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 ABSTRACT 

 The dynamic performance of structures under traveling loads should be 

exactly analyzed to have a safe and reasonable structural design. 

Different higher-order shear deformation theories are proposed in this 

paper to analyze the dynamic stability of thick elastic plates carrying a 

moving mass. The displacement fields of different theories are chosen 

based upon variations along the thickness as cubic, sinusoidal, hyperbolic 

and exponential. The well-known Hamilton’s principle is utilized to 

derive equations of motion and then they are solved using the Galerkin 

method. The energy-rate method is used as a numerical method to 

calculate the boundary curves separating the stable and unstable regions 

in the moving mass parameters plane. Effects of the relative plate 

thickness, trajectories radii and the Winkler foundation stiffness on the 

system stability are examined. The results obtained in this research are 

compared, in a special case, with those of the Kirchhoff’s plate model for 

the validation.                   © 2019 IAU, Arak Branch. All rights reserved. 

 Keywords: Mass–plate interaction; Higher-order shear deformation 

theories; Parametric vibration; Parametric resonance; Energy-rate 
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1    INTRODUCTION 

 IBRATIONS occur in many structures and machines and can devastatingly affect the system performance. 

Thus, investigating the behavior of dynamic systems is vital to prevent unwanted vibrations and the resonance 

phenomenon. Plates are among the most important structures in the mechanical engineering applications that 

sometimes go under in plane, shear and moving forces. A lot of analytical and numerical studies conducted in the field 

of moving loads are related to one-dimensional structures like cables and beams [1, 2], which have simpler governing 

equations compared to plates [3, 4]. However, the dynamic analysis of plates under the influence of traveling loads has 

also been performed by some researchers [3, 5–9]. Although there are some papers regarding this issue, however most 

of them have been carried out on thin plates and based on the Kirchhoff’s plate theory. In these studies, a group of 
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researchers analyzed the dynamic response of plates under moving loads by neglecting the inertial effects of the 

moving masses [3, 10]. In addition, nonlinear dynamic analyses of the plate-moving mass system [5, 6], investigation 

of inertial terms effects of moving masses on the system response [11], different assumptions on the mass movement 

patterns (single or multiple and constant velocity or accelerating motion) [9, 12–14] were examined. Since modeling 

the plates using the Kirchhoff’s plate theory is valid only for a small range of plate thicknesses, shear theories have 

been proposed to study the dynamic behavior of moderately thick plates. Gbadeyan and Dada [15] used the first-order 

shear deformation theory to examine the elastodynamic response of a thick rectangular plate under moving mass. 

Although their results were limited to the derivation of time response diagrams for the aforementioned system, they 

showed the importance of the rotary inertia and the shear deformation effects. Amiri et al. [16] conducted a 

comprehensive research on the dynamic response of moderately thick rectangular plates influenced by a mass moving 

along different paths. They derived the governing dynamic equations based on the first-order shear deformation theory 

and solved them using the eigenfunction expansion method. Nowadays, according to economic considerations, it is 

necessary to decrease the weight of structures carrying moving objects. This subject has increased the probability of 

large amplitude vibrations in aforementioned systems and accordingly identification and finding rules to control the 

undesirable vibrations have become a necessitation. One of the most important aspects of this issue is determination of 

conditions which induce instability in the structures carrying moving masses, where there is the possibility of 

irreparable damages if these conditions are not prevented. 

The dynamic instability of elastic structures subjected to traveling loads can be due to different types of resonances 

including internal [17], external [18] and parametric [19–22]. In comparison with external resonance which occurs 

because of a synchronization between external excitation frequency and the natural frequency of the system, the 

internal resonance can be due to nonlinear modes interference of a system at certain frequency ratios. The parametric 

resonance, on the other hand, is predicted to happen usually in self-excited systems when the driving frequency of 

excitation terms is almost a multiple of the system fundamental natural frequency. Parametric resonance creates 

instability in linear systems by transcending a critical drive verge which would not be even restricted by linear 

damping elements and would grow boundlessly. As an early study, Nelson and Conover [19] investigated the 

instability caused by parametric resonance in Euler-Bernoulli beams under passage of successive series of moving 

masses. In recent years, Pirmoradian et al. [20, 21] examined the occurrence of parametric and external resonances in 

Euler-Bernoulli and Timoshenko beams excited by sequential moving masses. They extracted the boundaries of 

unstable regions in the mass-velocity plane of moving masses based on the Floquet theory. Torkan et al. [23, 24] 

studied the conditions suitable for occurrence of parametric resonance in the transverse vibration of rectangular plates 

under the successive passage of moving masses. The plate was modeled based on the Kirchhoff’s theory in the 

mentioned research and rectilinear and diagonal paths were considered for the sequence of masses. Pirmoradian et al. 

