
 

© 2019 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 11, No. 3 (2019) pp. 615-634 

DOI: 10.22034/JSM.2019.666691 

Natural Frequency and Dynamic Analyses of Functionally 
Graded Saturated Porous Beam Resting on Viscoelastic 
Foundation Based on Higher Order Beam Theory 

M. Babaei 
1
, K. Asemi

 2,*
, P. Safarpour

 1 

1
Department of Mechanical Engineering, Shahid Beheshti University, Tehran, Iran 

2
Department of Mechanical Engineering, Islamic Azad University, Tehran North Branch, Tehran, 

Iran 

Received 21 June 2019; accepted 21 August 2019 

 ABSTRACT 

 In this paper, natural frequencies and dynamic response of 

thick beams made of saturated porous materials resting on 

viscoelastic foundation are investigated for the first time. The 

beam is modeled using higher-order beam theory. Kelvin-

Voight model is used to model the viscoelastic foundation. 

Distribution of porosity along the thickness is considered in 

two different patterns, which are symmetric nonlinear and 

nonlinear asymmetric distributions. The relationship between 

stress and strain is based on the Biot constitutive law. Lagrange 

equations are used to express the motion equations. Finite 

element and Newark methods are used to solve the governing 

equations. The effect of different boundary conditions and 

various parameters such as porosity and Skempton coefficients, 

slenderness ratio as well as stiffness and damping coefficients 

of viscoelastic foundation on natural frequency and transient 

response of beam have been studied. Results show that in a 

drained condition, beam has smallest fundamental frequency 

and by increasing the Skempton coefficient, the fundamental 

frequency of the beam increases. 

                          © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 OWADAYS porous media is applied in an astonishingly large body of applications, including petroleum 

geophysics, geotechnical engineering, civil engineering, hydrology, geology engineering and biomechanics. In 

most of these applications, theory of poroelasticity is commonly exploited to examine the raised problems. Porous 

material consists of a porous matrix and of a fluid in the pores of the matrix that is called pore fluid [1]. Biot [2] is 

the pioneer who has studied the poroelasticity. In his model, a porous material is composed of two phases namely 
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solid and fluid. The linear poroelasticity theory of Biot has two characteristics: 1- An increase of pore pressure 

induces a dilation of pore. 2- Compression of the pore causes a rise of pore pressure. There are several theories have 

also been developed for pore materials, but in practice they do not offer any advantage over the Biot theory. 

During the last several years, porous material structures such as beams, plates, and shells have been used widely 

in structural design problems. Most of current studies are focused on the problem of deflection, buckling and 

vibrations of porous beams and plates which some of them are referred in here. Theodorakopoulos and Beskos [3] 

have extended the classical theory of thin rectangular plates to porous materials including Biot’s stress-strain 

relations in porous media. They have established two coupled governing equations and have given the solutions for 

a simply supported plate by extending Navier's algebraic solution to the porous case. Leclaire et al. [4] presented the 

vibrations of a rectangular porous plate described by two coupled equations involving the time and space derivatives 

of the deflection and of the relative fluid-solid motion. By using Galerkin’s variational method and classical theory 

of plates, the equations were solved. Buckling of porous beams with varying properties was described by Magnucki 

and Stasiewicz [5]. They used shear deformation theory for solving the critical load, and also they have investigated 

the effect of porosity on the strength and buckling load of the beam. Magnucka-Blandzi [6] investigated the problem 

of axi-symmetrical deflection and buckling of circular porous–cellular plate with the geometric model of nonlinear 

hypothesis. Magnucka-Blandzi and Magnucki [7] performed an effective design of a sandwich beam with an FG 

metal foam core and calculated the optimal dimensionless parameters to maximize the critical force and minimize 

the beam mass. Debowski and Magnucki [8] explored the dynamic stability of a porous rectangular plate to study an 

axial compressed porous-cellular rectangular plate which is a generalization of sandwich or multilayer plates. 

Mojahedin et al. [9] carried out the study of thermal and mechanical stability of solid circular plates made of 

saturated/unsaturated FG porous materials with piezoelectric actuators by employing the energy method and 

classical plate theory. Jabbari et al. [10] investigated the buckling analysis of radially loaded functionally graded 

solid circular saturated porous plate. They derived the equilibrium and stability equations through the variational 

formulation based on Sander’s nonlinear strain-displacement relation. They came to the conclusion that increasing 

porosity decreases buckling load. They also found that the Monotonous porosity is more unstable than symmetric 

and non-symmetric porosity and the critical buckling load will be reduced by increasing the compressibility of fluid 

within the pores. Jabbari et al. [11] investigated buckling analysis of thin circular FG plates made of saturated 

porous-soft ferromagnetic materials in transverse magnetic field. Ebrahimi and Mokhtari [12] studied vibrational 

behavior of a rotating porous FG beam by using DQM and Euler Bernoulli beam theory. Ebrahimi and Jafari [13] 

and Ebrahimi et al. [14] analyzed thermo-mechanical vibrations of FG porous beams under various thermal loadings 

by employing a semi-analytical differential transform method based on four variable refined shear deformation 

beam theory and Euler Bernoulli beam theory, respectively. Chen et al. [15, 16] by using Timoshenko beam theory 

presented the elastic buckling, static bending, free and forced vibration analyses of shear deformable FG porous 

beams made of open-cell metal foams with two poro/nonlinear non-symmetric distribution, poro/nonlinear 

symmetric distribution and compared the influences from different porosity distributions. Chen et al. [17] studied 

nonlinear free vibration of shear deformable sandwich beam based on Timoshenko beam theory. In [12- 17], the 

constitutive equations are based on Hooke’s law or the behavior of porous structure in drained condition is studied. 

