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 ABSTRACT 

 A solution is presented to a doubly mixed boundary value problem 

of the torsion of an elastic layer, partially resting on a rigid circular 

base by a circular rigid punch attached to its surface. This problem 

is reduced to a system of dual integral equations using the 

Boussinesq stress functions and the Hankel integral transforms. 

With the help of the Gegenbauer expansion formula of the Bessel 

function we get an infinite algebraic system of simultaneous 

equations for calculating the unknown function of the problem. 

Both the two contact stresses under the punch and on the lower 

face of the layer are expressed as appropriate Chebyshev series. 

The effects of the radius of the disc with the rigid base and the 

layer thickness on the displacements, contact stresses as well as the 

shear stress and the stress singularity factor are discussed. A 

numerical application is also considered with some concluding 

results.                     © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Elastic torsion; Doubly mixed boundary value 

problem; Dual integral equations; Infinite algebraic system; Stress 
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1    INTRODUCTION 

 HE contact is the central problem of solids mechanics, because the contact zone is the main place where efforts 

are focused on a deformable body and represents the most critical point in the body. The mechanical contact is 

very important for the good resolution of many problems such as shaping (forging, stamping, punching, etc.) as well 

as for the simulation of wear (gears, tire-road, ...) and also for any system comprising several parts in a mechanical 

or multi-physical context. These problems are important for many industrial sectors, such as production, aeronautics, 

the automobile industry, railway and naval construction, civil engineering, the nuclear industry and the military. The 

theory of torsion of elastic bodies and methods for solving torsion problems present one of the vast areas of 

mathematical theory of elasticity. The theoretical and applied significance of contact torsion problems lies in the fact 

that they, on the one hand, generalize and develop the classical contact problems of the theory of elasticity.  On the 

other hand, they are directly related to important practical engineering issues on the transfer of loads from thin-
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walled elements to massive deformable bodies, often encountered in construction, machine building, especially in 

aircraft building, in mechanics of growing bodies, in measurement technology, in composites mechanics, and in 

other fields of applied mechanics. The problem pertaining to the determination of the stresses and displacements in 

an elastic medium due to a torsional rotation of a rigid disc in bonded contact has been a subject of considerable 

interest in mechanics and applied mathematics. An explicit solution of the mixed boundary problem obtained by 

introducing in a suitable manner a system of oblate spheroidal coordinates for the static case of torsion deformation 

developed by Reissner and Sagocci [1]. Lebedev and Ufliand [2] treated the problem of pressing a stamp of circular 

cross-section into an elastic layer. They expressed the required displacements and stresses in terms of one auxiliary 

function, which represents the solution of a Fredholm integral equation with a continuous symmetrical kernel.      

Florence [3] interested of studied a solution analytics for the stress distribution at a rigid circular disk on an infinite 

elastic layer over a rigid foundation when the disk is subjected to either a torque about its axis or a moment about a 

diameter. The corresponding dual integral equations of the problem were solved using the Cooke’s method.      

Strength of a composite elastic layer weakened by a plane circular crack, when a double elastic layer with a plane 

circular crack is subjected to torsion due to the rotation of a rigid cylindrical rod attached to the double layer is 

solved by Smelyanska [4]. The conjugation conditions ensure the stresses at the boundary separating the media and 

the displacements outside the crack .The shear stresses are give the corresponding systems of integral equations 

were reduced to a Fredholm integral equation of the second kind.  Low [5] analyzed the effects of embedded flaws 

in an elastic half space subjected to torsional deformations. Specifically two types of flaws are considered: a penny-

shaped rigid inclusion, and a penny-shaped crack. In each case the problem is reduced to a system of Fredholm 

integral equations. Graphical displays of the numerical results are included. The effect of an imperfectly bonded 

laminar composite is examined in terms of the intensification of the torsional stresses operative near the 

imperfection which is assumed to be a circular shaped area is considered by Sih and Chen [6] the laminar composite 

is modelled by four layers of different materials with the two outer layers being infinite in height and debonding 

occurs at the interface of the two inner layers. The analysis based on the application of Hankel transforms and the 

solution of a pair of dual integral equations can be easily extended to a multilayered system. Numerical results are 

obtained for two special laminate geometries and discussed with reference to the pertinent parameters used in the 

theory of fracture mechanics. The corresponding dual integral equations were reduced to a Fredholm one and solved 

numerically with the small parameter method. Torsion of elastic half-space with penny shaped crack is developed by 

