1.8481 2.1812 2.6476 3.2472 

Present 1.5809 1.6476 1.8474 2.1805 2.6469 3.2464 

 

42

10.92


 

Shen  1.8980 1.9646 2.1658 2.5041 2.9847 3.6143 

Raju and Rao 1.8900 1.9556 2.1635 2.5025 2.9947 3.6073 

Kiani and Eslami 1.8980 1.9646 2.1645 2.4976 2.9639 3.5635 

Present 1.8973 1.9639 2.1638 2.4969 2.9632 3.5628 

 

45

10.92


 

Shen 2.8470 2.9137 3.1150 3.4544 3.9379 4.5735 

Raju and Rao 2.8414 2.9071 3.1148 3.4269 3.9462 4.5586 

Present 2.8463 2.9129 3.1128 3.4459 3.9122 4.5118 
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Fig. 3 gives the comparison of previous work of Bohlooly and Mirzavand [21] based on the classical laminated 

plate theory (CLPT) and the approach of this study using the higher-order shear deformation theory of Reddy 

(HSDT). Obviously, with the same geometrical and material properties for sandwich plate [P/0/90/0/90]s, the 

electro-thermal load-deflection curves derived by HSDT are better than those by the CLPT. 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Comparison of thermal post buckling paths for moderately 

thick sandwich plate without elastic foundation. 

 

Fig. 4 shows the difference of temperature dependency and independency of thermomechanical properties on the 

electro-thermal buckling curves versus /a b for piezo laminated plates. The variation of TD properties according to 

temperature for different types of materials can be found in different references. A simple function is linear as 

[21,27,45]: 0 1( ) (1 )P T P P T   . The constant 
0P  can be put as in Eqs. (36) and (37) and constant 

1P  are 
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 (39) 

 

By applying an iterative method, the results are presented in Fig. 4. The IM perfect sandwich plate [P/0/90/0/90]s 

is subjected to uniform temperature rise and electrical loading of 100 VaV   . The dimensionless foundation 

parameters are: 
1 2( , ) (300,30)k k  , and the width to thickness ratio is 100, where 0.1 mmah  and   0.5 mmch  . 

As seen, the plot for TD material properties is lower than TID one. The reason is that, in TD algorithm, the 

calculation is more accurate. 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Effects of temperature dependency on electro-thermal buckling 

of the piezo laminated plate on elastic foundation. 

 

Fig. 5 displays the mechanical buckling curves versus /a b for FM perfect sandwich plates [P/0/90/0/90]s with 

elastic foundation of  1 2( , ) (400,40)k k   subjected to compressive loading for 0R  , 0.5, and 1. As seen, for 

smaller values of R, the effect of modes change on the mechanical buckling response of the plate is high. 

In Fig. 6, the electro-thermo-mechanical buckling curves are depicted for FMIM perfect sandwich plate 

[P/0/90/0/90]s rests  on elastic foundation of  1 2( , ) (400,40)k k   subjected to uniaxial compressive loading, 

uniform temperature rise of 100T  , 200 , and 300 °C , and electrical loading of 100 VaV   . As expected, the 

sandwich plate under thermal loads has similar behavior with Fig. 5, which the effect of mode change in variation of 

critical load becomes soft with increasing of temperature. 
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Fig.5 

Effects of the ratio of compressive loads R on mechanical 

buckling of the piezo laminated sandwich plates on elastic 

foundation. 

  

 

 

 

 

 

 

 

 

Fig.6 

Effects of the uniform temperature rise on electro-thermo-

mechanical buckling of the piezo laminated sandwich plates on 

elastic foundation. 

 

The effects of the elastic foundations on the electro-thermal buckling of the perfect sandwich plates 

[P/0/90/0/90] s are depicted in Fig. 7. The IM plate is subjected to uniform temperature rise and electrical loading of 

100 VaV   . It can be noted that the Winkler and shear layer have good characteristics on the critical temperature 

especially for small values of /b h  ratio. 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Effects of elastic foundation on electro-thermal buckling of the 

piezo laminated sandwich plates. 

