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 ABSTRACT 

 In this research paper, the formulation of a new three-dimensional 

sector element based on the strain approach is presented for plate 

bending problems and linear static analysis of circular structures. 

The proposed element has the three essential external degrees of 
freedom (Ur, Vθ and W) at each of the eight corner nodes. The 

displacements field of the present element is based on assumed 

functions for the different strains satisfying the compatibility 

equations. The effectiveness of the present element is applied 

through several tests related to plate bending problems and linear 

static analysis of circular structures. The results of the developed 

element have been compared with analytical and other numerical 

solutions available in the literature. The obtained results show the 

excellent performances and precision of the present element. It is 

found that the new three-dimensional sector element is more 

accurate and efficient than the three-dimensional classical element 

based on displacement approach. 

 © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 N practice, engineers prefer to model their structures with simple finite elements, such as four-node 

quadrilaterals, three-node triangles, and eight-node 3D bricks. In recent years, the analysis of three-dimensional 

structures has made considerable progress in several domains. Many research works have been oriented towards 

three-dimensional elements using different approaches. For the classical displacement model, 3D low-order 

elements suffer from many numerical difficulties, while the use of 3D quadratic elements significantly improves the 

results accuracy but the computing cost becomes much higher. For these reasons, many researchers have been 

motivated to formulate simple and robust elements such as the 20-node solid element for shell analysis developed by 

Kim [1]. There are also other works set up to three-dimensional elements, for thick plates in bending [2-3]. Ayad [4] 

have proposed a 3D hexahedral finite element named SFR8 based on the space fiber rotation concept (SFR) where 

the computing cost is reduced compared to the classical quadratic 20-node hexahedral element. On the other hand, 

many 3D solid elements, in Cartesian coordinates, based on the strain approach have been developed for plate 
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bending analysis [5-8]. These elements which contain three degrees of freedom (U, V and W) per node have been 

used with a modified elasticity matrix by introducing plane stress constants and a transverse shear corrective 

coefficient. The strain based element developed by Messai [8] has been extended for free vibration analysis. The 

nonlinear bending analysis of circular/annular graphene sheets has been used by Dastjerdi et al. [9-10]. All research 

works of references [9-11] are based on the nonlocal elasticity theory. The use of the strain-based approach plays a 

key role in the construction of robust and efficient finite elements. It is known that the strain approach allows having 

better precision on the displacements, strains and stresses where the displacements field is obtained by integrating 

assumed strains, contrary to the classical formulation where the strains are obtained by derivation of the 

displacements [12]. The advantages of formulating strain based finite elements have been reported by many 

researchers [13-16].  This approach allows to decouple the different components of the strain and to enrich the 

displacements field by terms of high order without the need to introduce internal nodes; this enables to solve locking 

problems [17]. The modeling of plane circular structures in polar coordinates whose behavior is membrane and 

based on the strain approach has been the subject of several research works [12, 18-19]. The first sector element 
developed by Sabir [18] contains two translations (Ur and Vθ) per node, whereas the sector elements formulated by 

Belarbi [12] and Bouzriba [19] posses the two translations and in-plane drilling rotation per node. To date, to the 

knowledge of the authors, no study was found in the literature for 3D sector elements based on the strain approach. 

This has motivated the authors to formulate a new strain based brick sector element. 

In the present study, an eight-node 3D sector element based on the strain approach has been presented for static 

analysis of circular structures. This element named SBS3D (Strain Based Sector three-Dimensional) contains three 
translations (Ur, Vθ, W) at each of the eight corner nodes. The displacements field of this element has been 

formulated using the strain based approach and satisfy the compatibility equations. This element is evaluated and 

compared with analytical and other numerical solutions through several tests which confirmed the high performance 

of the current element.  

2    FORMULATION OF THE SBS3D ELEMENT 

The present element SBS3D is formulated using the displacements field of the strain-based 3D eight-node 

hexahedral element given in reference [6]. The displacement functions of this element in terms of Cartesian 

coordinates x, y, z are given as follows [6]:  
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(1) 

 

Considering the 3D sector SBS3D element shown in Fig. 1, the formulation of the SBS3D element is obtained 
by converting the displacements field given of Eq.(1) to cylindrical coordinates r, θ and z by replacing x and y with r 

and θ, respectively, as:  

 
x r

y 




 (2) 

 
This procedure of transformation, from the Cartesian (x, y, z) to cylindrical (r, θ, z) coordinates has been used by 

many researchers [12, 20]. By substituting Eq. (2) into Eq. (1) we obtain the final displacements field Ur, Vθ and W, 

respectively, in the radial, circumferential and axial directions as:   
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The SBS3D element with three degrees of freedom (Ur, Vθ and W) at each of the eight corner nodes is shown in 

Fig.1, where r1 and r2 are the internal and external radius, respectively. 

