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 ABSTRACT 

 Dynamic behaviour of nonlinear free vibration of circular 

plate resting on two-parameter foundation is studied. The 

governing ordinary differential equation is solved analytically 

using hybrid Laplace Adomian decomposition method. The 

analytical solutions obtained are verified with existing results 

in literature. The analytical solutions are used to determine 

the influence of elastic foundation, radial and circumferential 

stress on natural frequency of the plate. In addition, the radial 

and circumferential stress determined. From the results, it is 

observed that, increase in elastic foundation parameter 

increases the natural frequency of the plate. It is recorded that 

the modal radial and circumferential stress affect the extrema 

mode of the plate. It is hoped that the present study will 

contribute to the existing knowledge in the field of vibration 

analysis of engineering structures.                        

                       © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 NVESTIGATION into dynamic behaviour of plate resting on elastic foundation is attracting huge attention of 

the researchers due to its wide application in many areas of engineering. The dynamic behaviour of circular plate 

on elastic foundation is important to geotechnics and structural engineers so as to guide in the design purposes. On 

the numerical investigation of plate on elastic foundation, Andrea et al. [1] used finite element method. For vibration 

analysis of plate coupled with fluid, in 2016, Lamb [2] determined the natural frequency using Rayleigh’s method. 

In another study, Raoa et al. [3] adopted exact method in investigation of circular plate resting on Winkler 

foundation. Based on the literature review, handling singularity problem and non-trivial solution of circular plate is 

quiet challenging with semi-analytical method. This is because of the independent variable in the governing 

equation that always result to infinity in the analysis. Though, numerical method is very effective in handing non-

linearity as a result of geometry and singularity issues like this but, the limitation of finding stability and 

convergence studies which increase the computation time and cost is a huge challenge. Meanwhile, exact method [4] 
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also requires good knowledge of mathematics for application, which also suffers the setback of handling nonlinear 

problem. Therefore, in an attempt to provide approximate solution, Soni et al. [5] analysed nonlinear functional 

graded plate submerged in fluid using Galerkin method of solution. However, Galerkin method an approximate 

method of solution is very reliable, simple and easy but having an issue with accuracy and precise result and higher 

mode natural frequency. It requires extending the assumed polynomial solution to four unknowns, which require in-

depth knowledge of mathematics to handle. Kumar and Prashar [6] investigated vibration of circular plate using 

Rayleigh-Ritz technique. However, Rayleigh-Ritz an approximate method of solution having the limitation of 

finding deflection function and undetermined coefficients. Furthermore, Homotopy perturbation methods (HPM) [7-

9] handles the non-linear problems without any restriction but connected with problem of finding small parameters. 

Adomian decomposition method (ADM) is proven to be very reliable method of solution for handling non-trivial 

solutions. It is a closed form solution, with fast convergence and little iterations, its easier to use. The accuracy of 

the soultion is enhanced with the combination of exact method of solution to handle the linear part of the equation 

while the rest are handled with ADM. 

Previous studies show that, application of Laplace Adomian method to determination of free vibration of 

nonlinear governing equation of circular plate resting on elastic foundation has not been investigated. Therefore, the 

present study is on, dynamic investigation of non-linear free vibration of circular plates resting on Winkler and 

Pasternak foundations using Hybrid Adomian decomposition method. The analytical solutions are used for the 

parametric study. 

2    PROBLEM FORMULATION AND MATHEMATICAL ANALYSIS  

Consider a circular plate resting on Winkler and Pasternak foundation in Fig 1. under various boundary conditions 

simply-supported, free and clamped edge conditions. According to Kirchhoff plate theory the following assumptions 

are considered in the model of governing equation. 

1. Plate thickness is smaller compared to the dimension of the circular plate. 

2. Normal stress is assumed negligible in transvers direction of the circular plate. 

3. Rotary inertia effect is negligible. 

4. Normal to the undeformed middle surface remain straight and normal to the deformed middle surface 

without length stretching.   

 

 

 

 

Fig.1 

Circular plate resting on Two-Parameter foundation. 