Arshid and Khorshidvand [18] studied free vibration analysis of saturated porous FG circular plates integrated with 

piezoelectric actuators via differential quadrature method. Using Hamilton's variational principle and the classical 

plate theory, the governing motion equations have been obtained. Galeban et al. [19] studied free vibration of 

functionally graded thin beams made of saturated porous materials. The equations of motion were derived using 

Euler-Bernoulli theory and natural frequencies of porous beam have been obtained for different boundary 

conditions. The effects of poroelastic parameters and pores compressibility has been considered on the natural 

frequencies. Grygorowicz et al. [20] employed a broken line hypothesis and a nonlinear hypothesis to conduct 

analytical and numerical studies on the elastic buckling of a sandwich beam with FG metal core. Based on the 

Reddy's third-order shear deformation theory, the dynamic characteristics of a porous rectangular plate resting on a 

Pasternak foundation was solved by differential quadrature method [21]. Arani et al [22] used third order shear 

deformation theory and differential quadrature method (DQM) to investigate the natural vibration of porous plate. 

They also investigated nonlocal free vibration analysis of FG-porous shear and normal deformable sandwich 

nanoplate with piezoelectric face sheets resting on silica aerogel foundation [23]. 

Porous beam has wide application and can be used in aerospace industry as a vibration damper, in sea structures 

and in submarines due to its very low density and in reformer and catalysts due to the high specific surface. 

Therefore, it is important to study the behavior of these structures. The above literature review shows that the 

analysis of porous beams has mainly been performed based on the simple beam theories (Euler and Timoshenko), 

and Hooke’s law or drained condition is considered to model the porous behavior of beam. In this paper, free and 

transient vibration of a thick saturated porous functionally graded beam resting on a viscoelastic foundation has been 
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investigated based on the third order shear deformation theory and Biot constitutive law which has not been 

surveyed so far. Kelvin- voight model is used to model the viscoelastic foundation. Distribution of porosity along 

the thickness is considered in two different patterns, which are symmetric nonlinear and nonlinear asymmetric 

distributions. Lagrange equations are used to express the motion equations and the finite element and Newark 

methods are used to solve the governing equation. The effect of different boundary conditions and various 

parameters such as Biot, porosity and Skempton coefficients and slenderness ratio as well as stiffness and damping 

coefficients of viscoelastic foundation on natural frequency and transient response of beam in undrained condition 

have been studied. 

2    DERIVATION OF THE GOVERNING EQUATIONS  

Consider a beam made of saturated porous materials with rectangular cross section resting on a viscoelastic 

foundation. It is assumed that the length of the beam is L and cross section is b × h. Cartesian coordinates is used 

such that the x axis is at the left side of the beam on its middle surface (Fig.1). 

 

 

 

 

 

 

 

 
Fig.1 

Beam on viscoelastic foundation. 

 

Mechanical properties of the porous material vary across the thickness of the beam. Two different distributions 

of a porous beam are as follow and are shown in Fig.2: 

a) Porous material with nonlinear non-symmetric distribution (PNND): material which has nonlinear 

asymmetric distribution of porosity in thickness direction. Shear modulus, Young’s modulus and density 

for PNND are as [24, 25]: 

 

  1 01
2* 2

h
G z G e cos z

h

    
      

     
 

  1 01
2* 2

h
E z E e cos z

h

    
      

     
 

  1 1
2* 2

m

h
z e cos z

h


 

    
      

     
 

(1) 

 

b) Porous material with nonlinear symmetric distribution (PNSD): material which has nonlinear symmetric 

distribution of porosity in thickness direction. Young’s modulus, shear modulus and density for PNSD are 

as [26]: 
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(a) PNND 

 
(b) PNSD 

Fig.2 

Two different distributions of a porous beam. 
 

 

where for two different porosity distributions, we have: 
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where 0e  is the coefficient of plate porosity (0< 0e <1). For PNND,  0E  and 1E  are Young’s modulus of elasticity 

at z=-h/2 and z=h/2, respectively. Also,  0G  and 1G  are the shear modulus at z=-h/2 and z=h/2, respectively. The 

relationship between the modulus of elasticity and shear modulus is 2j jE G (1+ν) (j=0,1) and ν is Poisson’s ratio, 

which is assumed to be constant across the beam thickness.  

2.1 Constitutive equations 

Constitutive equations of porous beam are based on Biot theory instead of Hook’s law. The linear poroelasticity 

theory of Biot has two characteristics [2] 

1) An increase of pore pressure induces a dilation of pore. 

2) Compression of the pore causes a rise of pore pressure. 