[25] studied the dynamic instability of thin rectangular plates with different boundary conditions under the traverse of 

moving masses by implementing the incremental harmonic balance method.  

Three types of rectilinear, diagonal and circular paths were considered for the passage of the masses. What were 

reviewed in the above is a selection of some studies related to the parametric resonance conditions in the interaction 

between elastic structures and moving masses. Although instability analyses of beams under moving masses have 

been abundantly performed [19–21, 26],  stability study of plate structures influenced by moving masses has been 

considered only in [23] and [25]. As mentioned earlier, the system modeling in the mentioned references was based on 

the Kirchhoff’s theory, so there is a feasibility available for using the shear deformation theories. Accordingly, in this 

paper, the dynamic stability of a thick rectangular plate carrying a mass moving on an elliptical path is analyzed based 

upon the higher-order shear deformation theories.  

2    MATHEMATICAL MODELING  

There exist several different theories for describing the dynamic and static behaviors of elastic plates which are chosen 

based on the plates geometry and their constituent materials. Developing and studying plate theories started from mid-

19
th

 century and are still in progress. These theories can be divided into three categories including Kirchhoff’s plate 

theory, the first-order shear deformation theory and the higher-order shear deformation theory. The Kirchhoff’s plate 

theory which is the simplest one to express the plate behavior is based on the assumption that the vectors 

perpendicular to the mid-plane do not rotate, and do not experience any extension or deformation. Although this 

classic theory provides exact results for thin plates, because of neglecting the shear deformation it cannot yield exact 

results for thick plates. In the first-order shear deformation theory, more exact results will be obtained according to 

consideration of shear deformations in the governing equations. However, the drawback of this method is the need for 
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a suitable choice of correction shear factor which makes this theory slightly difficult to use. Therefore, researchers 

have developed the higher-order shear deformation theories. Some of the most famous ones are the third-order shear 

deformation theory (TSDT) [27], the improved third-order shear deformation theory (ITSDT) [28], the sinusoidal 

shear deformation theory (SSDT) [29], the exponential shear deformation theory (ESDT) [30] and the hyperbolic 

shear deformation theory (HSDT) [31].  

The structure under study in this problem is a uniform rectangular plate with the length of a, width of b, constant 
thickness of h, Young’s modulus of E, Poisson’s ratio of ν, mass per unit volume of ρ and with simply supported 

boundary conditions which is placed on an elastic Winkler’s foundation with the stiffness of 
wk  (as Fig. 1).  

The coordinate axes are chosen so that the x y  plane is coincident with plate mid-plane and the z axis is 

perpendicular to it. Also, it is assumed that the moving mass M travels on an arbitrary path on the plate’s surface.  

 

 

 

 

 

 

 

 

 

Fig.1 

The schematic of the plate carrying a mass moving on an 

arbitrary path. 

 

In order to invoke the Hamilton’s principle, the displacement field relations based on the higher-order shear 

deformation theories are defined as the following: 

 

      x x xu x y z u x y z w f z w, ,, , , ,      (1) 

 

      y y yv x y z v x y z w f z w, ,, , , ,     (2) 

 

   w x y z w x y, , , ,  (3) 

 

where u ,v and w are the plate mid-plane displacements. In additions, 
x  and 

y  are shear deformations about x and 

y axes. The function  f z  for different higher-order shear deformation theories is presented in Table 1.  