 

 

 

 

 

 

 

 

 

 
 

Fig.1 

Brick sector element SBS3D with Ur, Vθ and W translations 

at each of the eight nodes. 

 
In cylindrical coordinates r, θ and z, the strain-displacement relationships and the compatibility equations are, 

respectively, expressed as follows:   
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(5) 

where Ur, Vθ and W are the displacements in the r, θ and z directions, respectively, while εr, εθ and εz are the direct 

strains, and γrθ, γθz and γrz are the shear strains. 

The strains field can be obtained by substituting Eq. (3) into Eq. (4): 
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The obtained strain functions given by Eq. (6) for the SBS3D element satisfy the compatibility (Eq. (5)). The 

displacements and the strain functions given in Eqs. (3) and (6) are, respectively, given in matrix form:  

 

  

rU

P

W

V A 

 
 
 
 
 

 (7) 

 

  

r

z

r

z

rz

Q A





















 
 
 
  
 
 
 
 
  

 
(8) 

 

where: 
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The stiffness matrix for the 3D sector element is obtained by the usual expression of the finite element method 

as:
   

T
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where [C] and [D] which are respectively the transformation and the elasticity matrices are given in the appendix. 
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3    NUMERICAL VALIDATIONS 

The purpose of this part is to show the interest of the strain model for the calculation of structures with circular 

contours. To evaluate the performance of the present element SBS3D, several numerical examples are investigated.  

3.1 Thick cylinder subjected to uniform internal pressure  

The first problem considered is that of a thick cylinder subjected to a uniform internal pressure where the 

geometrical and mechanical characteristics are presented in Fig. 2. For reasons of symmetry, only a quarter of the 
cylinder is considered for the idealization. Fig. 3 shows the results obtained for the radial deflection at the middle 

point E (r = 30 mm), which illustrates the high precision obtained by the sector element SBS3D. For example, for a 

mesh size 2 2  elements the error accounts is equal to 2.35 % of the analytical solution.  

 

 

 

 

 

 

 

 

Fig.2 

Thick cylinder under internal uniform pressure. 

  

 

 

 

 

 

 

 

 

Fig.3 

Convergence of radial deflection (Ur) at E(r=30 mm). 
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Moreover, the results obtained for the radial and tangential stresses at (r= 30mm) shown in Fig. 4, are 

satisfactory and converge to the theoretical solution as the number of elements is increased. 

 

  
 

Fig.4 

Convergence of radial ((бr) and tangential (бθ) stress at E(r = 30 mm). 

 

Fig. 5 shows the variation of Ur across a section (m, n). The values obtained from the developed sector element 

SBS3D are compared to the analytical solution. 
 

 

 

 

 

 

 

 

 

 

Fig.5 

Variation of radial deflection (Ur) across cylinder wall. 

 

The results obtained converge to the theoretical solution of the considered problem, and confirm the good 

performance of the sector element SBS3D compared to the classical element based on the displacement approach 

B8. 

3.2 Annular plate under a lateral point load 

The second example treated by Olson and Lindberg [21] is the annular plate clamped along the inner edge (r1 = b) 

and loaded by a lateral force (z-direction) at the outer edge (r2 = a) (see Fig. 6). Due to symmetry, only one half of 

the plate is analyzed, and the analytical solution of Timoshenko and Woinowsky-Kieger [22] is used for a= 1.0, b= 

1.5 and v= 0.3. The results for the lateral displacement (w) under the concentrated force presented in Table 1., and 

Fig. 7 show the high rate of convergence to the analytical results for the sector element SBS3D. 

According to the results obtained (see Table 1), it should be noted that when analyzing this problem with a (3 
 12) mesh for the two elements, the error is about 1.29% and 4.91% for Olson‟s element and present element, 

respectively. However, for (3  18) grid the present element presents a very good performance, where the error is 

reduced to 0.095%, and for Olson‟s element it is reduced to 0.61%. Fig. 7 shows that the lateral deflection for the 

present element along the inner edge converges rapidly to the exact solution when the mesh size is refined. 

 

 

 

 

 

 

 

 

Fig.6 

Annular plate subjected to a lateral point load. 
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Table 1 

Lateral deflections under the applied point load. 