The stress-strain law for the Biot poroelasticity is given by [27]. 
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Here p is pore fluid pressure,  M  is Biot’s modulus, G is shear modulus,  uv  is undrained Poisson’s ratio (ν< 

uv <0/5), α is the Biot coefficient of effective stress (0< <1),  kk  is the volumetric strain,    is variation of fluid 

volume content,    is Skempton coefficient. For p=0, the Biot law reduces to conventional Hook’s law or drained 

condition. 

The pore fluid property is introduced by the Skempton coefficient. The Biot’s coefficient ( ) describes the 

porosity effect on the behavior of the porous material without fluid, and states that due to porosity, the resistance of 

the body varies a few percent and is defined as follows: 
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where SK  is the bulk modulus of a homogeneous material. The relationship between the bulk mdulus and the shear 

modulus is as follows: 
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The Skempton coefficient is a measure of the relative compressibility between solid and fluid. The Skempton 

coefficient is an important dimensionless parameter for describing the effect of the fluid inside the cavities on the 

behavior of the porous material in the undrained state ( 0  ), and is the ratio of the cavity pressure to the total body 

stress.  
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where uK  is the bulk modulus in the undrained state, K is the bulk modulus in the drained state,  PC  is the fluid 

Compressibility in the pores and sC  is solid Compressibility. The Skempton coefficient also shows the effect of 

fluid Compressibility on the elastic modulus and the compressibility of the entire porous material [28]. 

2.2 Displacement field and strain  

The displacement field based on the third order beam theory of Reddy [29] is given by: 
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where u and w are the displacement components in the x and z directions respectively.  0u  and 0w   are the midplane 

displacements and x  is the bending rotation of x-axis. t denotes time and h is the total thickness of the beam. The 

matrix form of the displacement field is as: 
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The strain–displacement relations can be described in a matrix form as: 
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where    
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 is expressed in the following equation: 
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So,     can be presented in the following matrix form: 
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The stress- strain relationship for a porous beam in an undrained condition ( 0  ) is as follows: 
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where   ,   ,  D and its components are: 
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In this research, the beam is supported by viscoelastic foundation. The Kelvin-voight linear model is used for 

modeling of the viscoelastic foundation. The relationship between force per unit area and deflection in this model 

can be calculated according to the following equation [30]: 
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where   wk  is the elastic coefficient of the foundation in terms of (N/m
3
), and dc  is the damping coefficient of the 

foundation in terms of (N.s/m
3
). 

2.3 Finite element model of governing equations  

The approximation of the displacement field in each element of the beam is as follows: 
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In which  [B]=[d] N(x)  represents the derivative of the matrix of the shape functions in terms of x and is 

explained in the appendix. The velocity components are obtained from the time derivative of the displacement field 

as follows:  
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The equation of motion of is extracted by using the Lagrange equations as follows: 
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In the above equation, kinetic energy is a function of the dissipation of the Rayleigh and the total potential 

energy and the total force on the beam. The kinetic energy and the total potential energy are defined as follow: 
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Total potential energy of system is as: 
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[Z] and [D]  are defined as follow and N  is presented in appendix: 
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Since the damping of the viscoelastic foundation is a function of the Rayleigh dissipation (R). So, the equation of 

Rayleigh dissipation matrix for each element of the beam is: 
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(28) 

 

If ( )zp t  is the external force of the beam, the work performed is defined by Eq. (29): 
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Therefore, the mass matrix ( )eM 
 

, The stiffness matrix caused by strain ( )eK 
 
 

, the stiffness matrix due to 

the elastic properties of the foundation ( )e
kwK 

 
, the damping matrix due to damping property of foundation 

( )eC 
 

 and the external force matrix for each element of the beam  ( )eF  are as following: 
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After assembly of element matrices, the matrix form of the Lagrange equations is as: 

 

        
¨
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          (35) 

 

To solve the governing equations in time domain, Newmark integration method is used [31]. In this method, the 

displacement and velocity vectors at time t t  are approximated in terms of their values at time t according to the 

following equations: 
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By choosing the parameters 1/ 4  and 1/ 2  , the solution method is called the mean acceleration method 

and is unconditionally stable in linear analysis. Now the equilibrium Eq. (35) for time is rewritten as follows: 
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From the solution of Eq. (37),  
t t

Q


is obtained and  
t t

Q


is obtained by replacing 
t t

Q


 in Eq. (36). 

Now  
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Q
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and  
t t

Q


 are obtained in terms of  
t t

Q


, and by replacing these expressions in Eq. (38), the 

following relation is obtained: 
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In the above equation, the matrices K 
 

 and  F are defined as follows: 
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with the known initial conditions and marching through time, the Eq. (40) is solved and displacements at each time 

are obtained. 

3    NUMERICAL RESULTS  

In this section, numerical results have been obtained for free and transient vibration of porous beam in undrained 

condition. The effects of different boundary conditions, porosity distribution, porosity parameters and slenderness 

ratio have been investigated. The material properties of the porous beam are considered as: 1 200E GPa , 

3
1 7850 /kg m  and 1/3v  .  

 

Natural frequencies have been normalized by the following relation: 

 

 21

1

* 1L v
E


              (41) 

 

where  is the natural frequency and   is dimensionless form of natural frequency. 

