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 ABSTRACT 

 In this paper, the vibrational and buckling analysis of a cylindrical 

sandwich panel with an elastic core under thermo-mechanical loadings 

is investigated. The modeled cylindrical sandwich panel as well as its 

equations of motions and boundary conditions is derived by Hamilton’s 

principle and the first-order shear deformation theory (FSDT). For the 

first time in the present study, various boundary conditions is 

considered in the cylindrical sandwich panel with an elastic core. In 

order to obtain the temperature distribution in the cylindrical sandwich 

panel in the absence of a heat-generation source, temperature 

distribution is obtained by solving the steady-state heat-transfer 

equation. The accuracy of the presented model is verified using 

previous studies and the results obtained by the Navier analytical 

method. The novelty of the present study is considering thermo-

mechanical loadings as well as satisfying various boundary conditions. 

The generalized differential quadrature method (GDQM) is applied to 

discretize the equations of motion. Then, some factors such as the 

influence of length-to-radius ratio, circumferential wave numbers, 

thermal loadings, and boundary conditions are examined on the 

dynamic and static behavior of the cylindrical sandwich panel.  

                                        © 2019 IAU, Arak Branch.All rights reserved. 

 Keywords : Heat-transfer equation; Buckling and vibration behavior; 

GDQM; Cylindrical sandwich panel; Various boundary conditions.  

1    INTRODUCTION 

 N recent years, the use of sandwich structures in civil, transportation, naval, and aerospace macro-design 

components have increased because of their outstanding bending rigidity, low specific weight, superior isolating 

qualities, excellent vibration characteristics, and good fatigue properties. Sandwich structures are constructed of 

three layers. They are usually composed of two metallic or composite laminated materials: face sheets and a foam 

core or a low-strength honeycomb core. An important design consideration for such shell structures is their buckling 

capacity under various pressure loadings [1]. Moreover, temperature variations are one of the most important factors 
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for stress fields in structures such as multilayered composite plates and shells that cause their failure. Advanced 

composite materials consist of a number of properties including high specific strength and stiffness and nearly zero 

coefficient of thermal expansion in fiber orientation. Because of these implications, the effects of high temperature 

and mechanical loadings have to be considered in the design process of such structures [2, 3]. Therefore, the 

behavior of high-temperature composite plates and shells has received increasing attention. Different approaches 

may be used for modeling sandwich panels. Many shell studies incorporate classical shell theories which are based 

on Kirchhoff–Love’s hypothesis (see, for example, Refs. [4, 5]. Some studies based on 3D elasticity theory have 

been conducted on the vibration analysis of isotropic and composite cylindrical shells [6, 7]. In such research works, 

Ritz method, finite-element method, and series solutions were employed. Unlike the equivalent single-layer theories 

(ESL), the layerwise theory assumes separate displacement field expansions within each subdivision. Moreover, the 

layerwise theory provides a kinematically correct representation of the strain field in discrete layers. Eslami and 

Shariyat [8] buckling of thin cylindrical shells under different mechanical loading conditions used Donnell's 

nonlinear theory of shells are studied. Also, in Eslami et al. [9], the thermoelastic buckling of thin cylindrical shells 

under a number of practical thermal loadings were obtained based on Donnell and improved Donnell equations. The 

thermal buckling of composite cylindrical shells subjected to a uniform temperature rise was examined by 

Radhamohan and Enkataramana [10]. Alibeiglo [11] presented thermo-mechanical analysis of a simply supported 

sandwich cylindrical panel using an analytically method. Alibeiglo in this work studied the effects of key parameters 

on critical temperature and critical load of the sandwich panel. Based on the finite-element method, the buckling of 

laminated composite cylindrical and conical shells under thermal load was studied by Thangaratnam et al. [12]. Bert 

[13] considered the effect of temperature on the buckling and postbuckling behavior of reinforced and unstiffened 

composite plates and cylindrical shells. In this paper, to obtain the critical buckling loads of laminated circular 

cylindrical shells under mechanical and thermal loads, Donnell and improved Donnell equations were employed. 

