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 ABSTRACT 

 To investigate static and free vibration for thin plate bending 

structures, a four-node quadrilateral finite element is proposed in 

this research paper. This element has been formulated by using 

both the assumptions of thin plates theory (Kirchhoff plate 

theory) and strain approach. The suggested element which 

possesses only three degrees of freedom (one transverse 

displacement and two normal rotations) at each of four corner 

nodes is based on assumed higher-order functions for the various 

components of strain field that satisfies the compatibility 

equation. The displacement functions of the developed element 

are obtained by integrating the assumed strains functions and 

satisfy the exact representation of the rigid body modes. Several 

numerical tests in both static and free vibration analysis are 

presented to assess the performance of the new element. The 

obtained results show high solution accuracy, especially for 

coarse meshes, of the developed element compared with 

analytical and other numerical solutions available in the 

literature.              © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Strain approach; Plate bending; Kirchhoff plate 

theory; Higher-order strain field; Free vibration. 

1    INTRODUCTION 

 LATE are defined as plane structural in which the thickness is very small compared to other planar 

dimensions[1]. The analyses of plates are classified into two categories thick plate and thin plate analysis. The 

Reissner-Mindlin plate theory has been generally applied in the developing of thick plates which take into account 

transverse shear deformation through the plate thickness. Thin plates analysis which ignored the transverse shear 

deformation is based on Kirchhoff plate theory. First previous plate elements are based on the classical Kirchhoff 

thin plate theory which C1 continuity between adjacent elements is required, the construction procedures of 

Kirchhoff plate elements are difficult and more complicated [2]. Several researchers have developed reliable and 

efficient plate bending elements that are being used to analyze thin plate problems. A successful non-conforming 

rectangular ACM plate element was developed by Melosh [3]. This element had twelve degrees of freedom (DOFs) 

and used a complete third order polynomial expansion in x and y. Many other successful finite elements were 
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formulated for analysis of thin-plate bending. For example, the discrete Kirchhoff theory has been efficiently used 

by several researchers to develop some thin plate elements [4-5], and the hybrid formulation which has an immense 

capacity in constructing useful finite elements for the analysis of the plate bending structures. Based on this 

methodology, the most recent method called Hybrid-Trefftz (HT) was developed for the analysis of thin bending 

plates. The advantages of this technique have attracted many researchers to develop several plate bending elements 

[6-7]. Another model has been adopted, referred to as the strain-based or the strain approach. In this approach, the 

displacements field of finite element is based on an assumed function for the various components of strain field that 

satisfies the compatibility equations. The advantages of strain approach are the satisfaction of the two main 

convergence criteria directly related to the strains (constant strains and rigid body movement) and the possibility of 

enriching the displacement field by high order terms without the need of inclusion of intermediate nodes or of 

additional non-essential degrees of freedom [8]. The strain approach is very effective in solving problems such as 

parasitic errors, distortion mesh, and various locking phenomena [9]. The first finite elements based on strain 

approach were curved elements. This formulation was used for the arcs analysis by Ashwell, Sabir, and Roberts [10] 

and for the analysis of cylindrical shells by Ashwell and Sabir [11]. This approach was later applied to analyzing 

thick plates. Belounar and Guenfoud [12] developed the first plate bending element based on the strain-based 

approach and the Reissner-Mindlin theory. This element suffers from some shear locking as the plate becomes 

progressively thinner. The success of the strain approach has been confirmed by several 3D plate elements [13-17] 

and Reissner-Mindlin plate elements [18-20]. This has motivated the authors to propose the first quadrilateral finite 

element based on Kirchhoff plate theory and   higher-order strain field. The proposed finite element is simple in the 

formulation and effective for both static and free vibration analysis. 

The objective of this paper is to evaluate the performance of strain approach to develop a four-node quadrilateral 

element based on Kirchhoff plate theory for plates bending problems. This new element called KSBQP (Kirchhoff 

Strain Based Quadrilateral Plate) was developed to investigate the effect of higher-order strain states on the accuracy 

of plates test results. This element which contains three degrees of freedom per node is tested for static and free 

vibration analysis of plates bending structures. The obtained results are compared with those of other finite elements 

and analytical solutions given in the literature.  