3.1 Free vibration 

To validate the results of present study, natural frequencies of a porous beam with different boundary conditions and 

for two porosity distributions and different slender ratio (L/h) are obtained and compared with results of [16] in 

Tables 1 and 2. Comparison of results shows excellent agreement between them. In [16], Hook’s law (drained 

condition) and Timoshenko beam theory is used to model the dynamic behavior of porous beam, while in the present 

study, Reddy beam theory and Biot constitutive law are used. To derive results of Ref. [16] in the present study, 

Skempton coefficient is considered to be zero. This assumption gives uV V , Biot’s modulus 0M   and pore 

fluid pressure 0p  . Table 2., denotes that by increasing the porosity coefficient, fundamental natural frequency for 

PNSD is increased and for PNND is decreased. This is due to the fact that by increasing the porosity coefficient, free 

space of the beam increases and both of stiffness and mass matrices decrease, but the rate of reduction in stiffness 

matrix is smaller than that of mass matrix for PNSD, while this is just the opposite for PNND. 
 

 

Table 1 

Fundamental natural frequency for different boundary conditions, L/h and porosity distribution compared with [16] for e0=0.5. 

  PNSD  PNND 

L/h [16] present [16] present 

                               H–H beam H–H beam 

10 0.2798 0.2792 
 

0.2599 0.2598 

20 0.1422 0.1421 
 

0.1318 0.1318 

50 0.0571                0.0571 0.0529 0.0529 

                              C–C beam  C–C beam 

10 0.5944 0.5901 
 

0.5475 0.5477 

20 0.3166 0.3159 
 

0.2888 0.2888 

50 0.1291                0.1291 0.1174 0.1174 

                              C–H beam C–H beam 

10 0.4242 0.4222 
 

0.3898 0.3898 

20 0.2203 0.2201 
 

0.2013 0.2013 

50 0.0891 0.0891 
 

0.0813 0.0813 

                             C–F beam C–F beam 

10 0.1008 0.1007 
 

0.0917 0.0917 

20 0.0508 0.0508 
 

0.0462 0.0462 

50 0.0204                0.0204 0.0185 0.0185 
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Table 2 

First six natural frequencies of C-F porous beam for different porosity distribution, porosity coefficient and L/h compared with 

[16].  

PNSD 

  L/h e0 1  2  3  4  5  6  

[16] 10 0.2 0.1003 0.5966 1.5193 1.5549 2.7936 4.2217 

PRESENT   0.1003 0.5962 1.5194 1.5538 2.7921 4.2162 

[16]  0.5 0.1008 0.5963 1.4379 1.5439 2.7555 4.1400 

PRESENT   0.5932 0.5932 1.4379 1.5289 2.7176 4.0656 

[16]  0.8 0.1050 0.6149 1.3668 1.5746 2.7800 4.1005 

PRESENT   0.1046 0.6024 1.3669 1.5162 2.6352 3.8714 

[16] 20 0.2 0.0505 0.3121 0.8555 1.5193 1.6282 2.6066 

PRESENT   0.0505 0.3120 0.8551 1.5194 1.6269 2.5960 

[16]  0.5 0.0508 0.3134 0.8572 1.4379 1.6266 2.5950 

PRESENT   0.0508 0.3130 0.8543 1.4379 1.6170 2.5658 

[16]  0.8 0.0530 0.3260 0.8879 1.3668 1.6761 2.6583 

PRESENT   0.0529 0.3241 0.8762 1.3669 1.6390 2.5684 

[16] 50 0.2 0.0202 0.1265 0.3530 0.6882 1.1360 1.5193 

PRESENT   0.0202 0.1265 0.3530 0.6882 1.1301 1.5194 

[16]  0.5 0.0204 0.1273 0.3550 0.6916 1.1406 1.4379 

PRESENT   0.0204 0.1273 0.3548 0.6909 1.1330 1.4379 

[16]  0.8 0.0212 0.1327 0.3699 0.7200 1.1857 1.3668 

PRESENT   0.0212 0.1326 0.3691 0.7170 1.1720 1.3669 

PNND 

[16] 10 0.2 0.0977 0.5825 1.5187 1.5229 2.7424 4.1544 

PRESENT   0.0977 0.5829 1.5189 1.5252 2.7508 4.1681 

[16]  0.5 0.0917 0.5471 1.4283 1.4403 2.5791 3.9080 

PRESENT   0.0917 0.5472 1.4289 1.4405 2.5824 3.9119 

[16]  0.8 0.0808 0.4841 1.2730 1.3680 2.3122 3.5232 

PRESENT   0.0808 0.4838 1.2717 1.3680 2.3095 3.5151 

[16] 20 0.2 0.0492 0.3041 0.8344 1.5193 1.5900 2.5491 

PRESENT   0.0492 0.3042 0.8347 1.5193 1.5909 2.5435 

[16]  0.5 0.0462 0.2856 0.6916 1.3202 1.4938 2.3953 

PRESENT   0.0462 0.2856 0.7836 1.4377 1.4937 2.3878 

[16]  0.8 0.0406 0.2516 0.6919 1.3213 1.3681 2.1277 

PRESENT   0.0406 0.2516 0.6916 1.3202 1.3681 2.1183 

[16] 50 0.2 0.0197 0.1232 0.3439 0.6705 1.1072 1.5193 

PRESENT   0.0197 0.1232 0.3439 0.6707 1.1018 1.5194 

[16]  0.5 0.0185 0.1157 0.3229 0.6296 1.0396 1.4379 

PRESENT   0.0185 0.1157 0.3229 0.6297 1.0344 1.4379 

[16]  0.8 0.0163 0.1018 0.2842 0.5544 0.9163 1.3656 

PRESENT   0.0163 0.1018 0.2842 0.5545 0.9115 1.3518 

 