Mohammad-Abadi and Daneshmehr [14] examined the free vibration and buckling of Bernoulli–Euler, Timoshenko, 

and Reddy beams based on the modified couple stress theory for several boundary conditions. They analytically 

solved governing equations compared the results with those of the generalized differential quadrature (GDQ) 

method. Using the zigzag theory and an improved third order theory (ITOT) by Dumir et al.[15], the thermal 

analysis of composite shells was investigated. Kant and Khare [16] and Khdeir et al. [17] described the 

thermoelastic behavior using classical or first-order theories. Khare et al. [18] thermo-mechanical analysis of simply 

supported doubly curved cross-ply laminated shells using of Closed-form formulations of 2D higher-order shear 

deformation theories are presented. The formulation includes the Sanders theory for doubly curved shells. Sheng and 

Wang [19] investigated the effect of thermal loading on the buckling and vibration of functionally graded cylindrical 

shells with a ring-stiffener, considering rotary inertia and transverse shear strains along the shell thickness. They 

also [20] thermoelastic vibration and buckling characteristics of the functionally graded piezoelectric cylindrical are 

investigated. 

Recently, sandwich construction has become even more attractive due to the introduction of advanced composite 

materials for face sheets. As an example of the design of sandwich skins for aircraft wings, the prevention of 

buckling is very important. High-speed aircraft structural panels are subjected to not only aerodynamic loading, but 

also aerodynamic heating. Temperature rise may buckle the plate and reduce the load-carrying capacity. Shiau and 

Kuo In [21], the analysis of postbuckling behaviors of sandwich plates with composite laminated faces and 

honeycomb core subjected to a change in temperature was done. The thermal postbuckling behavior of a composite 

sandwich panel may be different from that of a composite laminated plate due to the introduction of laminated face 

and honeycomb core. The buckling responses of composite sandwich plates also analyzed by some researchers 

Shian [22], Rao [23]. Noor et al. [24] studied the nonlinear response of curved sandwich panels with composite face 

sheets subjected to a temperature gradient through the thickness combined with mechanical loadings. The analysis 

was based on a first-order shear-deformation Sanders-Budiansky-type theory, including the effects of large 

displacements, moderate rotations, transverse shear deformation, and laminated anisotropic material behavior. 

Chang [25] examined the thermal elastic behavior of a rectangular sandwich panel which was subjected to edge 

compression, transverse load, and high temperature difference between the two faces. Huang [26] and Huang and 

Kardomateas [27] used the ESL approach to analyze a sandwich panel allowing very large deformations. Frostig and 

Thomsen [28] examined the non-linear response of unidirectional sandwich panels with a ‘‘soft’’ core subjected to 

thermally induced deformation type of loading which might be fully distributed or localized. Khalili and 

Mohammadi [29] investigated the free vibration of sandwich plates with functionally graded (FG) face sheets in 

various thermal environments and employed improved high-order sandwich plate theory. Recently, the vibrations of 

a cylindrical sandwich shell with elastic core under local loads were studied by Ref [30].  

Malekzadeh et al [31] presented the free vibrations and buckling behavior of the sandwich panel with a  
flexible core was investigated using a new improved‎ high-order sandwich panel theory. In another work, jabbari et 
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al [32] thermo-elastic analysis of a rotating thick truncated conical shell subjected to the temperature gradient, 

internal pressure and external pressure. Based on rayleigh-ritz method, free vibration of partially fluid-filled 

laminated composite circular cylindrical shell with arbitrary boundary conditions investigated by [33]. Calculation 

of natural frequencies of bi-layered rotating functionally graded cylindrical shells is presented by Golpayegani [34]. 

The behavior of a graded cylindrical shell subjected to an axisymmetric thermo-electro-mechanical loading studied 

by [35]. They in this article, using the Fourier series expansion method, solved the governing and boundary 

conditions. Recently, buckling and post buckling of cylindrical shells under hydrostatic pressure investigated by 

Ghasemi et al [36]. They in this work, show that the shell with variable thickness has buckling pressure close to 

shell bucking pressure with mean thickness. Because of applications of sandwich panel structures under static and 

dynamic loads as well as for practical use in electrical engineering, materials science and construction engineering, 

this issue is considered. 

To the best of our knowledge, no studies have been reported in the literature concerning the influence of 

boundary conditions on the vibration and buckling behavior of cylindrical sandwich panels under thermo-

mechanical loadings. The purpose of the present study is investigating the effect of thermal loading on the buckling 

and vibration of a cylindrical sandwich panel with various boundary conditions using the first-order shear 

deformation theory (FSDT). the governing equations were solved by the GDQ method. The results were validated 

with those published in the literature and with the analytical method. Finally, influence of length-to-radius ratio, 

circumferential wave numbers, thermal loadings, and boundary conditions on the dynamic and static behavior of the 

cylindrical sandwich panel are examined.  