Dhawan [7] the problem is reduced to a Fredholm integral equation. The effect of an embedded flaw in the form of a 

penny-shaped crack in an elastic half-space subjected to torsional oscillation was also studied. The torsion problem 

of two bonded layers by a rigid disc applied on it free surface was studied by Tamate [8]. A similar problem was 

examined by Singh and Dhaliwal [9]. The Reissner-Sagocci problem for an elastic layer under torsion by a pair of 

circular discs on opposite faces was considered. This problem is reduced to a pair of Fredhom integral equations 

which are then solved by the method of iteration. Gazetas [10] studied the effect of inhomogeneity on the axially 

symmetric elastic deformation arising in a soil deposit which is subjected to torsional shear tractions distributed 

linearly over a circular portion of the surface. Soil inhomogeneity is described by a shear modulus monotonically 

increasing with depth. The problem is formulated in terms of Hankel integral transforms. To obtain analytical 

expressions for displacement and stresses, in transform space, an inverse procedure has been devised in which the 

type of inhomogeneity has to be determined. As analytical inversion of the Hankel transforms of the resulting 

expression appears intractable, a simple numerical integration scheme is used to obtain the complete solution for 

stress and displacement distributions in the soil. An axisymmetric torsion problem of an elastic layer on a rigid 

foundation with a cylindrical hole treated by Hara et al. [11]. The problem is reduced to a solution of infinite 

systems of simultaneous equation. The obtained results are compared with the absence of the hole case. The problem 

with Torsion of two bonded layers by a rigid disc is devlopeted by Erguven [12]. The elastostatic problem of torsion 

of a rigid disc bonded to a semi-infinite elastic solid at a finite depth considered by Pak and Saphores [13]. With the 

halp of Hankel transforms, an exact formulation for the mixed boundary value problem is presented in the form of 

dual integral equations. They are, in turn, reduced to a Fredholm integral equation of the second kind, the solution of 

which is then computed. As illustrations, selected numerical results on the torque-rotation relationship, the stress and 

displacement fields, as well as the contact distribution are provided. Bacci [14] treated a rigid disk adheres perfectly 

to the upper surface of an elastic layer fixed to an undefonnable support. A rotation is applied to the disk around its 

axis. The resulting mixed boundary value problem is described by a Fredholm integral equation of the second kind. 

Under the assumption that the ratio of layer thickness to disk radius is not exceedingly small, an approximate 

explicit solution of this problem is given. Local stress field for torsion of penny-shaped crack in a functionally 

graded material considered by Li et al. [15]. Sakamoto [16] considered the axisymmetric problem on an elastic layer 

weakened by a circular crack subjected to an internal uniform pressure. The study considers the two cases when the 

surfaces of the layer are free of charge and smoothly clamped. These problems are reduced to dual integral equations 
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which are solved using an infinite system of algebraic equations by the Gegenbauer formula. The Reissner-Sagoci 

problem for a homogeneous coating on a functionally graded half-space is studied by Matysiak et al. [17]. The 

corresponding mixed boundary value problem was reduced to a Fredholm integral equation of the second kind and 

the authors used a quadrature method for its numerical solution. The problem of a penny–shaped crack problem in 

the interior of a homogeneous elastic material at the symmetry plane, under an axisymmetric torsion by two circular 

rigid discs symmetrically located in the elastic medium analyzed by Madani and Kebli [18]. The general solution of 

this problem is obtained by using the Hankel transforms method. The corresponding doubly mixed boundary value 

problem associated with the rigid disc and the penny–shaped is reduced to a system of dual integral equations, which 

are transformed, to a Fredholm integral equations of the second kind. Using the quadrature rule, the resulting system 

is converted to a system of infnite algebraic equations. Sakamoto [16] solved the same elastic layer weakened by a 

penny shaped as Lebedev [2] but using a different approach.  