Tables 3 and 4 show first six natural frequencies of porous beam with e0=0.5 for different boundary conditions, 

Skempton coefficient and L/h. These tables are obtained for PNSD and PNND, respectively. Results denotes that in 

a drained condition (B=0), beam has smallest fundamental frequency and by increasing Skempton coefficient, 

fundamental frequency increases. This is due to the fact that by increasing the Skempton coefficient, the 

compressibility of fluid within the pores decrease and the natural frequencies increases. In other words, if the 

compressibility of the pore fluid is high ( 0  ), the behavior of plate resembles that of a porous plate without 

fluid (drained). In this condition, the stiffness of structure has its minimum value and the least value of natural 

frequency is obtained. When the compressibility of pore fluid is small ( 1  ), the behavior of plate resembles that 

of a rigid solid, and the natural frequency has its maximum magnitude.  

 

 

 

 

 
 



M. Babaei et.al.                            626 

 

© 2019 IAU, Arak Branch 

Table 3 

First six natural frequencies of porous beam for different boundary conditions, Skempton coefficient and L/h, e0=0.5 (PNSD). 

PNSD 

C-F L/h   1  2  3  4  5  6  

 5  β=0 0.1951 1.0042 1.4379 2.3255 3.7819 4.3141 

     β=0.3 0.1992 1.0190 1.4980 2.3509 3.8117 4.4943 

    β=0.5 0.2023 1.0298 1.5458 2.3692 3.8331 4.6377 

   β=0.7 0.2058 1.0416 1.6022 2.3889 3.8557 4.8069 

 7        β=0 0.1422 0.7940 1.4379 1.9439 3.3022 4.3141 

   β=0.3 0.1454 0.8080 1.4980 1.9709 3.3379 4.4943 

   β=0.5 0.1477 0.8183 1.5458 1.9907 3.3637 4.6377 

   β=0.7 0.1503 0.8297 1.6022 2.0122 3.3914 4.8069 

 10        β=0 0.1007 0.5932 1.4379 1.5289 2.7176 4.0656 

   β=0.3 0.1030 0.6050 1.4980 1.5550 2.7563 4.1139 

   β=0.5 0.1047 0.6138 1.5458 1.5743 2.7847 4.1489 

  β=0.7 0.1066 0.6236 1.5955 1.6022 2.8156 4.1866 

C-C         

 5        β=0 0.9668 2.1540 2.8759 3.5554 5.0508 5.7526 

   β=0.3 0.9781 2.1708 2.9960 3.5772 5.0753 5.9928 

   β=0.5 0.9863 2.1828 3.0917 3.5926 5.0926 6.1841 

  β=0.7 0.9952 2.1956 3.2044 3.6089 5.1108 6.4097 

 7       β=0 0.7783 1.8406 2.8759 3.1342 4.5502 5.7526 

        β=0.3 0.7903 1.8613 2.9960 3.1617 4.5821 5.9928 

        β=0.5 0.7992 1.8764 3.0917 3.1814 4.6047 6.1018 

        β=0.7 0.8088 1.8926 3.2025 3.2044 4.6287 6.1273 

 10       β=0 0.5901 1.4770 2.6182 2.8759 3.9150 5.3130 

       β=0.3 0.6010 1.4994 2.6508 2.9960 3.9553 5.3587 

       β=0.5 0.6092 1.5158 2.6745 3.0917 3.9843 5.3914 

       β=0.7 0.6181 1.5337 2.7001 3.2044 4.0155 5.4263 

         S-S         

 5         β=0 0.5238 1.4379 1.7391 3.2104 4.3141 4.7614 

    β=0.3 0.5339 1.4980 1.7624 3.2385 4.4943 4.7887 

   β=0.5 0.5415 1.5458 1.7793 3.2585 4.6377 4.8077 

   β=0.7 0.5498 1.6022 1.7976 3.2797 4.8069 4.8274 

 7        β=0 0.3896 1.3892 1.4379 2.7160 4.1905 4.3141 

   β=0.3 0.3978 1.4124 1.4980 2.7503 4.2295 4.4943 

   β=0.5 0.4039 1.4295 1.5458 2.7751 4.2574 4.6377 

   β=0.7 0.4107 1.4482 1.6022 2.8018 4.2869 4.8069 

 10        β=0 0.2792 1.0476 1.4379 2.1587 3.4784 4.3141 

  β=0.3 0.2853 1.0679 1.4980 2.1938 3.5249 4.4943 

  β=0.5 0.2899 1.0830 1.5458 2.2197 3.5587 4.6377 

  β=0.7 0.2950 1.0996 1.6022 2.2480 3.5953 4.8069 

C-S         

 5         β=0 0.7383 1.4379 1.9565 3.3864 4.3141 4.9089 

   β=0.3 0.7495 1.4980 1.9766 3.4110 4.4943 4.9346 

   β=0.5 0.7577 1.5458 1.9911 3.4285 4.6377 4.9526 