2    FORMULATION OF THE QUADRILATERAL ELEMENT KSBQP 

2.1 Displacements field for the strain-based plate element 

 

Fig. 1 shows a quadrilateral element (KSBQP) having three degrees of freedom, the displacement component along 
the thickness (W) and two rotations βx=θy and βy= -θx at each of the four corner nodes. The strain displacement 

equations for a thin plate element are given by: 
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The bending curvatures are given by equation: 
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where the above three bending curvatures given by Eq. (2) cannot be considered independent, for they are in terms 
of the displacements W, βx and βy, and therefore, they must satisfy the compatibility equations given as: 
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First the displacements field corresponding to the three rigid-body modes (MCR) is obtained by equating the 

three bending curvatures given in Eq. (2) to zero and integrating the resulting differential equations to obtain: 

 

1 2 3 2 3x yW x y            (4) 

 
with α2 and α3 parameters representing rotations θx and θy of the rigid body about respective axis y and x and α1 
representing translation of the rigid body along the normal axis z. 

 

 

 

 

 

 

 

 
Fig.1 

Geometry of the quadrilateral element KSBQP. 

 
The proposed element has three degrees of freedom (W, βx and

 
βy) at each of four corner nodes. Therefore, the 

displacements field should contain twelve independent constants and having used three (α1, α2, α3) for the 

representation of the rigid body modes, the remaining nine constants (α4, α5,…… α12) are used to express the 

displacements corresponding to straining of the element .These are apportioned among the strain as follows: 
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The un-bracketed terms in Eq. (5) are assumed. 4 , 8 and 12 are the terms corresponding to constant strain 

states to ensure convergence as the finite element grid is refined. The higher order bracketed terms are then added to 

satisfy the compatibility Eq. (3). The assumed strains given by Eq. (5) are substituted into Eq.(2) and the resulting 

equations are integrated to obtain the following field: 
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The complete displacement shape functions are the sum of corresponding expressions from Eqs.(4) and (6): 
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(7) 

 

The displacement functions of Eq. (7) and the strain functions of Eq. (5) can be given in matrix form, 

respectively, as: 
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The transformation matrix [C] which relates the vector of the element nodal displacements {qe} to the vector of 
constants {α} as: 
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and the transformation matrix [C] (12 × 12) for the KSBQP element is as follows: 
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where the matrix [Pi (xi ,yi)] is calculated from Eq. (10) for each of the four element nodes coordinates (xi ,yi),                 

(i= 1, 2, 3, 4), to obtain: 
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The constant parameters vector {α} can be derived from Eq. (12) as follow:  
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By substituting Eq. (15) into Eqs. (8) and (9) we obtain:  
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The stress-strain relationship is given by: 
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and the elasticity matrix [D] is: 
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2.2 Element stiffness and mass matrices 

For static and free vibration, the standard weak form can, respectively, be expressed as: 
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By substituting Eqs. (16), (17) and (19) into Eqs. (21) and (22),we obtain: 
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where the element stiffness eK 
 

 and mass eM    matrices are, respectively, given as: 
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and the element nodal body forces vector is: 
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The matrices [K0] and [M0] given in Eqs. (25) and (26) are numerically computed with exact Gauss integration. 

The element stiffness and mass matrices ([K
e
] and [M

e
]) can then be obtained. These are assembled to obtain the 

structural stiffness and mass matrices ([K] and [M]). 

For static analysis, we use: 

 

    K q F  (28) 

 

For free vibration, we use: 

 

     2 0K M q   (29) 

 

where {q} is the structural global displacements vector. 

3    NUMERICAL VALIDATION 

3.1 Static analysis 

3.1.1 Square plate analysis 

A square plate of length L and thickness h with various boundary conditions is analyzed under two load cases: a 

uniform distributed load and a central concentrated load. The geometry and material properties are shown in Fig. 2. 
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Due to symmetry, one quarter of plate is divided into N×N elements. The 12×12 meshes for the quart of the plate 

has been considered sufficient for engineering accuracy. The results of the KSBQP element for the central 

displacement WC with various meshes are given in Table 1., and Fig. 3. Then the bending moments are listed in 
Table 2., for the proposed element in simply supported plate (W = 0) and clamped plate (W = βx = βy =0) cases 

subjected to uniform load. The comparisons of the present results with those obtained by other authors are also 

plotted in Fig. 4. The results obtained using only a small number of elements prove that the new element is more 

efficient than other elements ACM and DKQ [5]. 

 

 

 

 

 

 

 

 
Fig.2 

Mesh for quadrant of square plate (L=20, E=106, 0.3  , 

P=1 , 1q  ). 