 
Table 1  

The expressions for  f z  function for various shear theories. 

 f z  Theory 

 
z

f z z
h

2

2

4
1

3

 
  
 
 

 
 

TSDT 

 
z

f z z
h

2

2

5 4
1

4 3

 
  
 
 

 
 

ITSDT 

 
h z

f z
h

sin 


 
  

 
  

 

SSDT 

 

z

hf z ze

2
2
 

  
    

 

ESDT 

 

h z
z

h
f z

cosh sinh
2

cosh 1
2








   
   

   
 

 
 

  

 

 

HSDT 



793                              E. Torkan and  M. Pirmoradian 

 

© 2019 IAU, Arak Branch 
 

Strains due to small deflections and based on the higher-order shear deformation theories are as the following: 

 

 

 

 

 

 

 

 

 

 

xx xx xx
xx

yy yy yy yy

xy
xy xy xy

z z

0 1 3

0 1 33

0 1 3

,

  

   

   

      
             

         
       
              

 (4) 

 

 

 

 

 

yz yz yz

xz
xz xz

z

0 2

2

0 2
.

  

  

         
      

          

 (5) 

 

In which xx  and yy  are normal strains and xy , yz  and xz  are shear strains. Also, in recent expressions we 

have: 

 

 

 

 

 

 

 

xx xx

yy yy

xy xy

u x

xx

v y

y y

u v yx
y x y x

0 1

0 1

0 1

, ,







 

 

 






 

   
   

  
      
           

        
       
          

    

 (6) 

 

 

 

 

xx

yy

xy

wx

x x

wy
c

y y

wyx

y x x y

3

3
1

3

2

2

2
,

2

2
2











   
  

      
        

      
      

        
   
       

 (7) 

 

 

 

 

 

yz yz

xz xz

w w
y y

y y
c c

w w
x x

x x

0 2

2 3
0 2

, .

 
 

  

    
               

         
             

       

 (8) 

 

The coefficients of c1 , c2  and c3  are determined based on different theories. For example, these coefficients for 

TSDT and ITSDT are [32]:  

 

c c c
h h

1 2 32 2

4 4
, 1, , for TSDT

3
    (9) 

 

c c c
h z h

1 2 32 2 2

5 1 5 5
, , , for ITSDT

43 4
     (10) 

 

By considering the linear elastic behavior, the normal stresses  xx yy,   and shear stresses  xy yz xz, ,    can be 

represented in the matrix form as follows: 
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xx xx

yy yy

xz xz

yz yz

xy xy

Q Q

Q Q

Q

Q

Q

11 12

12 22

44

55

66

0 0 0

0 0 0

0 0 0 0 .

0 0 0 0

0 0 0 0

 

 

 

 

 

    
    
    
   

    
    
    
        

 (11) 

 

It should be noted that similar to the classic and the first-order shear deformation theories, the normal transverse 

stress  zz  is assumed to be zero. The coefficients 
ijQ  appearing in Eq. (11) are related to engineering constants 

and they are as follows: 

 

 
E E E

Q Q Q Q Q Q G11 22 12 44 55 662 2
, , .

2 11 1



 
      

 
 (12) 

 

The governing differential equations of motion are derived using the Hamilton’s principle which is given as: 

 

 
t

U V K dt

0

0,      (13) 

 

where U is the strain energy of the plate, V is the work done by the applied forces and K is the kinetic energy of the 

plate which are going to be derived in the following. The variational form of the virtual strain energy function for an 

elastic plate is as follows: 

 
h

xx xx yy yy xy xy xz xz yz yz

A h

U dz dA

/ 2

/ 2

,          



         (14) 

 

By substituting Eqs. (4) and (5) into Eq. (14), it yields:  

 

             

                

h

xx xx xx xx yy yy yy yy

A h

xy xy xy xy xz xz xz yz yz yz

U z c z z c z

z c z z z dz dA

/ 2

0 1 3 0 1 33 3
1 1

/ 2

0 1 3 0 2 0 23 2 2
1 .

        

         



     


      


 
 (15) 

 

The virtual work done on the system is defined as: 

 

  t w

A

V f x y t k w w dA, , ,    
   (16) 

 

where  tf x y t, ,  is the transverse loading function and will be substituted along with the moving mass loading 

function. The virtual kinetic energy of the plate based on the higher-order shear deformation theories can be expressed 

as: 

 

 
h h

x x

A h A h

y y x x

w w
K u u v v w w dz dA u z c z u z c z

x x

w w w
v z c z v z c z w w dz dA I u u I v v I c I

y y x

/ 2 / 2

3 3
1 1

/ 2 / 2

3 3
1 1 0 0 2 1 4


        


       

 

    
         

   

    
            

     

   

x

A


  
   

   


 (17)   
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x x x y y y y y y

w w w w w
c I c I I c I c I c I dA

x x y y y
1 4 1 6 2 1 4 1 4 1 6 ,

 
        

                 
                       

                      

 

(17)   

 

where  iI i 0,2,4,6  are the inertial terms of the plate. These terms are defined as: 

 

   
h

i

i

h

I z dz i

/ 2

/ 2

, 0,2,4,6 .