An analytical solution of an axisymmetric torsion problem of an elastic layer on a rigid circular base has been 

developed. We determine the solution of the elastic contact problem by the help Hankel integral transform method 

using the auxiliary Boussinesq stress functions. The doubly mixed boundary value problem is reduced to a system of 

dual integral equations. Instead of the classical Fredholm integral method the obtained solution is calculated from an 

infinite system of simultaneous algebraic equations by means of the Gegenbauer expansion formula of the Bessel 

function. The effects of the radius of the disc with the rigid base and the layer thickness on the displacements, 

stresses as well as the shear stress and the stress singularity factor are discussed. A numerical application is also 

considered with some concluding results. Our results are validated on the half space case and also on the problem 

dealt by Florence [3].  

2    FORMULATION OF THE PROBLEM AND ITS SOLUTION 

We use a cylindrical coordinate system  , ,r z . The Shear modulus of the elastic medium is noted by G. A general 

solution of this axisymmetric problem yields equilibrium equations that can be represented by Boussinesq's 

harmonic stress function 3 , where  , ,r zu v w denotes the displacement vector and  , , , , ,r z rz z r         the 

stress tensor, as follows: 
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The function 3 satisfy the following equation 
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(2) 

 

We consider an isotropic elastic layer with thickness h, as shown in Fig. 1 which is a torsion around the vertical 

axis is applied to the surface of the layer by means of circular area of radius a by the disc with a plane base 

meanwhile about the z-axis through an angle 0 . The layer is resting on a rigid smooth circular base of radius b. The 

doubly mixed boundary value of the elastic layer can be described by the following equations on the rigid base 

 

 
0

0
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  ,  0 r b   (3) 
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All stress components vanish at infinity       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1 

Geometry of the problem. 

   

 

 

In order to satisfy the boundary condition (7), we can put the stress function 
3 in this form  

 

     3 0

0

sinh coshA z B z J r d      



     (7) 

 

where nJ is the Bessel function of the first kind in order n and  A  ,  B  are unknown functions of λ. Using Eqs. (1) 

and (7), we obtain the components of displacements and stresses 
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1
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     2
2
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(10) 

 

A large contribution is made for solving the integral equation problem [19]. Using Eqs. (8), (9) and (10) the 

boundary conditions (4) to (5) lead to the following system of dual integral equations  
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Making use of the following integral formula [20]  
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where 
2 1nT 

is the Tchebycheff function of the first kind and 
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In order to satisfy the homogeneous Eqs. (13) and (14), we can set 
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where 
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Solving this system of two equations yields the determination of the function  B   
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Now if we substitute Eq. (20) into the Eqs. (11) and (12), we get 
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Making use the following Gegenbauer’s formula [20] 
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Using the formula (23) into the Eqs. (21) and (22), we obtain 
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Matching the coefficients of ,cos2 a bm on both sides of Eqs. (25) and (26), we obtain the following infinite   

system of simultaneous equations for the determination of n and n  
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In matrix form the last system can be writing as: 
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2.1 Displacements and stresses on two layer boundaries  

The components of displacement on both the upper and lower surfaces of the layer can be expressed as follows: 
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where H denotes Heaviside unit step function from Eqs. (30) and (31), we find that  
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We can deduce that shears stresses, on both the upper and the lower surfaces of the layer, are expressed as 

appropriate Chebyshev series, as follows: 

 

     
 2 1

0 2 20
0

/1 n
z z nzz

n

T r b
H b r

b r
    






 


   


  (32) 

 

     
 2 1

2 2
0

/1 n
z z nz hz h

n

T r a
H a r

a r
    






 


   


  (33) 

 

The torque T to indent the disc is given by  

 

 
 

   

1

2 4
0

00

1
2 4

2 1 2 1 2 3

na

n
z z h

n

T r dr G a
n n n




  







  

  
  (34) 

 

The stress singularity factors corresponding to the studied problem are defined by 

 

 
 