 

Table 1 

Convergence of the central displacement for square plate (h/L=0.01).  

 

 

 

 

 

 

 

 

 

 
Fig.3 

Convergence of normalized central displacement of square 

plate with different boundary conditions and loadings. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Convergence of the normalized central displacement for 

clamped square plate under uniform load. 

 

Square plate Uniform load (Wc/(qL4/100D) Central point load (Wc/(PL2/100D)) 

Mesh Simply supported Clamped Simply supported Clamped 

2×2 

4×4 

8×8 

10×10 

0.3992 

0.4022 

0.4052 

0.4054 

0.1330 

0.1298 

0.1274 

0.1271 

1.1879 

1.1791 

1.1672 

1.1639 

0.5818 

0.5771 

0.5668 

0.5650 

12×12 0.4061 0.1268 1.1619 0.5637 

Ref solution [1] 0.4062 0.1265 1.160 0.5612 
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Table 2 

Convergence of the central moment for square plate subjected to uniform load. 

3.1.2 Twisting of square plate  

A square plate simply supported (W=0) at the corners B, C and D is shown in Fig. 5. A transverse force P=5 is 

applied at corner A. Young’s modulus is 10.000, Poisson’s ratio is 0.3 and the thickness and the length of the plate 

are 1.0 and 8.0, respectively. The exact solution using thin plate theory is WA=0.2496 and WF=0.0624 at the center of 

the plate, Mxy=2.5 and Mx= My=0 everywhere in the plate. Results for the deflections at the points A and F, and for 

the moments Mx, My and Mxy everywhere in the plate are presented in Table 3 with those of other elements. The 

results of KSBQP element are excellent and the two meshes provide the exact solution for the stresses and 

deflection. 

 

  

 

 

 

 

 

 

 
Fig.5 

Twisting of square plate. 

 

 
 

Table 3 

Deflection at points A and F for twisting square plate. 

 

Element type 

Deflection at Moments in plate 

Point A Point F Point A Point F 

KSBQP(2 2) 0.24960 0.06240 0 2.5 
ACM  [21](8 8) 0.24972 0.06244 - - 

HCT [21](8 8) 0.25002 0.06254 - - 

HSM [4] 0.24960 0.06240 0 2.5 

DKT [4] 0.24960 0.06240 0 2.5 

Exact solution [4] 0.24960 0.06240 0 2.5 

3.1.3 Cantilever plate under a tip load  

A cantilever plate shown in Fig. 6 subjected to a transverse tip load P=1 at the free end is analyzed using regular and 

distorted meshes (Fig. 6(a) and Fig. 6(b)). This problem has been studied by Dvorkin and Bathe [22] using 

continuum mechanics four-node shell elements. The results of the KSBQP element given in Tables 4 and 5 indicate 

that the present element has good convergence for coarse mesh and the transverse displacements at free end are 

insensitive to the element distortions. 

 

 

 Central moment 

Mesh Clamped Simply supported 

2x2 0.0636 0.2192 

4x4 0.1844 0.4284 

8x8 0.2184 0.4693 

10x10 0.2223 0.4705 

12x12 0.2244 0.4766 

Ref solution [1]                0.2291( 2 /10qL )                 0.4789 ( 2 /10qL ) 

C D 

A B 

F 
P 

Z 

Y 

X 
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(a) Regular mesh 

 

 
 

(b) Distorted mesh 

Fig.6 

Cantilever plate under a tip load (L=10, b=1, h=0.1, E=2.1 106,ν =0, P=1). 
                                                                               

 

Table 4 

Normalized transverse displacement of cantilever plate with regular mesh. 

N W/Wref ,Wref = pL3/3EI+ pL/AG 

 KSBQP Ref [22] 

1 1.001 0.750 

4 1.000 0.984 
N: is the number of divisions along plate length. 

 

Table 5 

Normalized transverse displacement of cantilever plate with distorted mesh. 

KSBQP  Ref [22] 

intpo II  intpo A   intpo II  intpo A  

 1.006 1.007  0.989 0.996 
 =(W distorted mesh)/( W regular mesh). 

3.1.4 Cantilever skew plate  

A cantilever skew plate fixed at one side and subjected to constant pressure was analyzed using 12×12 elements. 