2    FORMULATION  

Fig. 1 shows a cylindrical sandwich panel. The thickness, length and the middle surface radius of the cylindrical 

sandwich panel are denoted by h, L and R respectively.  

According to the FSDT, displacement fields of the cylindrical sandwich panel along x,  , and z directions are 

expressed as [37]: 

 

( , , , ) ( , , ) ( , , )

( , , , ) ( , , ) ( , , )

( , , , ) ( , , )

xU x z t u x t z x t
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W x z t w x t



   
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 

 

 
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 (1) 

 

In which ( , , )u x t , ( , , )v x t  and ( , , )w x t  are the neutral surface displacements and ( , , )x x t  and 

( , , )x t  are the rotations about the axial and the circumferential directions, respectively. In addition, strain tensor 

is expressed as: 
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Moreover, the stress–strain relation can be expressed as follows [38]: 
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In which the coefficients of the ijQ  matrix, known as the reduced elastic constants of the orthotropic material 

corresponding to Lth lamina, are expressed as follows: 
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As mentioned earlier, the relations given by Eq. (3) are stress–strain constitutive relations for the Lth orthotropic 

lamina referred to as the lamina’s principal material axes x, , and z. In Eq (4),   is fiber angel and ijQ  is defined 

as follows: 
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The stress-strain relation for the core is expressed as: 
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Fig.1 

Geometry of the cylindrical sandwich panel. 

 

 The total stress for the cylindrical sandwich panel structure can be obtained from: 

 

outer composit layers Inner composit layerstotal core
ij ijij ij       (7) 

 

It is worth mentioning that indices i and j in Eq. 7 are x,  , and z directions, respectively. 

 

 

2.1 Governing equations and boundary conditions 

 

To derive the equations of motion and boundary conditions for the cylindrical sandwich panel using the first-order 

shear deformation shell model, one must insert the components of the displacement field into the strains. By 

substituting Eq. (1) into Eq. (2), the components of strain tensor are obtained as follows: 
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(8) 

 

In Eq. (8), the mean of R is the average of the radius of the cylindrical sandwich panel. For the equations of 

motion and boundary conditions, the principle of minimum potential energy states that [39]: 
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where T , U ,
1W  and 

2W are the variations of kinetic energy, strain energy, and the work of external forces 

due to mechanical and temperature loading, respectively. The strain energy of the cylindrical sandwich panel is 

expressed as follows: 
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where force and momentum are defined as follows: 
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In the above equation, sk  is the shear correction factor. In addition, to obtain admissible results, the shear 

correction factor is considered to be sk =5/6 [40]. Also, the kinetic energy of a cylindrical sandwich panel can be 

expressed as: 
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Furthermore, the work done by the mechanical loading can be written as: 
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In the above equation, F is the mechanical loading which is constant. Temperature distribution in the cylindrical 

sandwich panel can be obtained by solving the following steady-state heat-transfer equation: 

 

0;   , ,i
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i i
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dz dz
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In this paper, t, c, and b mean the outer composite layer, core, and inner composite layer of the cylindrical 

sandwich panel, respectively. Also, K is the thermal conductivity coefficient of the structure. Boundary conditions 

for transfer heat are expressed as follows: 
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In Eq. (15), 
uT , 

bT  and 
cT  are the temperatures of outer, inner, and core of the cylindrical sandwich panel. 

Moreover, 
uk , 

bk  and 
ck  are the thermal conductivity coefficients of the structure. By substituting Eq. (15) into 

Eq. (14), the temperature distribution function for outer and inner composite layers and core of the cylindrical 

sandwich panel are expressed as follows: 
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Now by substituting Eq. (15) into Eq. (16), the temperature changes (
luT T ), between outer and inner surfaces 

of the cylindrical sandwich panel can be obtained. Hence, the first variation of the work done corresponding to 

temperature change can be expressed as [20, 41]: 
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where 1

TN  and 2

TN  are thermal resultants. Note that the two thermal resultants are equal and can be expressed as: 

 