   β=0.7 0.7667 1.6022 2.0067 3.4469 4.8069 4.9714 

 7        β=0 0.5729 1.4379 1.6204 2.9305 4.3141 4.3742 

   β=0.3 0.5833 1.4980 1.6428 2.9613 4.4095 4.4943 

   β=0.5 0.5910 1.5458 1.6592 2.9835 4.4346 4.6377 

   β=0.7 0.5995 1.6022 1.6770 3.0074 4.4612 4.8069 

 10        β=0 0.4222 1.2619 1.4379 2.3918 3.7009 4.3141 

  β=0.3 0.4308 1.2836 1.4980 2.4259 3.7444 4.4943 

  β=0.5 0.4372 1.2997 1.5458 2.4509 3.7758 4.6377 

  β=0.7 0.4443 1.3173 1.6022 2.4780 3.8097 4.8069 
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Table 4 

First six natural frequencies of porous beam for different boundary conditions, Skempton coefficient and L/h, e0=0.5 (PNND). 

PNND 

C-F L/h   1  2  3  4  5  6  

 5  β=0 0.1789 0.9525 1.4383 2.2542 3.7284     4.309 

     β=0.3 0.1863 0.9835 1.4981 2.3132 3.8076     4.492 

     β=0.5 0.1922 1.0072 1.5458 2.3576 3.8664 4.6371 

    β=0.7     0.199 1.0339 1.6022 2.4073 3.9313 4.8068 

 7       β=0 0.1299 0.7412     1.438 1.8515 3.1992 4.3096 

   β=0.3 0.1354 0.7685     1.498 1.9091 3.2832 4.4921 

  β=0.5 0.1398 0.7896 1.5458 1.9531 3.3463 4.6371 

  β=0.7 0.1449 0.8138 1.6022 2.0029 3.4169 4.8068 

 10      β=0 0.0917 0.5472 1.4289 1.4405 2.5824 3.9119 

  β=0.3 0.0957 0.5691 1.4823 1.4985 2.6644 4.0226 

  β=0.5 0.0988 0.5862 1.5225 1.5459 2.7271     4.106 

  β=0.7 0.1025 0.6059 1.5681 1.6022 2.7981 4.1991 

C-C         

 5      β=0 0.9298 2.1209 2.8744 3.5396 5.0682 5.7375 

  β=0.3 0.9554 2.1648 2.9953 3.6009 5.1439 5.9864 

  β=0.5 0.9748 2.1975 3.0915 3.6464     5.2 6.1825 

  β=0.7 0.9967 2.2338 3.2044 3.6969     5.262 6.4094 

 7      β=0 0.7338 1.7756     2.875 3.0686 4.5019 5.7427 

  β=0.3 0.7583 1.8232 2.9956 3.1374 4.5887 5.9877 

  β=0.5 0.7772 1.8593 3.0915     3.189 4.6532 6.1804 

  β=0.7 0.7987 1.8997 3.2044 3.2464 4.7247 6.2853 

 10      β=0 0.5477 1.3952 2.5101 2.8754 3.7988     5.204 

  β=0.3 0.5685 1.4413 2.5822 2.9958 3.8945 5.3208 

  β=0.5 0.5847 1.4767 2.6371 3.0916 3.9666 5.4079 

  β=0.7 0.6033 1.5169 2.6988 3.2044 4.0472 5.5045 

S-S         

 5      β=0 0.4838 1.4207 1.6693 3.1348 4.2871 4.7364 

  β=0.3 0.5031 1.4861 1.7166 3.2089 4.4747 4.8209 

  β=0.5 0.5181 1.5377 1.7528 3.2639 4.6233 4.8826 

  β=0.7 0.5353 1.5979 1.7939 3.3244 4.7967 4.9501 

 7      β=0 0.3573 1.2895 1.4444 2.6011 4.0671 4.3125 

  β=0.3 0.3722 1.3408 1.5014 2.6775 4.1743 4.4898 

  β=0.5 0.3838 1.3796 1.5476 2.7355 4.2516 4.6333 

  β=0.7 0.3973 1.4229 1.6027 2.8005 4.3356 4.8034 

 10      β=0 0.2549     0.967 1.4331 2.0308 3.3155 4.2983 

  β=0.3 0.2658 1.0058 1.4947 2.1007 3.4178     4.483 

  β=0.5 0.2744 1.0359 1.5436 2.1546 3.4955 4.6298 

  β=0.7 0.2844 1.0705     1.601 2.2161 3.5828 4.8023 

C-S         

 5      β=0 0.6974 1.4377 1.8984 3.3427 4.3082 4.9025 

  β=0.3 0.7205 1.4979 1.9463 3.4098 4.4917 4.9829 

  β=0.5 0.7382 1.5457 1.9823 3.4596 4.6371 5.0421 

  β=0.7 0.7583 1.6022 2.0226 3.5146 4.8068 5.1072 

 7      β=0 0.5329 1.4377 1.5419 2.8395 4.2911 4.3162 

  β=0.3 0.5529 1.4979 1.5897 2.9125 4.3887 4.4934 

  β=0.5 0.5684 1.5458 1.6262 2.9675 4.4582 4.6374 

  β=0.7 0.5862 1.6022 1.6675 3.0289 4.5348 4.8069 

 10      β=0 0.3886 1.1795 1.4379 2.2708 3.5614 4.3126 

  β=0.3 0.4043 1.2221 1.4979 2.3428 3.6605 4.4936 

  β=0.5 0.4166 1.2551 1.5458     2.398 3.7354 4.6375 

  β=0.7 0.4309 1.2929 1.6022 2.4604 3.8194 4.8069 

 
Tables 5 and 6 show fundamental natural frequencies of porous C-F beam with e0=0.5 and β=0.3 for different 