The geometry and material properties are given in Fig. 7. In Table 6., the results for the transverse displacements at 

six locations are compared against the solutions obtained using other elements. It can be concluded that the proposed 

element gives good solution compared to experimental solution. 

 

 

 

 

 

 

Fig.7 

The cantilever skew plate subjected to uniform loading 

( E 610.5 10  , 0.35  , q=0.26066, 0.125h  ). 

 

 

Table 6 

Numerical and experimental results for the cantilever skew plate under uniform load. 

Elements 

 

Deflection at location 

Mesh 1 2 3 4 5 6 

KSBQP 12 12 0.284 0.190 0.114 0.114 0.049 0.020 

HCT [21] 8 6 0.281 0.188 0.111 0.111 0.049 0.018 

DKT [4] 4 4 0.304 0.198 0.113 0.121 0.056 0.023 

4-node [22] 

16-node [22] 

Experimental [22] 

4 4 

2 2 

0.272 

0.266 

0.297 

0.183 

0.182 

0.204 

0.106 

0.110 

0.121 

0.102 

0.105 

0.129 

0.046 

0.048 

0.055 

0.019 

0.019 

0.022 
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3.1.5 Circular plate   

In this study, we evaluated the performance of the present element in geometric distortion. Due to symmetry, only 

one quarter of a clamped or simply supported circular plate under central point P load or uniform load q was 

analyzed, we considered for meshing 3, 12, 48 and 192 as shown in Fig. 8. Kirchhoff’s theory calculates the 

transverse reference displacement at the centre. The displacements obtained at the center of the circular plate are 

presented in Table 7., and in Figs. 9 and 10. The results of new element are in good agreement with the reference 

solutions [1] and accurate quickly to the reference solution. 

 

           
             3 elements                                      12 elements 

         
             48 elements                             192 elements 

Fig.8 

Different meshes type of circular plate (R=1, E=1011, 0.3  , P=4000 ,q=1000, h=0.01). 

 

Table 7 

Convergence of normalized central displacements Wc   for the circular plate (R/ h =100). 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Convergence of normalized central displacements of 

circular plate with uniform load. 

  

 

 

 

 

 

 

Fig.10 

Convergence of normalized central displacements of 

circular plate with Point load. 

Point load Uniform Load 

NELT Clamped Simply supported Clamped Simply supported 

3 1.359 1.154 1.523 1.061 

12 1.113 1.068 1.145 1.057 

48 1.036 1.028 1.046 1.032 

192 1.013 1.008 1.018 1.010 

Ref solution [1] 1.989PR2/10D 0.5050PR2/10D 0.1563 qR4/10D 0.6370 qR4/10D 
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3.2 Free vibration analysis  

3.2.1 Square plates 

In this example, a square plate (Fig. 11) is studied to evaluate the effect of different boundary conditions on the free 

vibration behavior of the present element. Convergence tests of the formulated quadrilateral element is first 

undertaken for simply supported and clamped plates. The results of the non-dimensional frequencies                     

( =ωmna(ρ/G)
1/2

) are presented in Tables 8 and 9 and Figs. 12 and 13 with those of the ACM element. It can be 

observed that a faster convergence toward analytical solutions TC [23] is obtained using only a small number of 

elements for all cases. 

Having checked the element convergence, square plates (h/L=0.01) with various boundary conditions (SSSS, 

CCCC, SCSC, SCSF, SCSS and CCCF) using 20×20 meshes are studied. The computed non-dimensional 

frequencies using the KSBQP element are presented in Tables 10, 11, 12, 13, 14, and 15. In Figs. 14 and 15 the error 

norms of frequencies for the present element and other elements have been plotted. 

From numerical results, the KSBQP element shows a good performance and its results are comparable with 

those obtained by other plate elements (ACM element and the nine-node finite element ANSP9 [24]) and has close 

results to the analytical solutions TC [23] (Thin-plate closed form solution). 

 

 

 

 

 

 

 

 

Fig.11 

The geometry of square plate and its FE mesh (E=10.92, 
L=10, ν=0.3). 

 

Table 8  

Convergence of natural frequencies  for clamped CCCC square plate with h/L=0.01, ν = 0.3. 

Mode Element Mesh divisions  

TC [23]   4 × 4 8 × 8 12 × 12 16 × 16 20 × 20 

1 KSBQP 0.1712 0.1738 0.1747 0.1751 0.1753 0.1756 

 ACM 0.1674 0.1729 0.1743 0.1749 0.1751  

2 KSBQP 0.3516 0.3537 0.3559 0.3568 0.3573 0.3581 

 ACM 0.3417 0.3515 0.3549 0.3562 0.3569  

 

Table 9 

Convergence of natural frequencies   for simply supported SSSS square plate with h/L=0.01, ν = 0.3. 