   (18) 

 

Substituting Eqs. (15-17) into Eq. (13) and performing some algebraic operations and mathematical 

simplifications, the coupled partial differential equations governing the lateral displacement of the system will be 

obtained as:  

 

 

 

 
 

y yx x

y x

w w
S Gh S Gh D S S

x yx y x x y

w w w w
S D S S S

x x y y x y y x y

D
S S

332 2

3 3 1 22 2 3 2

3 34 4 4 4

1 1 2 14 2 2 3 2 4 2 2

1 2

1
2

2

  


 
  



        
                          

         
                              

 
 

   

yx
w

yx
t

w w
S k w h

x y x y x y t

w w
S J S S J f x y t

x t y t x t y t

33 4 2

12 2 2 2 2

334 4

1 1 22 2 2 2 2 2

4

, , ,





 

    
     

          

    
                    

 (19) 

 

   

 
   

   

yx

yx

x
x

w w
D S S S S

x yx x x y

D w
S S S S

x yy x y

w w
S Gh S S J S S J

x t x t

22 3 3

1 2 1 22 3 2

22 3

1 2 1 22 2

2 3

3 1 2 1 22 2

1 2

1
1 2 2

2

1 2


 

 


  

      
                   

      
                  

   
               

0,

 (20) 

 

   

 
   

   

y x

y x

y

y

w w
D S S S S

x yy y x y

D w
S S S S

x yx x y

w w
S Gh S S J S S J

y t y t

2 2 3 3

1 2 1 22 3 2

2 2 3

1 2 1 22 2

2 3

3 1 2 1 22 2

1 2

1
1 2 2

2

1 2

 
 

 


  

      
                   

      
                  

    
               

0,

 (21) 

 

where the coefficients S1 , S 2  and S 3  are presented in Table 2 based on different higher-order shear deformation 

theories.  
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Table 2 
Values of S1 , S 2  and S3  based on various shear deformation theories. 

S3   S 2   S1  
Theory 

8

15
  

1

5
  

1

21
  

 

TSDT 

5

6
  

 

0 
1

84
  

 

ITSDT 

1

2
  

35208
0.226

155813
   

5873
0.0559

98123
   

 

SSDT 

16822
0.468

35935
   

25283
0.253

100044
   

9474
0.0739

128279
   

 

ESDT 

21999
0.536

39088
   

5380
0.179

30127
   

12007
0.0386

311296
   

 

HSDT 

 

The external excitation force caused by the mass movements on an arbitrary path is defined as: 

 

       t M M

d w
f x y t M g x x t y y t

dt

2

2
, , , 

 
     

 
 (22) 

 

where g introduces the gravitational acceleration and   is the Dirac-delta function. Also,  Mx t  and  My t  

introduce the mass location on the plate’s surface at the time t. Assuming complete contact between the mass and the 

plate and considering all inertial terms, the loading function extends to: 

 

 

     

t

M M

w w dx w dy w dx dy w dx
f x y t M g

dt dt x y dt dt x t dtt x y

w dy w d x w d y
x x t y y t

y t dt x ydt dt

2 22 2 2 2 2

2 2 2

2 2 2

2 2

, , 2 2

2 . 

             
                              

      
                    

 (23) 

 

Finally by substituting Eq. (23) into Eq. (19), the partial differential equations governing the plate-moving mass 

system are obtained as: 

 

 

 

 
 

y yx x

y x

w w
S Gh S Gh D S S

x yx y x x y

w w w w
S D S S S

x x y y x y y x y

D
S S

332 2

3 3 1 22 2 3 2

3 34 4 4 4

1 1 2 14 2 2 3 2 4 2 2

1 2

1
2

2

  


 
  



        
                          

         
                              

 
 

 

yx
w

yx

w w
S k w h

x y x y x y t

w w w
S J S S J M g

x t y t x t y t t

w dx w dy w dx dy

dt dt x y dtx y

33 4 2

12 2 2 2 2

334 4 2

1 1 22 2 2 2 2 2 2

2 22 2 2

2 2

4

2





 