0
0

0

lim 2
z z

r b
S r b

G









   (35) 

 

 
 

0

lim 2
z z h

h
r a

S r a
G









   (36) 

 

Substituting Eqs. (32), (33) into Eqs. (35) and (36), we obtain the simple expression for the stress singularity 

factors as following 

 

0

0

n

n

b
S 







   (37) 

 

0

h n

n

a
S 







   (38) 

3    VALIDATION OF THE RESULTS    

3.1 With the case of half space 

As a particular case, we can find that for b = 0 and h  , the infinite integrals of the system (28) leads to  
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    0 1

0 0

2n n m m m

n

M a X a d     





     (m=0, 1…) (39) 

 

From Eq. (39) we can get  0

4
, 0, 1n n

a
    . In addition, the expressions for surface displacement, contact 

stress and the torque are given by  

 

 
 

2 2
1

0

2
cosz h

v r r r r a
H r a

a a a a r



 


 
    
 
 

 

 
 

2 2
0

4z z h r
H a r

G a r



 

  


  

 
 

3

2 2 2
0

4r z h a
H r a

G r r a



 

   


  

(40) 

 

and   
3

0

16

3

T

G a


  

Eqs. (40) are those of the torsion of an elastic half-space by a circular rigid punch 

3.2 With the problem of FLORANCE [3]

 

The problem dealt with by Florence [3] is a particular case of our study and can be recovered in the case where the 

radius of the rigid base b is stretched towards infinity 

4    NUMERICAL RESULTS AND DISCUSSIONS  

To determine the unknown coefficients
n and

n discussed in previous section, we must evaluate the infinite 

integrals of the system (28). By separating into the terms obtained by numerical integration and those by an 

application of the asymptotic expansions of Bessel functions. It is clear that for large values of λ we get coth 1h   

and 1
0

sinh h
 . This allows us to write 

 

       
0
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cothnm n m n mA hM a X a d M a X a d
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   
0

0

1
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nm n mB M b X a d

h



  


   

   
0

0

1
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nm n mC M a X b d

h



  


   

       
0

00

cothnm n m n mD hM b X b d M b X b d





      



    

(41) 

 

The first integrals of the night landside of the above expressions are evaluated numerically using the Simpson 
formula. Here, we choose 1000 subintervals and λ0 = 1500 and the second one is replaced by the integral of the 
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function equivalent. Next we evaluate asymptotically the integral term    
0

nM x X x d


  


 . As for large value of λ 

we have 

 

 
 

2

2

2 4 1 1
cos sin 0

2 4 8 2 4
J x x x x

x x x


    
     

  

     
                      

 (42) 
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  

 
   

     
   

     
      

     
 (43) 

 

whereas 

 

 
 

 
2

8 1
cosn

n
M x x

x
 

 


   (44) 

 

Then    n mM x X x  is replaced by for large values of  λ 

 

 

 
  22

14
sin 1 cos 2

2

m

x x
x

 
 
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  
 
 

 (45) 

 

and of the relation obtained by integration par parts  
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 

0

22
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xx
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xx
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Then 
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0 022

0 0

1 cos 21sin4
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M x X x d xci x xsi x

x


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 

    
     

    
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where si(x) is the integral sine function 

 

 
sin

x

si x d







   (48) 

 

and ci(x) is the integral cosine function  

 

 
cos

x

ci x d







   (49) 

 

The coefficients elastics
n and

n are shown in the following Tables 1-4., of the thickness elastic layer and the 

radius of the disc with the rigid base 

 

 

 

 

 



B. Kebli et.al.                                  213 
 

© 2020 IAU, Arak Branch 

Table 1 

 Values of the coefficients elastics n and n for h/a=1 and various values of b/a. 