 

The non-dimensionless governing differential equation of the model by [10] is: 

 
4 3 2

3 2 2

4 3 2 2 3 4

2
,w p

d f d f B d f B df A
f k f k f g f f

r drdr dr r dr r r
         

     

 (1) 

 

where f is the deflection, r the radius, 
wk the linear Winkler model, pk is the nonlinear Winkler Model, g is the 

shear of Pasternak foundation and 2 is the natural frequency.  

 
4 2 24 ; 2 1.A m m B m   

     

 (2) 

2.1 The governing equation     

Taking care of the singularity issue related to the governing equation. The equation may be transformed into this:  

  

2

2 2

1 1 1
, ,

dg
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r drr r
    

     

 (3) 
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Consequently, we arrived at; 

 
4 3 2 2
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d f d f d f df d f df
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dr drdr dr dr dr
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 (4) 

 

and, 

 

2 0,
dg

g
dr

 

     

 (5) 

 

where the initial and boundary conditions are given as:  

 

  00
,

r
g r g




     

 (6) 

2.2 Boundary conditions 

According to classical plate theory, the three boundary conditions considered may be written in dimensionless 

function ( )f r as follows:  

Clamped edge 

 

 
1

1

= 0,
r

r

df
f r

dr




     

 (7) 

 

Simply Supported 

 

 
2 2

2 211

1
0,r rr

d f df m
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        

 (8) 

 

Free edge Support 
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  

     

 (9) 

 

where 
rM  is radial bending moment and 

rV is the radial shear force per unit length. D is the flexural rigidity and v 

is the Poisson’s ratio. The regularity conditions at the centre are given as: 

Considering a circular plate without hole or cut hole, the condition at the center of the plate 0r   is given as: 

Symmetric case 

 

 
3

0
0 3

= 0, V = 0, 0,2,4 ,r r
r

df d f
for

dr dr
m




 

     

 (10) 

 

Axisymmetric case   
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200
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 (11) 
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3    METHOD OF SOLUTION: LAPLACE TRANSFORM AND ADOMIAN DECOMPOSITION METHOD 

3.1 Description of Adomian decomposition method  

The Adomian decomposition method (ADM) is developed by George Adomian in 1990s. It is a semi analytical 

method of solving partial and ordinary nonlinear equation. It uses ‘Adomian polynomials’ for fast convergence of 

nonlinear aspect of differential equation. The principle of operation is: 

Considering the following equation: 

  

(r)Lf Nf Rf g  

     

 (12) 

 

where L is a linear Operator, N is the nonlinear operator, R is the remaining linear operator and g is the 

inhomogeneous term. If L is a fourth order operator, it is define by: 

 

  

4

4
,

d
L

dr


   

 (13) 

 

Assuming L is invertible, and then inverse operator 1L  is given as; 

 

1

0 0 0 0

(.) (.) ,

r r r r

L drdrdrdr     
     

 (14) 

 

Therefore, 

 

1 2 31 1
( ) (0) (0) (0) (0),

2! 3!
L Lf f r f rf r f r f       

     

 (15) 

 

Applying 1L
 to both sides Eq. (12) gives: 
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where 
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r d
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r r d
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dr







 
  

    


      


 (17) 

 

The decomposition principle comprises of decomposing the solution to sum of infinite number of terms defined 

by the series: 

 

0

,n

n

f f




  (18) 

 

The nonlinear term is written as: 

 

0

( ) ,n

n

N f A




  (19) 



Free Vibration Analysis of Nonlinear Circular Plates….                                     125 

 

© 2020 IAU, Arak Branch 

where 'nA s are the Adomian polynomials. 

 

 
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  (20) 

 

where  is a grouping parameter. 
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(21) 

 

Substituting Eq. (18) and (19) into (16) gives: 
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  
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The iterative schemes are: 

 
1
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where  0,n   (24) 

 

This results to: 
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where  0,n   (25) 

 

3.2 Basic ideal of laplace transform  

If (t)f is a function of a variable t.  ( )F tL and is defined by the integral: 

 

 
0

( ) ( ) ( ) ,stF t f s e F t dt



  L
   

 (26) 

 

Some of the properties used in this study includes: 

 

 
1

1 ( 0),s
s

 L
   

 (27) 
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 (28) 
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where ( ) ( )nF t represents the n th derivative of ( )F t and  ( ) ( ).F t f sL If Laplace transform of ( )F t is ( )f s , 

then the inverse Laplace transform of ( )f s  is expressed by  1( ) ( ) ,F t f s L  where 
1L  is called inverse Laplace 

operator. 