Mode Element Mesh divisions  

TC[23]   4 × 4 8 × 8 12 × 12 16 × 16 20 × 20 

1 KSBQP 0.0942 0.0957 0.0960 0.0961 0.0962 0.0963 

 ACM 0.0934 0.0955 0.0959 0.0961 0.0966  

2 KSBQP 0.2336 0.2385 0.2397 0.2402 0.2404 0.2408 

 ACM 0.2313 0.2378 0.2394 0.2400 0.2430  

 

Table 10 

Natural frequencies  of a SSSS square plate with h/L = 0.01, ν = 0.3. 

Mode m n TC[23] MC[25] ACM ANSP9[24] R4 KSBQP 

1 1 1 0.0963 0.0963 0.0966 0.0963 0.2079 0.0962 

2 2 1 0.2408 0.2406 0.2430 0.2406 0.5917 0.2404 

3 2 2 0.3853 0.3848 0.3890 0.3848 0.8358 0.3837 

4 3 1 0.4816 0.4809 0.4928 0.4818 1.2930 0.4807 

5 3 2 0.6261 0.6249 0.6380 0.6253 1.4454 0.6227 

6 4 1 0.8187 0.8167 0.8167 0.8198 1.8958 0.8172 
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Fig.12 

Convergence of natural frequencies  for clamped CCCC square plate. 

  

  
Fig.13 

Convergence of natural frequencies  for simply supported SSSS square plate. 

 

Table 11 

Natural frequencies   of a CCCC square plate with h/L = 0.01, ν = 0.3. 

  Mode m n TC[23] MC[25] ACM ANSP9[24] R4 KSBQP 

1 1 1 0.1756 0.1754 0.1751 0.1754 0.4593 0.1753 

2 2 1 0.3581 0.3576 0.3569 0.3576 0.9421 0.3573 

3 2 2 0.5280 0.5274 0.5239 0.5268 1.2734 0.5251 

 

Table 12 

Natural frequencies  of a SCSC square plate with h/L = 0.01, ν = 0.3. 

Mode m n TC[23] MC[25] ACM ANSP9[24] R4 KSBQP 

1 1 1 0.1413 0.1411 0.1409 0.1411 0.3524 0.1411 

2 2 1 0.2671 0.2668 0.2661 0.2668 0.6589 0.2664 

3 2 2 0.3383 0.3377 0.3375 0.3378 0.8961 0.3377 

4 3 1 0.4615 0.4608 0.4584 0.4607 1.0767 0.4593 

5 3 2 0.4988 0.4979 0.4970 0.4984 1.3268 0.4975 

6 4 1 0.6299 0.6279 0.6284 0.6295 1.6008 0.6288 

 
Table 13 

Natural frequencies  of a SCSF square plate with h/L = 0.01, ν = 0.3. 

Mode m n TC[23] MC[25] ACM ANSP9[24] R4 KSBQP 

1 1 1 0.0619 0.0622 0.0619 0.0619 0.1520 0.0619 

2 2 1 0.1613 0.1612 0.1610 0.1612 0.3578 0.1610 

3 2 2 0.2035 0.2045 0.2035 0.2034 0.5656 0.2036 

4 3 1 0.3075 0.3075 0.3065 0.3071 0.6765 0.3066 

5 3 2 0.3533 0.3528 0.3524 0.3528 0.9025 0.3523 
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Table 14 

Natural frequencies  of a SCSS square plate with h/L = 0.01, ν = 0.3. 

Mode m n TC[23] MC[25] ACM ANSP9[24] R4 KSBQP 

1 1 1 0.1154 0.1153 0.1152 0.1153 0.2679 0.1153 

2 2 1 0.2521 0.2521 0.2514 0.2519 0.6171 0.2516 

3 2 2 0.2862 0.2858 0.2855 0.2859 0.7347 0.2857 

4 3 1 0.4203 0.4190 0.4177 0.4197 0.9447 0.4184 

 

 

Table 15 

Natural frequencies  of a CCCF square plate with h/L = 0.01, ν = 0.3. 