 

 

Table 2 

Values of the coefficients elastics n and n for b/a=1 and various values of h/a. 

n h /a=0.7 h /a=1 h/a=1.5 

n  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

4.170033382782129 

-0.212832588510739 

0.025738241321176 

0.001702889430108 

-0.000452062863889 

0.000091219012651 

-0.000166391798562 

0.000155482765676 

-0.000230395062599 

0.000124966919117 

3.983788899757462 

-0.056260500481093 

0.007944861070421 

-0.000057591486065 

-0.000182303527505 

0.000140535686355 

-0.000165570916663 

0.000146411921175 

-0.000221320067071 

0.000117192869601 

3.950183204524812 

-0.006590598710702 

0.000969978084557 

0.000049411164114 

-0.000126213922232 

0.000136362204521 

-0.000164807531420 

0.000144990450539 

-0.000219844561831 

0.000115403489395 

n  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1.895863774517311 

-0.684440732310698 

0.040394254408903 

0.009627421603626 

-0.000888507158191 

-0.000158078097548 

-0.000056572072881 

0.000078093408042 

-0.000099187351701 

 0.000066021665867 

1.128889430215339 

-0.338727521884290 

0.029664248400491 

0.000678220790190 

-0.000363002573279 

0.000050187962416 

-0.000043196952790 

0.000042790425714 

-0.000059836672665 

0.000038558000572 

0.541813542818172 

-0.115525955216694 

0.009707885327886 

-0.000367394955728 

-0.000025305369857 

0.000020876338087 

-0.000022513856425 

0.000020496765178 

-0.000029139819080 

0.000017757790383 

   

 

 

 

n b /a=0.5 b /a=1 b /a=1.5 

n  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9  

3.739611017953796 

0.007953367469361 

0.006142138541829 

-0.001383963487921 

0.000086926681302 

0.000111526581392 

-0.000156306134004 

0.000137662682455 

-0.000208501521969 

0.000109065714806 

3.983788899757462 

-0.056260500481093 

0.007944861070421 

-0.000057591486065 

-0.000182303527505 

0.000140535686355 

-0.000165570916663 

0.000146411921175 

-0.000221320067071 

 0.000117192869601 

4.172067903177652 

-0.055859698704046 

0.003277751091580 

0.000057176309999 

-0.000129000315475 

0.000143549111475 

-0.000173991179636 

0.000153399746710 

-0.000231754455384 

 0.000122745667823 

n  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0.694558542611535 

-0.048356555962049 

0.000719945930218 

0.000016562704126 

-0.000000851174826 

-0.000008264945399 

-0.000011700614137 

-0.000032522537498 

-0.000052623746738 

-0.000101577590032 

1.128889430215339 

-0.338727521884290 

0.029664248400491 

0.000678220790190 

-0.000363002573279 

0.000050187962416 

-0.000043196952790 

0.000042790425714 

-0.000059836672665 

 0.000038558000572 

1.189557456551056 

-0.817546523415613 

0.204180579779440 

-0.017851315642931 

-0.004381568529923 

0.001649822836933 

-0.000127730381337 

-0.000057990711221 

0.000020435943586 

-0.000009672824829 
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Table 3 

Values of the coefficients elastics n and n for b = 0 and .h a   

 

Table 4 

Values of the coefficients elastics n and n for h/a=2 and .b a   

 

The distribution of the nondimensional normal displacements and shear stress with different values of plan z/h is 

graphically illustrated in the Figs. 2 and 3. 

 

n n  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

3.999997992791846 

0.000061598423155 

-0.000087455362930 

0.000108167777386 

-0.000128018135665 

0.000137877319537 

-0.000166881799914 

0.000146782730313 

-0.000222671264024 

0.000116752007792 

                                           n (10-6) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0.350287408318305 

-0.000006503405484 

0.000089393103665 

-0.000061046583542 

-0.000003876527967 

-0.000470600174289 

-0.000806790373148 

-0.002083069207280 

-0.003500326973150 

-0.006398628018515 

n n  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

     3.943638872732461 

0.002694533965913 

-0.000152751183762 

0.000107950815758 

-0.000126236171898 

0.000135931710572 

-0.000164535666511 

0.000144700338121 

-0.000219558348177 

0.000115060148000 

                                      n (10-6) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

     0.005456878103825 

-0.014846961065098 

0.029711734090734 

-0.031573804154084 

0.056723557241741 

-0.046962754343598 

0.082742719325882 

-0.067199019594041 

0.096912234170243 

-0.115520253799589 
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Fig.2 

The variation of v

 for b/a=1.5 with various values of z/h. 