The inverse Laplace of Eqs. (27) and (28) are: 

 

1 1
1 ,

s

  
  

 
L

   
 (30) 

 

1

1

!
,n

n

n
t

s





 
  

 
L

   
 (31) 

3.3 Basic principle of Laplace transform and Adomian decomposition method  

LT-ADM is a reliable method of finding the analytical solutions of Linear and nonlinear Ordinary differential 

equation. Laplace transform is applied on both sides of Eq. (12) to arrive at: 

 

    ( ) ( ) ( ) (r) 0,L f R f N f f   L L
   

 (32) 

 

Applying the differential property of LT, 

 

   1 2 ( 1)(0) (0) (0) ( ) ( ) (r) ,n n n ns f s f s f f R f N f f       L L
   

 (33) 

 

Introducing the Laplace boundary condition on the linear part of Eq. (33), then applying inverse Laplace 

 

 1 1 2 ( 1)1 1
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Applying Eq. (18) into (34), we get, 
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 (37) 

 

0 1 2
0

lim ,
p

f F F F F


    
   

 (38) 

3.4 Application of LT-ADM to the governing equation  

The hybrid method is used in obtaining the analytical solution for the governing equation. As previously mentioned 

the edge conditions considered are simply supported, free and clamped edge respectively. For brevity sake, only 

simply supported is reported here while same approach is used in obtaining solutions for clamped and free. 

Laplace transformation of coupled Eqs. (4) and (5) 
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4 3 2 2
2 3 4 3 2
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dg

r g
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g 
 
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 

L L
   

 (40) 

 

Laplace the regularity condition at the center of the circular plate Eq. (10) symmetric case. 

 

0

(0) (0) 0,

g
g(0) ,

W W

s

  

    
 (41) 

 
4 3 2 2

2 3 4 3 2

4 3 2 2
2( ) 0,w s s p

d f d f d f df d f df
r g Bg Bg Ag f k f k k g k f f

dr drdr dr dr dr
F

   
             

  
 


L L L

   
 (42) 

 

  2( ) 0,
dg

r g
dr

g
 

      
 

L L L
   

 (43) 

 

           "' " 2 ' 3

3 2 2
2 3 4 3 2

3 2 2

4( 0 0)

0

0 0

2 ,

n n n n n

w s s p

r f sf s f s f

d f d f df d f df
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      2( ) 00 ,n nggrg r gs         L L L
   

 (45) 

 

Substitute the Laplace boundary condition Eq. (41) into Eq. (44) and Eq. (45) 
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    20( ) 0,ng s g r
g

r g
s

        L L L
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The unknown are represented as  0f   while   0f   , Eq. (46) becomes: 
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Applying inverse Laplace on Eqs. (50) and (51), one gets 

 

 
3 2 2

2 3 4

3 2

2

24

3 21 1
0,2

2
n w s s p
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Applying ADM on nonlinear term in Eqs. (52) and (53). The Adomian’s polynomial, 'A s are generated using 

Eq. (20) are; 
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 (54) 

 

The other polynomials are generated in similar way. According to Eq. (52) and (53) the first term of the series 

solutions is: 
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First order equations are: 
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and second order equation are; 
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Third order equations are: 
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Solving Eqs. (55) - (63) the following expression may be obtained successively, 

 

0 1 2 3( )F r f f f f       
   

 (63) 

 

where the constant and  are found using the boundary at 1r  condition in Eqs. (7-9) Clamped, Free and simply 

supported. 

Setting the controlling parameter as zero and substitute into Eq. (63) then imposing the boundary conditions Eqs. 