slenderness ratio (L/h) and coefficient of elastic foundation. These tables are obtained for PNSD and PNND, 

respectively. Results denotes that by increasing the coefficient of elastic foundation, fundamental frequency 

increases and this is due to the fact that by increasing the elastic coefficient, stiffness of structure increases.  
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Table 5  
Fundamental frequencies of porous C-F beam for different elastic coefficient and L/h, e0=0.5, β=0.3 (PNSD). 

     L/h      5      7      10 

0wk   0.1992 0.1454 0.1030 

1 9wk e  0.4174 0.5354 0.2549 

5 9wk e  0.8439 1.1161 0.5316 

5 10wk e  1.4979 1.4979 1.4979 

 

 

Table 6 

Fundamental natural frequencies of porous C-F beam for different elastic coefficient and L/h, e0=0.5, β=0.3 (PNND). 

    L/h     5     7    10 

0wk   0.1863 0.1354 0.0957 

1 9wk e  0.41158 0.5329 0.2521 

5 9wk e  0.8413 1.1602 0.5303 

5 10wk e  1.4977 1.4978 1.4977 

 

As it can be seen from Fig. 2, by increasing the slenderness ratio, bending stiffness of structure and subsequently 

fundamental frequency decreases. Results denote that the difference between the fundamental frequencies of two 

porosity distributions for C-F beam is negligible compared to the other boundary conditions. Also, results denote 

that the natural frequency for PNSD is greater than PNND, because for PNSD, the ratio of stiffness to the mass 

matrix is greater than that of PNND. 

Fig. 3 presents the effect of Skempton coefficient on the dimensionless fundamental frequency for L/h =5, 

0 0.5e   and different boundary conditions. Fig. 3 shows that the fundamental frequency for C-C beam is the largest 

whereas in C-F beam is the smallest and by increasing the Skempton coefficient, the dimensionless fundamental 
frequencies for both of distributions are getting closer. This happens because, for larger values of β, the 

compressibility of pore fluid is small ( 1  ), and the behavior of plate resembles that of a rigid solid. Therefore, 

for larger values of B, the natural frequency will be identical. 

 

 

 

 

 

 

 

 

 
Fig.2 

Dimensionless fundamental frequency of porous beam for 

different boundary conditions and L/h. 

  

 

 

 

 

 

 

 
Fig.3 

Dimensionless fundamental frequency of porous beam for 

different boundary conditions and Skempton coefficient, 

L/h =5,  0e =0.5. 
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3.2 Transient vibration under an impulsive load 

The transient vibration analysis of a saturated FG porous beam (L=0.5 m, b=0.1 m) is conducted and the effects of 

different parameters such as Skempton coefficient, porosity coefficient, slenderness ratio and boundary conditions 

are investigated. It is assumed that the beam is subjected to an impulsive pressure (first region), as it is depicted in 

(42). According to (42), the maximum magnitude of impulsive pressure at t=0.005 s is equal to 0.2 MPa [32]. The 

beam is excited by unloading in t=0.005 s. It is obvious that after the unloading (second region), a transient vibration 

which is affected by the wave propagation, reflection and interference would be occurred. 
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z
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t t

P s

t

  
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          (42) 

 

The numerical results are obtained for middle point of the beam and for distribution a (PNND), unless it is noted 

in the specific results. Non-dimensional deflection and stresses are are 
W

W
h

   ,
( 0.005 )z

bh

P t s L


 


, 

respectively.  

Figs. 4 and 5 show time history of midpoint transverse displacement of the simply supported beam (S-S). In 

these figures, the effects of Skempton coefficient and porosity coefficient are investigated, respectively. As it can be 

seen from Fig. 4, by increasing the Skempton coefficient, the compressibility of pore fluid decreased, and the 

stiffness of beam increases, hence the amplitude of vibration decreases and frequency of vibration increases, 

whereas by increasing the porosity coefficient for PNND, the amplitude of vibration increases and frequency of 

vibration decreases. This is due to the fact that by increasing the porosity coefficient, both of stiffness and mass 

matrices decrease, but the rate of reduction in stiffness matrix is larger than that of mass matrix for PNND. 

 

 

 

 

 

 

 

 

 
Fig.4 

The effect of Skempton coefficient on time history of 

midpoint transverse displacement of the simply supported 

beam (Pz=0.2e6, e0=0.5, Distribution (a), L/h=10). 

 

  

 

 

 

 

 

 
Fig.5 

The effect of porosity coefficient on time history of 

midpoint transverse displacement of the simply supported 
beam (Pz =0.2e6, β =0.5, Distribution (a), L/h=10). 