    
     

          

     
                         

       
       

       

     M M

w dx w dy

dt x t dt y t dt

w d x w d y
x x t y y t

x ydt dt

2 2

2 2

2 2

2 2

, 

      
      

        

    
              

 (24) 
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   

 
   

   

yx

yx

x
x

w w
D S S S S

x yx x x y

D w
S S S S

x yy x y

w w
S Gh S S J S S J

x t x t

22 3 3

1 2 1 22 3 2

22 3

1 2 1 22 2

2 3

3 1 2 1 22 2

1 2

1
1 2 2

2

1 2


 

 


  

      
                   

      
                  

   
               

0,

 

(25) 

 

   

 
   

   

y x

y x

y

y

w w
D S S S S

x yy y x y

D w
S S S S

x yx x y

w w
S Gh S S J S S J

y t y t

2 2 3 3

1 2 1 22 3 2

2 2 3

1 2 1 22 2

2 3

3 1 2 1 22 2

1 2

1
1 2 2

2

1 2

 
 

 


  

      
                   

      
                  

    
               

0.

 (26) 

3    GALERKIN METHOD  

After deriving the partial differential equations of motion, they are reduced to ordinary differential equations using the 

Galerkin method as a discretization method. For this purpose, first, the variables w, x  and 
y  are presented as a 

series of base functions according to the following expressions:  

 

     i i

i

w x y t w x y W t

1

, , , ,





  (27) 

 

     x xi xi

i

x y t x y t

1

, , , , 





   (28) 

 

     y yi yi

i

x y t x y t

1

, , , , 





   (29) 

 

where  iW t ,  xi t  and  yi t  are time-dependent generalized coordinates and  iw x y, ,  xi x y,  and 

 yi x y,  are the shape functions which have to be chosen appropriately  to satisfy the boundary conditions. For a 

plate with simply supported boundary conditions, these shape functions are defined as: 

 

 i

m x n y
w x y

a b
, sin sin ,

    
    

   
 (30) 

 

 xi

m x n y
x y

a b
, cos sin ,

 


   
    

   
 (31) 

 

 yi

m x n y
x y

a b
, sin cos ,

 


   
    

   
 (32) 
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where m and n are the vibration modes in the direction of plate length and width, respectively. Substituting Eqs. (27-

29) into Eqs. (24-26), and then multiplying both sides of the obtained equations by  jw x y, ,  xj x y,  and 

 yj x y, , respectively, and finally integrating the resulted equations over the plate’s surface, the governing ordinary 

differential equations of the system are achieved in the form of vector-matrix as following: 

 

      x x y yM t W C t W K t W DΨ RΨ BΨ TΨ F ,        (33) 

 

x x yMW+DΨ RΨ KW TΨ 0,     (34) 

 

y x yMW+BΨ RΨ KW TΨ 0,     (35) 

 

where the vectors and matrices components are presented in Appendix A. Considering an elliptical path about the 

plate’s center for the motion of the mass, the plate will be under an intermittent loading. Therefore, a parametric 

excitation would be imposed on the plate and consequently the governing equations would have periodic coefficients 

with respect to time. Rotary machineries and circular saws which are usually used in wood industries are some 

common industrial applications of this loading pattern. As shown in Fig. 2, it is assumed that the mass is moving about 

the plate center with angular velocity of   on an elliptical path with semi-minor axis of a0
 and semi-major axis of b0

.  

 

 

 

 

 

 

 

Fig.2 

The schematic of the plate carrying a mass moving on an 

elliptical path. 

 

Thus, the time-varying location of the mass on the plate is described by: 

 

   Mx t x a t0 0 cos ,   (36) 

 

   My t y b t0 0 sin .   (37) 

 

Substituting Eqs. (36) and (37) into Eqs. (33-35) and considering the first vibrational mode, the coupled time-

varying ordinary differential equations of motion are obtained as: 
 

         

     

 

w

Shab a b M r M r
J MP t W t P t t P t W

ab a b

S S S Sa b b a b ab M r
Gh D D D k t P t

ab ab aba a b a

M r
t P

b

2 2
21

1 2 3

2 2 4 4 4 4 4 2 2
2 2 23 1 1 1

13 3 3 2

2 2
2 2

2

2 sin 2 cos
4 4

1 sin
4 4 2 2 4

cos

  
     