415                                Buckling and Thermomechanical Vibration Analysis…. 

© 2019 IAU, Arak Branch 

 

 

 

 

/2

/2 11 12

/22

/2 21 22

/2

/2 11

/22

/2 22

1

2 2

2

( )( ) , ,

( )( ) , ,

( )( ) ,

( )( ) ,





















   

   

 

 

 

 

i

i

i

i

c

c

c

c

hT

hi xx i ref

hT

hi i ref

hT c c

hc xx c ref

hT c c

hc c ref

Total T T

i c

Total T T

i c

N Q Q T T dz i t b

N Q Q T T dz i t b

N E T T dz

N E T T dz

N N N

N N N

 (18) 

 

Thermal expansion coefficients are given by: 
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By substituting Eqs. (10), (12), (13), (17) into Eq. (9) and integrating by parts, the equations of motion and 

boundary conditions can be obtained as follows, using the first-order shear deformation sandwich panel model: 
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(20) 

 

Boundary conditions are listed below: 

 

0 ( ) ( ) 0,
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0 ( ) ( ) 0

xx x x

x x

xz x z

u or N n N n

v or N n N n

w or Q n Q n

or M n M nx xx x x

or M n M nxx

 

  

 








 
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  

  

  

 (21) 

3    SOLUTION PROCEDURE  

In this section, the summarized explanation of numerical and analytical solutions of governing equations is stated. 

The numerical solution is obtained using the GDQ method and analytical solution based on Navier method for a 

cylindrical circular composite sandwich panel simply supported on all the edges. 

3.1 Numerical solution procedure 

Differential quadrature method (DQM) is an accurate and effective numerical method presented in early 1970s [42, 

43]. The accuracy of this method depends on its weighting coefficients precision controlled by the number of grid 



A.R. Pourmoayed et.al.                         416 

 

© 2019 IAU, Arak Branch 

points. In primary formulations of DQM, an algebraic equation system was employed to calculate weighting 

coefficients which determined the number of grid points. An explicit formulation for the weighting coefficients was 

later presented by Shu [44], and led to GDQ.  Many regular domain problems are solved using this procedure. Shu 

and Richards [45] developed a domain parsing method  to be applied in multi-domain problems. Therefore, a 

number of sub-domains are obtained by main domain division before discretizing each sub-domain for GDQ. The r-

th order derivatives of a function ( )if x is achieved as below [44]: 

 

 
 ( )

1

P

r
s

r

ij ir
j

f x
C f x

x
x x




 




 (22) 

 

where s is the number of grid points along the x direction. In addition, Cij is obtained as follows: 

 

 

   (1)

(1)

1,

             

             
 






 








i

i j j

ij

ij

j i j

M
i j

r M

C i

C

j

r

r r

s
 (23) 

 

and M is defined as: 
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i i j
j j i

M x x x  (24) 

 

Superscript "r" is the order of the derivative. Furthermore, C
(r)

 is the weighing coefficient along the x direction, 

which can be written as: 
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 (25) 

 

A better mesh point distribution is acquired based on Chebyshev-Gauss-Lobatto technique: 
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 (26) 

 

The degrees of freedom can be assumed as follows: 
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The governing equations of the cylindrical sandwich panel based on GDQ method into, i.e. Eq. (20) are applied. 

The natural frequency and buckling of the structure were calculated with the solution of the proposed eigenvalue 

equation in the form of Eq. (28). 

 

 

   2

0

0

g crK N K

M K

   
 

 

 (28) 

3.2 Analytical solution 

In order to obtain the natural frequencies and critical loading of the simply supported cylindrical sandwich panel, the 

Navier method was applied. In order to satisfy the boundary conditions, the displacement fields based on double 

Fourier series were assumed to be in the following form: 
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 (29) 

 

where m is the axial half-wave number and n is the circumferential wave number. Substituting Eq. (29) into Eq. 

(20), a characteristic equation for buckling loads and natural frequencies can be obtained. The minimum eigenvalue 

of Eq. (28) is the buckling load and fundamental natural frequency of sandwich cylindrical panel which is 

determined using MATLAB code. 

The Material properties of a cylindrical sandwich panel with an elastic core are given in Table 1. 

Table1 

Material properties of a cylindrical sandwich panel. 