Mesh Olson‟s élément SBS3D 

1 6 0.050896 0.02707 

2 8 0.051456  0.04204 
2 12 0.051372 0.04562 

3 12 0.051372 0.04823 

3 18 0.051027 0.05067 

Ref solution                                                                   0.0507180 

       

 

 

 

 

 

 

 
 

 

Fig.7 

Convergence curve for the displacement W (Annular Plate). 

3.3 Thick-walled cylinder subjected to internal pressure 

This example of a thick-walled cylinder subjected to internal pressure, treated by Choi [23], is considered as plane 

strain problem. This test is used to study the locking phenomenon of elements and their behaviors related to nearly 

incompressible material. Due to symmetry, only a quarter of the cylinder is analyzed, physical and geometrical 

parameters are shown in Fig. 8. The value of Poisson‟s ratio is taken as 0.3, 0.49, 0.499 and 0.4999. The computed 

results for the radial deflection of the inner wall presented in Table 2., show that the developed element, restricted 

Poisson‟s locking effectively contrary to the other elements B8 and Q4 and its accuracy is quite high.  

 
  

 

 

 

 

 

 

 

Fig.8 

Thick walled cylinder subject to unit internal pressure. 

Table 2 

Normalized radial displacement at the inner wall of a thick cylinder in Fig. 8. 

3.4 Bending of a curved bar by a force at the end 

The semi-circular annular plate shown in Fig. 9 is subjected to two equilibrating shearing force applied at the upper 

end in the radial direction. The radial deflection results obtained are presented for a different number of ratios b/a = 

3, 2, and 1.3. Due to symmetry, only half of the plate is analyzed. The results of radial deflection, as well as the 

stresses, can be compared with the analytical elasticity solution given by Timoshenko and Goodier [24] and the 

classical element based on the displacement approach B8. 

v   B8   Q4 SBS3D Exact(10-3) 

0.3 0.987 0.978 0.9909 4.5825 

0.49 0.877 0.738 0.996 5.0399 

0.499 0.796 0.224 0.997 5.0602 

0.4999 0.532 0.028 0.997 5.0623 
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Fig.9 

Annulus subjected to radial shear. 

 

Figs. 10, 11 and 12 show the convergence for the radial deflection at point “A” for b/a = 3, 2 and 1.3, 

respectively. These curves are obtained when the same number of elements is used in the radial and circumferential 

directions. From these figures, it can be noted that the results given by SBS3D element converge rapidly to the 

analytical solution from a mesh of 4  4, and remain stable from a mesh of 8  8. Fig.13 shows the convergence of 

radial stresses at point "F" (see Fig. 9) in the case of b/a = 2. This element has been found to give better results for 

radial stress when a coarse mesh is used. 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Convergence for the radial deflection (Ur) at  point A for 

b/a=3. 

  

 

 

 

 

 

 

 

 

Fig.11 

Convergence for the radial deflection (Ur) at point A for 

b/a=2. 

  

 

 

 

 

 

 

 

 

Fig.12 

Convergence for the radial deflection (Ur) at point A for 

b/a=1.3. 
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Fig.13 

Convergence for the radial stress (бr) at point F. 

 

4    CONCLUSION 

In this paper, a new three-dimensional sector element (SBS3D) based on the strain approach with eight nodes and 

three translations at each node is proposed for the analysis of annular thin plate bending and elasticity problems. A 

series of numerical examples have been studied to evaluate the effectiveness of the present element. The numerical 

results of this element are compared with reference and other numerical solutions. The SBS3D elements have shown 

good performance and rapid convergence to the theoretical solutions for all tests. In addition, it can be seen that the 

present element has eliminated the Poisson‟s locking contrary to the classical element B8 based on displacement 

approach. 

APPENDIX  

The transformation matrix [C] (24  24) for the SBS3D element is as follows: 

 

 
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 
 
 
 
 
 

1  1  1 1

2  2  2  2

3  3  3  3

4  4  4  4

5  5  5  5

6 6  6 6

7 7 7  7

8  8 8 8

  , ,  

   , ,

   , ,

   , ,

 , ,

    , ,  
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   ,  ,  

  

 P r z

P r z

P r z
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







 

 

 

where the 3 24 matrix IP
 
 
  

 from Eq. (7) is given as follows:  

( , , )P r   Z  
i i i

  
 

 

2
2 21 1 1 21 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 12 2 2 20 1 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 2

2 2

0 0 1 0 0 0 0
2 2

z z z z z
i i i i i i i i i iz r r r z r z  z  z   
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r z  r  r z r z r z  z  r z  r r z z r z  r z
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 
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and ri, θi , zi  are the coordinates of the eight  node i (i = 1, 2, 3, 4, 5, 6, 7, 8). 

For an isotropic material the elasticity matrix [D] is written: 
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