   
    


 

    
             

     
             
    

              

   

 

x

x y

M r M r
t t t P t P t t P t

ab a

SS S S S S SM r b
t P t W J b Gh b D D

b ba

SS S S S S S
D J a Gh a

b

2 2
2 2

1 4 5 2

3 3
2 31 2 1 2 1 2

3 2

3
31 2 1 2 1 2

2 sin cos cos

sin
4 4 4 4

1
4 4 4 4

 
    

  
     


    

 

       
          

      

       
           
     

    y

S S a
D D

a b

S S
D Mg P t

a

3 3
1 2

2

3
1 2

5

4

1 ,
4

 




  
  
 

 
    
 

 

(38) 
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 

 

x x

y

SS S S S S S S Sb a
J bW Jab Ghab D D

a b

SS S S S S S S Sb
D D Gh b D D

a

2 2
31 2 1 2 1 2 1 2

3 3
2 2 31 2 1 2 1 2 1 2

2

1 2 1 2 1 2
1

4 4 4 4 8

1 2 1 2
1

4 8 4 4 4

 
   

 
     

              
              

         

             
              

        

 

b

S S
D W

b

3
1 2 1 0,

4








 
   
  

 (39) 

 

 

 

y x

y

S S S S S S S S
J aW Jab D D

S SS S S S S Sa b a
Ghab D D Gh a D

b a b

S S

2 21 2 1 2 1 2 1 2

2 2 3
3 31 2 1 2 1 2

2

1 2

1 2 1 2 1 2
1

4 4 4 8

1 2 1 2
1

4 4 8 4 4

4

      

  
 



              
             

        

           
            

        

 
 
 

 
S S

D D W
a a

3 3
1 2 1 0,

4

 


 
   
  

 (40) 

 
 

In which 

 

     
a b

P t t t
a b

2 20 0
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2 0 0 0
3 cos cos cos sin sin sin ,     

     
      

     
 

     
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   
 

     
a b

P t t t
a b

0 0
5 cos cos cos sin .   

   
    

   
 

(41) 

 

In order to nondimensionalize the equations, the dimensionless parameters are defined as follows: 

 

 
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, , , .
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 

 



 






   

 

 (42) 

 

Finally, the dimensionless coupled ordinary differential equations governing the rectangular plate subjected to an 

orbiting mass based on the higher-order shear deformation theories are achieved as the following: 
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(43) 
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(45) 

 

In which 

 

       P 2 2
1 cos cos cos sin ,    

 

          P 2
2 cos cos sin cos cos sin ,      

 

          P 2
3 cos cos cos sin sin sin ,      

 

       P4 sin cos sin sin ,    
 

       P t5 cos cos cos sin .     

(46) 
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In recent equations, the prime superscript indicates derivative with respect to the dimensionless time  . 

4    ENERGY-RATE METHOD  

The energy-rate method is a numerical method for analyzing linear and nonlinear parametrically excited systems. This 

method, which was first introduced by Nakhaie Jazar [33], can be used to analyze parametric systems and is based on 

calculating the integral of system energy in one period numerically This method has plenty of advantages in 

comparison to perturbation methods where the validation of the results is highly dependent on the smallness of the 

perturbation parameter. In addition, depending on the accuracy of the employed numerical integration method, the 

energy-rate method can find the value of parameters for a periodic response more accurate than classical methods, no 

matter if the periodic response is on the boundary of stable and unstable zones or it is a periodic response within the 

stable or unstable region.The energy-rate method can be applied to any type of time-varying second-order ordinary 

differential equations in the form of: 

 

   x f x g x x x t, , , 0,    (47) 

 

where  f x  is a single variable function and  g x x x t, , ,  is a time-varying function with the following conditions: 

 

 g t0,0,0, 0,  (48) 

 

   g x x x t T g x x x t, , , , , , .   (49) 

 

In addition, the functions f and g can depend on finite sets of parameters. Expression (47) may be assumed to be a 

model of a single mass attached to a spring which is under the non-conservative force of  g x x x t, , , . By 

introducing the kinetic, potential and mechanical energies as   xT x
2

2
 ,    V x f x dx   and 

   E T x V x  , respectively, the time derivative of the energy function can be written as follows: 

 

      
d d

E E x f x x dt x g x x x t
dt dt

21
. , , , .