1 2 3 12 13 23

5 3

0 00689 0 00345

10 94 195

E  E  E .  Gpa, G   G   G  .  GPa

  ,  .  Kg / m  


     

   

 Material properties of core: 

1 2 3 12 13 23

3

12 13 23

131 10 34 6 895 6 205

0 22 0 49 1627

E   GPa, E   E .  GPa, G   G .  GPa, G  . GPa,

   .  ,   .  ,   kg / m   

     

   
 Material properties of composite layers: 

 

4    RESULTS AND DISCUSSION  

In this section, the numerical results of the vibration behavior of the cylindrical sandwich panel are investigated for 

various boundary conditions. A sufficient number of grid points is necessary to achieve accurate results in the GDQ 

method. For the free vibration analysis of the cylindrical sandwich panel, as it is shown in Table 2., for the good 

results, 35 grid points are appropriate. In addition, 30 grid points are necessary for buckling load analysis of the 

cylindrical sandwich panel, as presented in Table 3. The Results are presented and analyzed in two sections. The 

first section verifies the proposed model with the presented analytical model and existing literature. The second 

section shows the effect of some factors on critical buckling load and natural frequency of the cylindrical sandwich 

panel. The said factors are the length-to-radius ratio, radius-to-thickness ratio, thermal and mechanical loadings, 

circumferential mode number, and boundary conditions. 
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Table2 

The effect of the number of grid points on evaluating the convergence of natural frequency (Hz) of the cylindrical sandwich panel 

with respect to different mechanical and thermal loadings, boundary conditions (B.Cs), and L / R =10, h / R =0.1, 
eh / h =0.5, 

t bh h and n=1. 

Boundary  

condition 

 Mechanical 

loading 

Thermal 

loading 

S=20 S=25 S=30 S=35 S=40 S=45 S=50 

Simply-

Simply 
F=  61 10  T =100 549.704 549.704 549.704 549.704 549.704 549.704 549.704 

F=  62 10  T =200 471.236 471.236 471.236 471.236 471.236 471.236 471.236 

Simply-

Clamp 
F=  61 10  T =100 722.984 722.957 722.963 722.962 722.962 722.962 722.962 

F=  62 10  T =200 662.524 662.493 662.500 662.498 662.498 662.498 662.498 

Clamp-

Clamp 
F=  61 10  T =100 890.331 890.332 890.333 890.333 890.333 890.333 890.333 

F=  62 10  T =200 841.458 841.459 841.460 841.460 841.460 841.460 841.460 

 

Table3  

The effect of the number of grid points on evaluating the convergence of dimensionless buckling loading of the cylindrical 

sandwich panel with respect to different length-to-radius ratios, circumferential mode numbers, boundary conditions (B.Cs), and 

h / R =0.1, 
eh / h =0.5,  

t bh h  , L / R =10 and 
cr cr tN N R E h  3 3

1100 / . 

B.C circumferential 

Mode number (n) 

S=20 S=25 S=30 S=35 S=40 S=45 S=50 

Simply-

Simply 

1 4.8755 4.8755 4.8755 4.8755 4.8755 4.8755 4.8755 

3 12.1853 12.1808 12.1808 12.1853 12.1808 12.1808 12.1853 

Simply-

Clamp 

1 7.2390 7.2387 7.2388 7.2388 7.2388 7.2388 7.2388 

3 12.1870 12.1846 12.1846 12.1846 12.1846 12.1846 12.1846 

Clamp-

Clamp 

1 10.1817 10.1817 10.1817 10.1817 10.1817 10.1817 10.1817 

3 12.2455 12.2431 12.2431 12.2431 12.2431 12.2431 12.2431 

 

4.1 Verification of results using the results of an analytical method 

 

In this section, GDQ results are validated with the results of the present analytical solution. Tables 4 and 5 

demonstrate GDQ results in comparison with analytical results for different parameters of the cylindrical sandwich 

panel. It can be seen from Tables 4 and 5 that the GDQ results are in accordance with analytical results. Therefore, 

the GDQ method with N=35 can be used instead of an analytical solution. Moreover, it can be seen clearly from 

Table 4 that, by increasing temperature change, the natural frequency tends to decrease and increases when 

mechanical loading decreases. The comparison of natural frequencies presented in Table 4 reveals that an increase in 

the length-to-radius ratio of the cylindrical sandwich panel leads to a decrease in stiffness and, therefore, a decrease 

in natural frequency. Furthermore, in the present study, dimensionless frequency is approximated by Eq. 

t tL E   2

2/ . 