(7) - (9) on Eq. (63) leads to the following simultaneous expression: 
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The polynomials 
11 12 21, ,    and

 22  are represented in terms of the natural frequency  , meanwhile 

11 12 21, ,    and 
22

 
are representing a series expression obtained from Eq. (63). Therefore, Eq. (64) may be written 

in matrix form as: 
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The following Characteristic determinant is obtained applying the non-trivial condition 
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 (65) 

 

Solving Eq. (65) gives the natural frequencies.    
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 (66) 

 

where the iteration counter is represented by i , the estimated value of the jth  dimensionless natural frequency is 

 i

j  and small number chosen is  . For this study 0.0001  . From the results its shows that few iterations the 

solution has converged. 
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3.5 The stress-deflection expression  
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 (67) 

4    RESULTS AND DISCUSSION  

The analytical solution of governing equation of motion of the circular plate under various boundary conditions with 

differential transform method is hereby presented. The material properties for the thin uniform thickness, 

homogenous circular plate used are: E=207Gpa, material density 37850 /kg m  , and thickness of the plate 

0.01h m respectively. The analytical also compared with already reported results as reported in literature [11] and 

presented in Table 3 and 4. Good agreement of result is observed along the entire values under different boundary 

and regularity conditions. Generally, the natural frequency is expreesed in dimensionless form  . Since 

dimensionless analysis is carried out, the results is valid for all thickness of radius. The parametric studies of the 

controlling factors are presented in both tabular and graphical form. The values of the natural frequency is a 

dependent upon the value of initial value choosing
0g . 

The number of iterations needed to obtain convergence in relation to natural frequency differs. For instance, 

fundamental mode requires 2 iterations for LH-ADM while the higher mode requires more iterations. This 

behaviour is attributed to more complex series functions combination. Results shown in Table 1., illustrate that, 

fundamental natural frequency gives a reasonable prediction of the circular plate but more iterations still required to 

give other higher mode natural frequencies and also increase the It is interesting to note that, present results with 

LH-ADM agree very well with past results.  

 
Table 1  

Validation of fundamental natural frequency for symmetric condition. 

Edge 

Condition/Dimensionless 

Natural frequency 

Simply Supported  Clamped Free 

Leissa [13]       Present Leissa [13]          Present Wu et al. [14]    Present 

Ω1 4.977                 4.9351 10.2158                10.2158 9.003                    9.0032 

4.1 Effect of foundation Parameter on natural frequency 

This section investigates the variation effect of the elastic foundation on the first two natural frequencies of the thin 

uniform thickness circular plate under different regularity and boundary conditions discussed earlier.  Table 2-5., 

presents the effects of foundation Parameter on natural frequency. The analysis is performed on the three boundary 

conditions discussed earlier and two conditions at the center. In this study, Consideration is given to: 

a) Elastic Winkler type foundation ( 0, 0, 0,50,100,150,p s wk g k   ) 

b) Elastic Pasternak type foundation ( 0, 0,g 10,50,100,p w sk k   ) 

c) Two-parameters elastic foundation ( 0, 50, 10,50,100p w sk k g   ) 

Although, it a known character of plate to be affected by characteristic of elastic foundation, comparing Tables 

2-5., to Table 1., indicates that for both plate and foundation stiffness to be comparable there is a need to properly 

study the foundation stiffness to be chosen.  

As it is expected in all cases, increasing the foundation stiffness results into higher value of natural frequencies. 

Moreover, it is also observed that, effect of the difference in natural frequencies is more significant for higher mode 

of the circular plate. Figs. 2 and 3 confirms the directly proportional relationship between stiffness and natural 

frequency. Increasing stiffness results into increases in natural frequency. 
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Table 2  

Shear Pasternak parameter variation on natural frequency. 

Edge Condition 
Natural frequency  (

wk =0, m=0) 

Mode sg =10 
sg =50 

sg =100 

Simply Supported 
1  9.0731916 17.71499 24.363131 

2  33.981698 48.72694 63.242599 

Clamped Support 
1  13.145639 20.90975 27.613639 

2  42.409585 56.33333 69.906398 

Free Support 
1  11.550058 18.29656 24.158648 

2  43.233944 59.74169 75.901677 

 

Table 3  

Combine Winkler and Pasternak variation effect on natural frequency. 