2

 
     

   (50) 

 

Next, to examine the stability of the system, the average energy expression during one period cycle is defined as: 

 

 

T

T

E E dt x g x x x t dt
T T

0

av

0

1 1
. , , , .    (51) 

 

Now, if Eav  is greater than zero for some system parameters, the energy will be entered to the system and 

therefore these parameters are in the unstable region. Otherwise, if Eav  is less than zero, the system parameters 

belong to the stable region and consequently the system energy would be reduced accordingly. Moreover, Eav  will be 

zero on the boundary separating stable and unstable regions and in this case the associated system parameters belong 

to a transition curve.  

4.1 Applying the energy-rate method to the plate-moving mass system 

In this section, by applying the energy-rate method to the equations of the plate-moving mass system, the stable and 

unstable regions are determined in the moving mass parameters plane (   plane). For this end, neglecting the 

gravity effect, the coupled Eqs. (43-45) are introduced in the vector-matrix form as the following:  
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       M M C K K2 2 2
1 2 1 1 24 8 4 0,             Q Q Q  (52) 

 

where the elements of vectors and matrices are presented in Appendix B. By rewriting Eq. (52) in the form of Eq. (47) 

we have: 

 

   f g , , , 0,    Q Q Q Q Q  (53) 

 

In which: 
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       
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1 1 1
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1
,

, , , 4 8 4 .      



  




     

Q Q

Q Q Q Q Q Q

 (54) 

 

The average energy during a period is obtained as: 

 

 
T

avE E dt g dt

2 0

0 2

1 1
. , , , .

2 2






 

     Q Q Q Q  (55) 

 

In order to identify those parameters of the moving mass which belong to boundary curves and separate the stable 

and unstable regions, an algorithm has been written in a computer software which by meshing the problem parameters 

plane, solves the governing coupled ODEs for each pair of  ,   numerically, and calculates the value of Eav  and 

extracts the stability boundary curves (everywhere Eav 1 ). 

5    RESULTS AND DISCUSSIONS  

In this section, the dynamic stability of the system is examined based on the higher-order shear deformation theories. 

Effects of the plate thickness ratio, the radii of moving mass movement path and the elastic foundation stiffness on the 

parametric regions are evaluated. In the figures provided in the following, the regions surrounded by two curves 

intersecting on the   axis depict the unstable zones. These unstable regions identified in the moving mass parameters 

plane are completely relevant to the occurrence of principle parametric resonance in the mentioned system. Indeed, the 

condition for parametric resonance is provided when the forcing frequency is almost close to twice of the natural 

frequency of the unforced system. 

Fig. 3 shows the unstable region of    plane based on different higher order theories including TSDT, ITSDT, 

SSDT, HSDT and ESDT. The dimensionless parameters in these analyses are set to be as ra 1 , a br r 0.2  , 

0.15  , 0.3  , 0.3   and wk * 0 . As it can be seen, the ITSDT predicts the unstable region at lower 

frequencies compared to other theories. This is because of the fact that the ITSDT theory considers the system softer 

by setting the parameter S 2  equal to zero. On the other hand, the ESDT approximates the parametric resonance 

frequencies higher than those approximated by other theories. However, there is no appreciable difference between the 

results of TSDT, SSDT and ESDT. In addition, it can be understood from Fig. 3 that by increasing the mass of the 

traveling load, the plates will become unstable for a wider range of the mass rotation frequencies. Also, from the 

figure it can be concluded that the critical rotation frequencies are lower for heavier masses. In the rest of the paper in 

order to investigate the effects of different parameters on the system stability, just the results of TSDT theory are 

considered. 

Fig. 4 shows the unstable region of the system for different values of the plate thickness ratio, ar . The 

dimensionless parameters in these analyses are as ra 1 , 0.15  , 0.3  , 0.3   and wk * 0 . It is worth to 

mention that when the ratio of the plate thickness to one of its dimensions is less than or equal to 0.02  ar 0.02 , the 



803                              E. Torkan and  M. Pirmoradian 

 

© 2019 IAU, Arak Branch 
 

plate would be considered as a thin structure [32], [34-36] and so the results of the shear deformation theory will 

become identical to those of the classic plate theory. It is observed from Fig. 4 that increasing the plate thickness ratio 

shifts the unstable region downwards (i.e. lower resonance frequencies), which means that the Kirchhoff’s theory 

overestimates the critical frequencies, especially for thick plates. The reason is that the shear deformation theories 

predict the resonance frequencies of thick plates more accurately by considering their higher degrees of freedom.  