  

 

 

 

 

 

 

Fig.3 

The variation of z


 for b/a=1.5 with various values of z/h. 

 

Figs. 4 and 5 show the variation of the nondimensional normal displacement  
0z

v



for h/a and b/a, respectively. 

It decreases with decreasing the layer thickness and the radius of the rigid base 

 

 

 

 

 

 

 

 
 

Fig.4 

The variation of  
0z

v



for b/a=1.5 and various values of h/a. 

 

  

 

 

 

 

 

 

Fig.5 

The variation of  
0z

v



for h/a=1.5 and various values of b/a. 

 

The distribution of the nondimensional shear stress  
0

z
z





at the rigid base is given in Fig. 6 with various values 

of h/a. It is noted that the value are decreasing with decreasing the layer thickness. The values of the nondimensional 

shear stress decreasing the rigid base radius are illustrated in Fig. 7. 
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Fig.6 

The variation of  
0

z
z





for b/a=1.5 and various values of h/a. 

  

 

 

 

 

 

 

Fig.7 

The variation of  
0

z
z





for h/a=1.5 and various values of b/a. 

 

The variations of the torque T  applied to the disc with the layer thickness and rigid base are mentioned in Figs. 

8 and 9. The horizontal line represents the case when h a  (an elastic half-space).When the value of T  change 

with the layer thickness and the rigid base radius. From the graph line in the Fig.10, it shows a good agreement with 

those obtained by Florence [3] or the torque T   decreases with increasing the layer thickness. 

 

 

 

 

 

 

 

 

 
 

Fig.8 

The variation of T* for various values of h/a. 

  

 

 

 

 

 

 

Fig.9 

The variation of T* for various values of b/a. 
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Fig.10 

The variation of T* for b a  and various values of h/a.   

 

The variation of the stress singularity factors corresponding to the studied problem is graphically illustrated in 

Figs. 11 and 12. It is clear that the effect of the layer thickness and the rigid base radius in the distribution of the 

stress singularity factors S0, Sh 

 

 

 

 

 

 

 

 

 
 

Fig.11 

The variation of S0, Sh for various values of h/a.  

  

 

 

 

 

 

 

Fig.12 

The variation of S0, Sh for various values and b/a. 

5    CONCLUSIONS 

In the present paper, we studied a doubly mixed boundary value problem for an elastic layer. An analytical solution 

was obtained for the corresponding dual integral equations system through an infinite system of simultaneous 

equations using the Gegenbauer formula.  

The obtained results are summarized as follows: 

 Analytical solution based upon the integral Hankel transforms for contact problem have been developed 

and utilized. 

 By the truncation method. An infinite algebraic system has been solved with different values of the elastic 

layer thickness and the radius of the disc with the rigid base. 

 The numerical results revealed the effects of the layer thickness and the radius of the disc with the rigid 

base on the displacement, the torque as well as on the stress singularity factors. 

The graphs obtained are analyzed as follows: 
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 The distribution of the nondimensional normal displacements and shear stress with different values of plan 

z/a is graphically presented. 

 The distribution of the nondimensional normal displacements  
0z

v



decreases with decreasing the layer 

thickness and the radius of the rigid base. 

 The distribution of the nondimensional shear stresses  
0

z
z





at the rigid base is given with various values 

of h/a. It is noted that the value are decreasing with decreasing the layer thickness and the rigid base radius, 

graphically they are displayed. 

 The variations of the torque T 
applied to the disc and the stress singularity factors S0 , Sh with the layer 

thickness and rigid base are mentioned graphically. It is noted that the value of T


 and S0, Sh change with 

the layer thickness and the rigid base radius.  

 The graphical results illustrated effects of the radius of the disc with the rigid base and the layer thickness 

on the displacements, stresses as well as the shear stress and the stress singularity factors. 

 The results are validated on the half space case and it shows a good agreement with those obtained by 

Florence [3] when the radius of the rigid base b is stretched towards infinity. 
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