 

Fig. 8 shows the electro-thermal post buckling load-deflection curves of a piezo laminated plate resting on elastic 

foundation. The IM square plate [P/0/90/0/90]s, with and without initial imperfection is subjected to uniform 

temperature rise and electrical loading of 100 VaV   . The influence of Winkler and shear layer on the thermal 

post buckling paths are significant, where the post buckling curves for both perfect and imperfect plates become 

higher. 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Effects of elastic foundation on electro-thermal post buckling 

of the piezo laminated sandwich plates. 
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Fig. 9 gives the mechanical post buckling load-deflection curves of a FM square plate [P/0/90/0/90]s, with two 

values of initial imperfection subjected to uniaxial compression. As seen, the elastic foundation makes the plate to 

have higher load-deflection paths. Note that for
1 2( , ) (250,25)k k  , the buckling modes of both perfect and 

imperfect plates changes from ( , ) (2,1)m n   to ( , ) (1,1)m n   by increasing of /W h . 

 

 

 

 

 

 

 

 

 

Fig.9 

Effects of elastic foundation on mechanical post buckling of the 

piezo laminated sandwich plates. 

 

Fig. 10 demonstrates the electro-thermo-mechanical post buckling load-deflection curves of a FMIM piezo 

laminated square plate [P/0/90/0/90]s, with and without initial imperfection subjected to uniaxial compression, 

uniform temperature rise of 100 °CT  , and applied voltage  100 V.aV    Obviously, the electro-thermo-

mechanical post buckling paths of the plate resting on elastic foundation, for both perfect and imperfect plates are 

the highest curves.  

 

 

 

 

 

 

 

 

 

Fig.10 

Effects of elastic foundation on electro-thermo-mechanical post 

buckling of the piezo laminated sandwich plates. 

 

Figs. 11 and 12 represent two ways for improvement of electro-thermal buckling and post buckling of laminated 

composite plates as: applying negative voltages on actuators, and resting the plate on elastic foundation. The 

buckling behavior of IM square plate without initial imperfection in Fig. 11 and with imperfection in Fig. 12 have 

been improved by electrical loading of 150, 300 VaV    , and elastic foundations of 

1 2( , ) (250,0), (250,25)k k  . As seen, for both perfect and imperfect plates, the curve of laminated composite plate 

with Winkler foundation is lower than the plate with surface mounted piezoelectric layers and electrical voltage of  

150 VaV   . In contrast, the curve of laminated composite plate with Winkler and shear layer is higher than the 

plate with surface mounted piezoelectric layers and electrical voltage of  300 VaV   . Also as a substantial result, 

the imperfect curves show that, for lateral displacement of  0W  , elastic foundation has no effect, but by applying 

negative voltages on surface mounted piezoelectric actuators of sandwich plates may improve the buckling of 

imperfect plates. 

 

 

 

 

 

 

 

 

 

Fig.11 

Improvement of electro-thermal postbuckling of the perfect 

plates. 
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Fig.12 

Improvement of electro-thermal postbuckling of the imperfect 

plates. 

 

 

In addition, Figs. 13 and 14 shows the effects of surface mounted piezoelectric layers and elastic foundation on 

the electro-thermo-mechanical post buckling behavior of FMIM laminated square plate, with and without initial 

imperfection subjected to uniaxial compression and uniform temperature rise of 40 °CT  . As shown, they lead 

to broadly the same conclusions as do Figs. 11 and 12. 

 

 

 

 

 

 

 

Fig.13 

Improvement of electro-thermo-mechanical post buckling of 

the perfect plates. 

 

  

 

 

 

 

 

Fig.14 

Improvement of electro-thermo-mechanical post buckling of 

the imperfect plates. 

5    CONCLUSIONS 

The nonlinear behavior of plates and their ability to carry loads beyond the buckling point into the post buckling 

range has received substantial non-analytical methods like finite element method, finite strip method, and 

perturbation technique. In this article, a new fully analytical method presented to introduce explicit relations for post 

buckling behavior of shear deformable [piezoelectric/composite/piezoelectric] plates on Pasternak type elastic 

foundations under different loads and boundary conditions. The closed form solutions to predicting post buckling of 

piezo laminated composite plates have already be done by same authors. However, for moderately and very thick 

plates, the results included big errors. The top features of this article are accurate calculations even for moderately 

thick plates by applying HSDT theory instead of past ones. Also effects of elastic foundation parameters, initial 

geometrical imperfections, in-plane compressive loading, temperature dependency and independency of properties, 

and electrical loading are discussed and as important result, in order to improve the buckling strength of perfect 

plates, two ways are proposed; applying suitable voltage on actuators and resting the plate on elastic foundation. In 

contrast, there can be exists bifurcation point for imperfect plates by applying voltage on actuators but elastic 

foundation has no effect. 
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APPENDIX A  

Coefficients of thermal expansion, elastic stiffness, and piezoelectric stiffness.  
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