 

 

 

 

 

 

 

 

 

 

Fig.3 

Stability diagram for the plate-mass system based on various 

higher-order shear deformation theories. 

  

 

 

 

 

 

 

 

 

 

Fig.4 

Effect of the plate thickness ratio on the unstable region. 

 

The effect of dimensionless semi-minor and semi-major axes parameters of the elliptical path,  ,  , on the 

system stability has been investigated by considering other parameters as ra 1 , a br r 0.2  , 0.3   and wk * 0 . 

As shown in Fig. 5, for a specific value of the travelling load mass  , the plate vibrations will become unstable for a 

wider range of the dimensionless frequency   when the radii of the path are increased. Besides, it can be seen that if 

  tends to zero, the difference between the results of diverse radii will be reduced. This implies that for the case of 

moving force (neglecting inertial terms of the moving object), different values of the radii of the motion path lead to 

identical critical rotation frequency. 

The effect of Winkler foundation on the unstable region is illustrated in Fig. 6. As it reveals, an increase in the 

elastic foundation stiffness leads to an increase in the parametric resonance frequency of the system. In other words, in 

the presence of an elastic foundation with a suitable stiffness, the origin of the unstable region switches to higher 

frequencies of the orbiting mass and consequently occurrence of parametric resonance is postponed. This is because of 

the fact that an escalation in the foundation stiffness increases the stiffness of the whole structure. So, selecting 

appropriate elastic foundation may lead to a change in the natural frequencies of the system and consequently a 

feasibility to avoid resonance and instability. 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Effect of the movement path radii on the unstable region. 
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Fig.6 

Effect of the Winkler foundation stiffness on the unstable 

region. 

6    VERIFICATION  

As mentioned earlier, when the plate thickness ratio is less than or equal to 0.02, the results obtained from shear 

deformation theories and the Kirchhoff’s plate theory should be matched. According to this, in order to verify the 

utilized method in this paper, the obtained results are compared with those reported by Pirmoradian et al. [25], where a 

circular path has been considered for the mass motion and the plate has been modeled based on the Kirchhoff’s plate 

theory by considering plate of low thickness. For this purpose, by taking a b0 0  and so changing the elliptical path to 

the special case of circular path, and also setting the system parameters as ra 2 , ar 0.01 , br 0.02 , 0.15  , 

0.3  , 0.3   and wk * 0   the comparison is possible. As depicted in Fig. 7, the good agreement between the 

results proves the accuracy of the results obtained by the energy-rate method.  

 

 

 

 

 

 

 

 

 

 

Fig.7 

Unstable region of the parameters plane. 

7    CONCLUSIONS  

Different higher-order shear deformation theories including third-order shear deformation theory, improved third- 

order shear deformation theory, sinusoidal shear deformation theory, exponential shear deformation theory and 

hyperbolic shear deformation theory were developed to study the dynamic stability of a simply supported plate 

carrying a mass moving on an elliptical path. The differential equations of motion were obtained using the 

Hamilton’s principle and were solved utilizing the Galerkin method along with trigonometric shape functions. The 

stable and unstable regions of the system parameters plane were calculated using the energy-rate method, and the 

effects of different parameters such as the plate thickness ratio, the movement path radii and the stiffness of the 

Winkler foundation on the system stability were studied. The results reveal that for orbiting motion of the mass on 

the plate, there is a region of instability in the parameters plane which cannot be ignored in design of related 

applications. This unstable region emerges at lower frequencies of the orbiting mass for the ITSDT in comparison 

with other theories. However, the difference between the results of TSDT, SSDT and ESDT are not substantial. 

Also, the stability diagrams highlight the great influence of the mass of the traveling load on the instability 

conditions, so that its increase leads to lower critical frequencies of motion of the orbiting mass. The results show 

that an increase in the movement path radii increases the area of unstable region. Moreover, escalation the Winkler 

foundation stiffness enhances the stability of the system.  
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APPENDIX A 

The Components of matrices and vectors expressed in Eqs. (33), (34) and (35):  
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APPENDIX B 

The components of matrices and vectors of Eq. (52): 
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