Mode m n TC[23] MC[25] ACM ANSP9[24] R4 KSBQP 

1 1 1 0.1171 0.1171 0.1167 0.1166 0.3214 0.1168 

2 2 1 0.1953 0.1951 0.1947 0.1944 0.4589 0.1947 

3 2 2 0.3094 0.3093 0.3086 0.3082 0.8780 0.3087 

4 3 1 0.3744 0.3740 0.3731 0.3738 0.9993 0.3732 

5 3 2 0.3938 0.3931 0.3918 0.3924 0.9564 0.3923 

6 4 1 0.5699 0.5695 0.5652 0.5678 1.2923 0.5661 

 

Note: TC: Thin-plate closed form solution[23] ;MC: Reissner-Mindlin thick plate closed form[25];S – Simply 
supported: for the edge parallel to the x-axis (W= 0 and βx= 0), and for the edge parallel to the y-axis (W= 0 and βy= 

0); C – Clamped: W= 0, βx= 0 and βy= 0.; F – Free: W≠ 0, βx≠ 0 and βy≠ 0. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14 

Comparison of error norms in natural frequencies of SSSS 

square plate. 

  

 

 

 

 

 

 

Fig.15 

Comparison of error norms in natural frequencies of CCCC 

square plate. 

3.2.2 Transverse vibrations of simply supported thin rectangular plate 

For analysis of simply supported rectangular plate, the material proprieties are considered as follow: Young’s 
modulus E =2×10

11
 N/m

2
, Density ρ=8000 kg/m

3
 and Poisson’s ratio is ν= 0.3. As shown in Fig. 16, the plate has 

100 mm of length and 50 mm of width. The rectangular plate is modeled with a regular mesh constituting of eight 

elements along the length and four elements along the width. The analytical expressions of the transverse 

frequencies are given by [26]: 
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 (30) 

 

The obtained results are presented in Table 16 and Fig. 17 of a simply supported plate with L/h = 50 and  L/h = 

100. To have a better view, Fig. 18 also shows the first four vibration modes for a simply supported plate with L/h = 

50. The KSBQP element presents good results when compared to other elements and agree with the exact solution 

[26]. Fig. 17 shows that the KSBQP element produces more accurate results than those given by other elements (The 

Strain Based Brick Element SBBNN [15] and the 3D hexahedral finite element SFR8 [27]). 

 

 

 

 

 

 

 

 

 

Fig.16 

The simply supported thin rectangular plate modeled with  
8 4 elements. 

 
 

 

Table 16 

The first five transverse natural frequencies of simply supported thin rectangular plate. 

 SBBNN[15] SFR8[27] KSBQP Exact solution [26] 

L/h = 50     

f11 25.062 26.447 23.564 23.767 

f21 41.026 41.856 37.175 38.027 

f31 70.536 69.172 60.006 61.794 

f12 93.949 96.68 80.265 80.808 

f22 115.94 110.34 92.228 95.068 

L/h = 100     

f11 12.703 13.296 11.773 11.883 

f21 21.211 21.136 18.587 19.013 

f31 38.967 35.129 30.003 30.897 

f12 50.096 49.094 40.132 40.404 

f22 67.377 56.909 46.114 47.534 

 

 

  
Fig.17 

First five transverse natural frequencies of simply supported thin rectangular plate with 8×4 elements. 
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(a) 1st Mode Shape 
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(b) 2nd Mode Shape 
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(c) 3rd Mode Shape 
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(d) 4th Mode Shape 

Fig.18 

Different mode shapes of simply supported thin rectangular plate (L /h=50) (mesh size 20×20). 

3.2.3 Out-of-plane bending vibrations of a rectangular isotropic elastic beam 

We consider an example of out-of-plane bending vibrations of the isotropic elastic beam which is modeled with a 

regular mesh constituted of 10 elements along the length and one element along the width. Geometric and 

mechanical data are given in Fig. 19. Analytical expressions of the transverse natural frequencies are given by [26]: 

 

22  

n
n

a EI
f

SL 
  ;

3

12

bh
I  ; S= b × h  (31) 

 
where EI is the bending stiffness of the section, ρ the mass density of the beam material and an a numerical constant 

which is different for each mode. Table 17 summarized the obtained results of only the first three numerical natural 

frequencies for three configurations: Clamped–Free (CF), Clamped–Clamped (CC) and Simply Supported (SS). We 

remark that the obtained frequencies by the present element KSBQP are more accurate than the results of the Space 

Fiber Rotation element SFR8 [27]. For Clamped–Free (CF) and Simply Supported (SS) configurations, SBBNN 

[15] element presents the most accurate results. 
 