 

Table4 

The comparison of non-dimensional first natural frequencies obtained by analytical and GDQ methods for the cylindrical 

sandwich panel with h / R =0.1, 
eh / h =0.5, 

t bh h and n=1. 

T  100 200 300 400 

L / R
 

F( N )  Analytical
 

GDQ Analytical
 

GDQ Analytical
 

GDQ Analytical
 

GDQ 

 

10 

1e6  0.218053  0.218142   0.210615 0.210706   0.202903 0.202997   0.194886 0.194984   

1.2e6  0.213691  0.213781   0.206095 0.206188   0.198208 0.198304   0.189993 0.190092   

1.4e6  0.209239  0.209330   0.201474 0.201569   0.193398 0.193496   0.184970 0.185072   

1.6e6  0.204689  0.204782   0.196745 0.196842   0.188466 0.188567   0.179806 0.179911   

 

12 

1e6 0.175627  0.175716  0.164256    0.16435     0.152036   0.152137   0.138744   0.138854   

1.2e6 0.169044  0.169136  0.157197    0.157295   0.144381   0.144487   0.130310  0.130426   

1.4e6 0.162194  0.162289  0.149806    0.149908   0.136296   0.136408   0.121290  0.121415   

1.6e6 0.155041 0.15514 0.14203     0.142138   0.127700   0.127819   0.111544  0.111679   

 

14 

1e6 0.134813   0.134906  0.116746    0.116853   0.095314 0.0954434 0.067377  0.0675588 

1.2e6 0.124570 0.12467  0.104751     0.104869   0.080173 0.080326   0.043381  0.0436686 

1.4e6 0.113405   0.113514 0.0911903 0.0913253 0.061405 0.0616039 0.000000  0.000000  

1.6e6 0.101013   0.101135 0.0752237 0.0753864 0.033361 0.0337311 0.000000  0.000000  
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In order to verify the results of the critical buckling load of the cylindrical sandwich panel, the model represented 

in this study can be validated with the results obtained from the exact solution. Note that the dimensionless critical 

buckling load is defined according to cr cr tN N R E h  3 3

1100 / . It is worth mentioning that, using the GDQ solution, 

results have the maximum error of 1.9% compared to the exact solution results. Critical buckling loads provided by 

the present model are very close to the values of the exact solution. Moreover, it can be observed from Table 5 that, 

by increasing the core thickness-to-total thickness ratio, dimensionless buckling load tends to decrease, because the 

stiffness of the structure and the critical buckling load decrease by increasing this ratio. In addition, by increasing 

the number of layers of the cylindrical sandwich panel structure, the critical buckling load increases.  
 

Table5 

The comparison of dimensionless buckling loading of simply supported cylindrical sandwich panel for different thickness ratios 

of core and composite layer when h / R =0.1,  t ch h h /  2 , 
b th h , L / R =10, T =0 and n=1. 

ch / h  
Exact solution 

( N 1
=2) 

GDQ solution 

( N 1
=2) Error % 

Exact solution 

( N 1
=3) 

GDQ solution 

( N 1
=3) Error % 

0.2 7.114349   0.0063 0.0449 7.935709    7.785030    0.0190 

0.3 6.249844   0.0063 0.0392 6.947589     6.815744     0.0190 

0.4 5.378515   0.0063 0.0336 5.958973    5.845963    0.0190 

0.5 4.500314   0.0062 0.0280 4.969668    4.875493    0.0189 

0.6 3.615199   0.0062 0.0224 3.979481    3.904141    0.0189 

0.7 2.723139   0.0062 0.0168 2.98822     2.931715    0.0189 

0.8 1.824106   0.0061 0.0112 1.995694   1.958024    0.0189 

0.9 0.9180801 0.0061 0.0056 1.001711   0.9828757  0.0188 

1.0 0.0023838 0.0000 0.0000 0.0023838 0.0023838  0.0000 

 

Also, for the verification of the results of this work with those obtained by [46], Table 6 gives a comparison of 

results for the nondimensional frequency of simply supported homogeneous cylindrical shell.  
 