Edge Condition 
Natural frequency  (

wk =0, m=0) 

Mode sg =10 
sg =50 

sg =100 

Simply Supported 
1  9.0731916 17.71499 24.363131 

2  33.981698 48.72694 63.242599 

Clamped Support 
1  13.145639 20.90975 27.613639 

2  42.409585 56.33333 69.906398 

Free Support 
1  11.550058 18.29656 24.158648 

2  43.233944 59.74169 75.901677 

 

Table 4  

Showing variation of elastic foundation on natural frequency symmetric case m=0. 

Edge Condition 
Natural frequency Elastic foundation support (m=0) 

Mode wk =0 
wk =50 

wk =100 
wk =150 

Simply Supported 
1  4.93514 8.62297 11.15149 13.20438 

2  29.71931 30.54229 31.35016 32.1377 

Clamped Support 
1  10.21583 12.4243 14.29556 15.94877 

2  39.77117 40.35467 40.9695 41.57523 

Free Support 
1  9.00323 11.44799 13.45572 15.20054 

2  38.43915 39.35556 39.98574 40.60615 

 

Table 5  

Showing variation of elastic foundation on natural frequency asymmetric case m=1. 

Edge Condition 
Natural frequency Elastic foundation support (m=1) 

Mode wk =0 wk =50 wk =100 wk =150 

Simply Supported 
1  13.8981 15.5935 17.1218 18.5245 

2  48.4797 48.9961 49.5032 50.0023 

Clamped Support 
1  21.2604 22.4055 23.4948 24.5358 

2  60.8302 61.2398 61.6467 62.0509 

Free Support 
1  20.7549 21.9265 23.0385 24.0993 

2  59.9668 60.3687 60.751 61.1956 
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Fig.2 

Variation of elastic foundation parameter on natural frequency 

for free, simply supported and clamped edge symmetric case. 
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Fig.3 

Variation of elastic foundation parameter on natural frequency 

for free, simply supported and clamped edge asymmetric case. 

4.2 Mode shapes 

Homogenous circular plate is hereby considered. According to Shariyat and Alipour [12], for transient stress 

investigation, the response is normally based on modal superposition principle and the modal stress which to certain 

level, will expose the characteristics and content of the whole response of the plate. Based on that, study of the non-

dimension radial and circumferential stress is determined using Eq. (67) and results illustrated in Figs. 4 - 6. The 

mode shape for the first two natural frequencies are shown in Figs. 4-6 respectively. It is essential to note that, the 



Free Vibration Analysis of Nonlinear Circular Plates….                                     133 

 

© 2020 IAU, Arak Branch 

mode shape obey the classical theory of vibration. For radial and circumferential stresses, location of the vibrating 

node and antinodes are in away different due to the vanishing mode of the boundary condition. Figs.7 and 8 shows 

mode shape due to the bending moment and surface stress, it is clearly shown that, the location of node and 

antinodes of the vibrating plate changes. Figs.7 and 8 when compared to Figs. 4-6 different in the mode shape is 

clearly shown. Invariably, the extrema mode shapes location differs based on the boundary conditions.  

It is clearly observed from Figs. 4-6 that, the symmetric case is presenting half modal shape, while the 

asymmetric is presenting the full mode shape. 
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Fig.4 

Symmetric and axisymmetric modes shape of free edge condition. 
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Fig.5 

Symmetric and axisymmetric modes shape of simply-supported edge condition. 
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Fig.6 

Symmetric and axisymmetric modes shape of clamped edge condition. 
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Fig.7 

Radial stress for free edge first and second mode symmetric case. 
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Fig.8 

Circumferential stress for free edge first and second mode symmetric case. 

5    CONCLUSION 

In this study, nonlinear analysis of circular plates resting on Winkler and Pasternak foundations is presented. The 

nonlinear ordinary differential equations is solved hybrid Adomian decomposition method. The accuracies of the 

obtained analytical solutions are ascertained with experimental results obtained by some researchers in the past 

works. The obtained solutions were used to examine the effects of foundation parameter. From the parametric 

studies, the following observations were established. Increases in elastic foundation parameter increases the natural 

frequency. Extrema mode is disturbed due to the presence of radial and circumferential stress. The present study 

exposes the effect of elastic foundation parameters on dynamic behaviour of thin circular plate. It is expected that 

the present study will contribute to the understanding of the study of dynamic behaviour of circular plate under 

various parameters. 
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