  

 

 

 

 

 

 

 

 

 

Fig.19 

The isotropic elastic beam modeled with 10 × 1 elements. 

z 

b=15mm 

L=200m

m 

x 

y 

E=2.1×1011 Pa, ν= 0.3, L/h = 40, 

=7800 kg/m3 
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Table 17 

The first three natural frequencies of the out-of-plane bending beam. 

 SBBNN[15] SFR8[27] KSBQP Exact solution [26] 

L/h = 50     

f11 25.062 26.447 23.564 23.767 

f21 41.026 41.856 37.175 38.027 

f31 70.536 69.172 60.006 61.794 

f12 93.949 96.68 80.265 80.808 

f22 115.94 110.34 92.228 95.068 

L/h = 100     

f11 12.703 13.296 11.773 11.883 

f21 21.211 21.136 18.587 19.013 

f31 38.967 35.129 30.003 30.897 

f12 50.096 49.094 40.132 40.404 

f22 67.377 56.909 46.114 47.534 

3.2.4 Parallelogram plates 

In this example, a parallelogram plate with a skew angle 0 30    is investigated using a thickness- span ratio 

0.01. The geometry of parallelogram plate is illustrated in Fig. 20. The same notation used in the previous examples 

is adopted to denote the boundary condition of the plate and the case S-C-S-C is used in this example. The plate is 

modeled with 22×22 elements. The resulting non-dimensional frequencies( =ωmnL
2
/π

2
(ρh/D)

1/2
) are reported in 

Table 18 and compared with reference solution [28] using the Ritz method (thin plate theory). The KSBQP element 

shows good performance and its results are in good agreement with the reference solution [28]. But there is some 

difference between the result of the present element and reference solution [28] in case of the plate with (θ=30°).  

 

 

 

 

 

 

 

 

Fig.20 

The geometry of parallelogram plate and its FE mesh. 

 

 

Table 18 

The parameterized natural frequencies  of parallelogram plate. 

Mode n 

    1 2 3 4 5 6 7 8 

0 Ref sol[28] 2.933 5.548 7.024 9.586 10.361 13.080 14.210 15.690 

 KSBQP 2.938 5.563 7.037 9.634 10.389 13.106 14.321 15.787 

5 Ref sol[28] 2.953 5.570 7.084 9.557 10.500 13.180 14.140 15.870 

 KSBQP 2.943 5.591 7.043 9.663 10.156 13.111 14.386 15.813 

10 Ref sol[28] 3.014 5.641 7.266 9.529 10.860 13.500 14.030 16.340 

 KSBQP 2.961 5.679 7.062 9.746 10.662 13.130 14.585 15.894 

15 Ref sol[28] 3.121 5.765 7.579 9.552 11.390 13.980 14.080 16.960 

 KSBQP 2.992 5.831 7.094 9.890 11.021 13.164 14.932 16.039 

20 Ref sol[28] 3.276 5.955 8.040 9.699 12.100 14.050 14.910 17.750 

 KSBQP 3.039 6.060 7.141 10.107 11.557 13.212 15.451 15.247 

25 Ref sol[28] 3.497 6.226 8.678 9.949 13.000 14.300 16.100 18.800 

 KSBQP 3.105 6.380 7.209 10.412 12.309 13.282 16.180 16.545 

30 Ref sol[28] 3.797 6.598 9.539 10.300 14.100 14.700 17.800 19.600 

 KSBQP 3.196 6.8209 7.300 10.833 13.335 13.378 16.960 17.183 
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4    CONCLUSION 

In the current paper, a four-node quadrilateral finite element (KSBQP) was proposed for the analysis of the thin 

plate bending. The element possesses three usual degrees of freedom at each node. This element based on strain 

approach and Kirchhoff plate theory is enriched with higher-order assumed strain field. The accuracy and efficiency 

of the proposed plate element have been evaluated through extensive numerical tests to the static and free vibration 

of thin plate analyses. All results reveal that the suggested element has a good convergence in coarse meshes, highly 

insensitive to mesh distortion, and rapid convergence to exact solution. Finally, the present element based on the 

strain approach has performed well in most situations and the advantages of using the strain approach are again 

confirmed. 
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