Table6 

Comparison of nondimensional natural frequency of cylindrical shells for different values of circumferential wave number (n) 

with L / R =20, R / h =100. 

n Loy et al. [46] Present Error (%) 

1 0.016101 0.0158099 0.18 

2 0.009382 0.0092548 1.36 

3 0.022105 0.0217143 0.17 

4 0.042095 0.0413625 0.17 

 

For another verification, Table 7 show the obtained results for natural frequency of the simply supported 

cylindrical shell for a different range of FG power index (F), length to radius ratio and theories. As shown in this 

table, there are good agreement between presented study (FSDT) with calssic and high order shear deformation shell 

theories. When the comparison between classic, FSD and HSD theories, is taken into account, it can be deduced that 

while a theory changes from classic to FSDT and from FSDT to HSDT the natural frequencies decrease. 

 
Table 7 

Comparison of the fundamental natural frequencies (Hz) for different cylindrical shell theory against h / R ratios with ( L / R =20). 

 h / R  F=0 F=0.5 F=0.7 F=1 F=2 F=5 F=15 

Classical 

theory [47]  

0.020 13.552   13.325   13.273   13.215   13.107   13.001   12.936   

0.030 13.557   13.330   13.278   13.220   13.112   13.006   12.941   

0.040 13.563   13.336   13.284   13.226   13.119   13.013   12.948   

0.050 13.572   13.345   13.293   13.235   13.127   13.021   12.956   

Higher-order 

deformation 

theory [48] 

0.020 13.4172 13.1924 13.1405 13.0828 12.9758 12.8710 12.8065 

0.030 13.4220 13.1971 13.1451 13.0874 12.9804 12.8756 12.8111 

0.040 13.4287 13.2037 13.1517 13.0939 12.9869 12.8820 12.8175 

0.050 13.4373 13.2121 13.1601 13.1023 12.9952 12.8903 12.8257 

First order 

deformation 

theory 

(Present) 

0.020 13.5156 13.2894 13.2375 13.1797 13.0722 12.9668 12.9019 

0.030 13.5204 13.2941 13.2422 13.1845 13.0769 12.9715 12.9065 

0.040 13.5271 13.3008 13.2489 13.1911 13.0835 12.9780 12.9130 

0.050 13.5356 13.3093 13.2574 13.1995 13.0919 12.9863 12.9212 
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4.2 Parametric results 

 

In this section, the effect of boundary conditions on natural frequency and critical buckling load for different 

parameters are presented. Fig. 2 demonstrates a presentation of the effect of temperature changes on dimensionless 

natural frequency under various boundary conditions. As it can be seen from Fig. 2, an increase in temperature 

changes leads to a decrease in the dimensionless frequency in the first mode. This trend is observed under all types 

of boundary conditions. This is because increasing temperature changes eventuates in a decrease in the stiffness and 

natural frequency of the cylindrical sandwich panel in the stability area. The Simply-Simply boundary condition has 

the lowest frequency because of its particular condition, and the Clamp-Clamp boundary condition has the highest 

frequency. A surprising result is that the Simply-Simply boundary condition causes a decrease in the stability, and 

the Clamp-Clamp boundary condition causes an increase in the stability of the cylindrical sandwich panel. In 

addition, because of the damping in the structure, imaginary part of frequency occurs. The imaginary part is 

corresponding to the system damping, and the real part representing the system frequencies. For more explanation, 

according to ref [49], as the eigenfrequencies have the positive imaginary parts, which the system becomes unstable. 

In this state, both real and imaginary parts of frequency become zero at the same point. Therefore, with increasing 

axial load, system stability decreases and became susceptible to buckling. 

 

 

 

 

 

 

 

 

Fig.2 

The variation of dimensionless fundamental frequency 

versus the temperature change of a cylindrical sandwich 

panel with different boundary conditions when L=1; 

R=0.1L; h=0.1R; 
ch h / 2 and F=1e5. 

 

Figs. 3 and 4 illustrate the real and imaginary parts of natural frequency mechanical loading for different length-

to-radius ratios. It is worth mentioning that the real part is related to natural frequency and the imaginary part is 

related to damping. It can be seen from the graph that, as the mechanical loading increases, the real part of natural 

frequency decreases, leading to an increase in the instability of the cylindrical sandwich panel. This is due to the 

increase in the rigidity of the cylindrical sandwich panel.  