 

 

In Fig. 6, the effects of different boundary conditions are surveyed. As it can be seen, the highest and smallest 

amplitude of vibration corresponds to the C-F and C-C beam with the minimum and maximum bending stiffness, 

respectively. 
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Fig.6 

The effect of different boundary condition on time history of 

midpoint transverse displacement of the beam (Pz =0.2e6, 
Distribution (a), e0=0.5, β =0.5, L/h=10). 

 

Figs. 7 and 8 show the effect of elastic coefficient of foundation on time history of midpoint transverse 

displacement and normal stress of the simply supported beam. In these results, damping coefficient of the 

foundation is considered to be zero ( 0)dc  . Results illustrate that by increasing the elastic coefficient of the 

foundation, the stiffness of beam increases and consequently, amplitude of transverse displacement and normal 

stress decrease significantly. 

 

 

 

 

 

 

 
Fig.7 

The effect of elastic coefficient of foundation on time history 

of midpoint transverse displacement of the simply supported 
beam (Pz =0.2e6, Distribution (a), e0=0.5, β =0.5, L/h=10, 

cd=0). 

  

 

 

 

 

 

 
Fig.8 

The effect of elastic coefficient of foundation on time history 

of normal stress of the simply supported beam (Pz =0.2e6, 
Distribution (a), e0=0.5, β=0.5, L/h=10, cd=0, x=L/2, z=h/2). 

 

Figs. 9 and 10 show the effect of damping coefficient of foundation on time history of midpoint transverse 

displacement and normal stress of the simply supported beam. In these results, elastic coefficient of the foundation is 

considered to be zero  ( 0)wk  . As it can be seen from these figures, by increasing damping of the foundation, 

amplitude of vibration decreases and vibration of beam can be seen in three situations such as under-damped, 

critically-damped and over-damped. 

 

 

 

 

 

 
Fig.9 

The effect of damping coefficient of foundation on time 

history of midpoint transverse displacement of the simply 
supported beam (Pz =0.2e6, Distribution (a), e0=0.5, β=0.5, 

L/h=10, S-S, kw=0). 
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Fig.10 

The effect of damping coefficient of foundation on time 

history of normal stress of the simply supported beam (Pz 
=0.2e6, Distribution (a), e0=0.5, β=0.5, L/h=10, kw=0 x=L/2, 

z=h/2). 

 

The effects of porosity and Skempton coefficients on through the thickness shear stress of a C-C beam (x=L/4) at 

t=0.005 are shown in Figs. 11 and 12. Results show that by increasing the Skempton and porosity coefficients, shear 

stress decreases. Also, Fig. 11 denotes that by increasing the Skempton coefficient, peak of shear stress move 

forward to the upper surface. 

 

 

 

 

 

 

 

 
Fig.11 

The effects of porosity coefficient on through the thickness 

shear stress of a C-C beam (Pz =0.2e6, Distribution (a), 
β=0.5, L/h=10 x=L/4). 

  

 

 

 

 

 

 

 
Fig.12 

The effects of Skempton coefficient on the through the 

thickness shear stress of a C-C beam (Pz =0.2e6, 

Distribution (a), e0=0.5, L/h=10 x=L/4). 

 

The effects of porosity coefficient on through the thickness normal stress of a C-C beam (x=L/2) at t=0.005 is 

shown in Fig. 13. Result shows that by increasing the porosity coefficient, normal stress at the upper surface 

increases and at the lower surface of beam decreases.  

 

 

 

 

 
 

 

Fig.13 

The effects of porosity coefficient on through the thickness 

normal stress of a C-C beam (Pz =0.2e6, Distribution (a), 
β=0.5, L/h=10 x=L/2). 
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4    CONCLUSIONS 

Free and transient vibration analyses of saturated FG porous beam resting on viscoelastic foundation based on third 

order beam theory have been investigated for the first time. Biot constitutive law instead of Hook’s law is used to 

model the porous behavior of beam. Lagrange equations are used to express the motion equations and the finite 

element and Newmark methods are used to solve the governing equations in time and space domains. The present 

work compared with previous studies and it shows excellent agreement. The effects of different boundary 

conditions, porosity and Skempton coefficients, two different porosity distribution and slenderness ratio as well as 

stiffness and damping coefficients of viscoelastic foundation on natural frequency and transient responses of beam 

have been studied. Some of main results of present study are: 

In a drained condition, beam has smallest fundamental frequency and by increasing the Skempton coefficient, 

the fundamental frequency of the beam increases and it doesn’t depend on the type of porosity distributions while by 

increasing the porosity coefficient, fundamental frequency in distribution 1 decreases, and in distribution 2 

increases.  

Fundamental frequency for C-C beam is the largest whereas in C-F beam is the smallest and by increasing the 

Skempton coefficient, the fundamental frequencies for both of distributions are getting closer. Also, the natural 

frequency for PNSD is greater than PNND. 

By increasing the elastic coefficient of the foundation, amplitude of transverse displacement and normal stress 

decrease significantly. 

By increasing damping of the foundation, amplitude of vibration decreases and vibration of beam can be seen in 

three situations such as under-damped, critically-damped and over-damped. 

By increasing the Skempton and porosity coefficients, shear stress decreases and peak of shear stress move 

forward to the upper surface. 
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