 

 

 

 

 

 

 

 

Fig.3 

The variation of the real part of fundamental frequency 

versus the mechanical loading of a cylindrical sandwich 

panel with different boundary conditions when L=1; 

R=0.1L; h=0.1R; 
ch h / 2 and T =100. 

  

 

 

 

 

 

 

Fig.4 

The variation of the imaginary part of fundamental 

frequency versus the mechanical loading of a cylindrical 

sandwich panel with different boundary conditions when 

L=1; R=0.1L; h=0.1R; ch h / 2 and T =100. 

 



421                                Buckling and Thermomechanical Vibration Analysis…. 

© 2019 IAU, Arak Branch 

Fig. 5 gives a presentation of circumferential wave numbers’ effect and boundary condition on natural frequency 

under various laminated layers. According to Fig. 5, an increase in laminated layer leads to an increase in the 

frequency of all modes. This trend is observed under all types of boundary conditions because increasing the number 

of layers eventuates in an increase in the stiffness and natural frequency of the cylindrical sandwich panel. In 

addition, the increase in the modes of frequency results in a considerable increase in natural frequency. A surprising 

result is that, by increasing the circumferential mode number, the natural frequency first decreases and then 

increases as the circumferential wave number tends to increase. It is noted that the fundamental natural frequency 

occurs at n=2. The Simply-Simply boundary condition and the Clamp-Clamp boundary condition have the lowest 

and highest frequencies, respectively. 

 

 

 

 

 

 

 

 

Fig.5 

The variation of dimensionless fundamental frequency 

versus the mode number of a cylindrical sandwich panel 

with different composite layers and boundary conditions 

when L=1; R=L/3; h=0.1R; 
ch h / 2 ; T=100; F=1e5. 

 

Another parametric study is related to the study of variation of dimensionless critical buckling load versus the 

length-to-radius ratio, variation of temperature, and circumferential wave number (n), depicted in Figs. 5, 6, and 7, 

respectively. Based on Fig. 6, due to the enhancement in the length and decrease in the stiffness of the panel, the 

variation of dimensionless critical buckling load versus the length-to-radius ratio of a cylindrical sandwich panel 

with different boundary conditions decreases. 

 

 

 

 

 

 

 

 

Fig.6 

The variation of dimensionless critical buckling load 

versus the length-to-radius ratio of a cylindrical sandwich 

panel with different boundary conditions when L=1; 

h=0.1R; 
ch h / 2 and T=100. 

 

Studies have been carried out on the cylindrical sandwich panel to understand the behavior of dimensionless 

critical buckling load variation with respect to temperature in various boundary conditions. It is clear from Fig. 7 

that, because of the decrease in the stiffness panel with rising the temperature, the variation of dimensionless critical 

buckling load decreases with the increase in temperature. 

 

 

 

 

 

 

 

 

Fig.7 

The variation of dimensionless critical buckling load 

versus the temperature change of a cylindrical sandwich 

panel with different composite layers and boundary 

conditions when L=1; R=0.1L; h=0.1R; ch h / 2 ; n=1. 
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Variation of the dimensionless critical buckling load versus circumferential wave number (n) for different 

boundary conditions is depicted in Fig. 8. It can be seen that, by increasing the circumferential wave number, the 

dimensionless critical buckling load of the sandwich panel initially decreases and then increases when n reaches a 

specific magnitude. 

 

 

 

 

 

 

 

 

Fig.8 

The variation of dimensionless critical buckling load 

versus the mode number of a cylindrical sandwich panel 

with different boundary conditions when L=1; R=L/3; 

h=0.1R; 
ch h / 2 . 

5    CONCLUSIONS 

In this paper, the free vibration and buckling analysis of a cylindrical sandwich panel with an elastic core under 

various boundary conditions and subjected to various thermal and mechanical loadings was performed. The 

displacement field was described by the FSDT and the governing equations of motion were derived using the 

principle of minimum total potential energy. The temperature distribution in the cylindrical sandwich panel in the 

absence of a heat-generation source was obtained by solving the steady-state heat transfer equation. The accuracy of 

the presented model was verified with previous studies and with the results obtained by Navier analytical method. 

The GDQM was applied to discretize the equations of motion. The results indicated that some key parameters such 

as the length-to-radius ratio, circumferential wave numbers, thermal loadings, thickness ratio of core, and boundary 

conditions, play an important role on the buckling and vibrational response of the cylindrical sandwich panel. 
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