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 ABSTRACT 

 In this article a two-dimensional problem of generalized 

thermoelasticity has been formulated with state space approach. In 

this formulation, the governing equations are transformed into a 

matrix differential equation whose solution enables us to write the 

solution of any two-dimensional problem in terms of the boundary 

conditions. The resulting formulation is applied to an isotropic half 

space problem under Green-Naghdi type-III model i.e., with energy 

dissipation theory of thermoelasticity in the presence of a magnetic 

field.  The bounding surface is traction free and subjected to a time 

dependent thermal shock. The solution for temperature distribution, 

displacements and stress components are obtained and presented 

graphically. The effect of magnetic field, electric field and phase 

velocity on the considered parameters is observed in the figures. 

                                 © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE classical theory of thermoelasticity (Biot [1]) suffers from so called ‘paradox of heat conduction’ i.e. the 

heat equations for both theories of a mixed parabolic-hyperbolic type, predicting infinite speeds of propagation 

for heat waves contrary to physical observations. The generalized thermoelasticity theories in which the heat 

conduction equation is hyperbolic and do not suffer from this paradox. To remove this paradox, the conventional 

theories of thermoelasticity has been generalized, where the generalization is in the sense that these theories involve 

a hyperbolic type heat transport equation supported by experiments, which exhibit the actual occurrence of wave 

type heat transport in solids, called second sound effect. To eliminate the second sound paradox of classical 

thermoelasticity theory, Lord and Shulman [2] established a generalized thermoelasticity theory based on the CV 

heat conduction equation in 1960s, which is often referred to as LS model and widely used in the case of heat flux 

and low temperature. Green and Lindsay [3] introduced one more theory, called GL theory, which involves two 

relaxation times. Later Green and Naghdi ([4], [5], [6]) developed three models for generalized thermoelasticity of 

homogeneous isotropic materials, which are labeled as G-N models I, II, III. Detailed information regarding these 
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theories can be found in Chandrasekharaiah [7]. State space methods are the cornerstone of modern control theory. 

The essential feature of state space methods is the characterization of the processes of interest by differential 

equations instead of transfer functions. This may seem like a throwback to the earlier, primitive period where 

differential equations are also constituted by the means of representing the behavior of dynamic processes. But in 

the earlier period the processes were simple enough to be characterized by a single differential equation of fairly low 

order. In the modern approach the processes are characterized by systems of coupled, first order differential 

equations. In principle, there is no limit to the order (i.e. the number of independent first order differential equations) 

and in practice the only limit to the order is the availability of computer software capable of performing the required 

calculations reliably. The importance of state space analysis is recognized in fields where the time behavior of any 

physical process is of interest. The state space approach is more general than the classical Laplace and Fourier 

transform theory. Consequently, state space theory is applicable to all systems that can be analyzed by integral 

transforms in time and is applicable to many systems for which transform theory breaks down. Furthermore, state 

space theory gives a somewhat different insight into the time behavior of linear systems. A method for solving 

coupled thermoelastic problems by state space approach has been developed by Bahar and Hetnarski [8]. The state 

space formulation for the problems that do not contain heat sources have been done by Anwar and Sherief [9]. Ezzat 

et al. [10] studied thermo-viscoelastic material. Ezzat et al. [11] considered two-temperature theory in generalized 

magneto-thermo-viscoelasticity. Ezzat et al. [12] investigated thermo-viscoelasticity with variable thermal 

conductivity and fractional-order heat transfer. Ezzat and El-Bary[13] studied magneto-thermoelectric viscoelastic 

materials with memory-dependent derivative involving two-temperature. Ezzat and El-Bary [14] considered 

fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories. Ezzat and El-Bary [15] proposed 

two-temperature theory of magneto-thermo-viscoelasticity with fractional derivative and integral orders heat 

transfer. Ezzat et al. [16] considered dual-phase-lag thermoelasticity theory with memory-dependent derivative. 

Ezzat et al. [17] discussed two-temperature theory in Green–Naghdi thermoelasticity with fractional phase-lag heat 

transfer. El-Karamany and Ezzat [18] considered thermal shock problem in thermoelastic medium in the context of 

four theories of generalized thermoelasticity. Sherief, El-Maghraby and Allam [19] studied stochastic thermal shock 

in generalized thermoelasticity.  Ezzat and Youssef [20] discussed three dimensional thermal shock problem of 

generalized thermoelastic half-space Wang et al.[21]investigated thermoelastic behavior of elastic media with 

temperature-dependent properties under thermal shock. Baksi, Bera and Debnath [22] proposed a study of magneto-

thermoelastic problems with thermal relaxation and heat sources in a three dimensional infinite rotating elastic 

medium, Said[23] investigated the influence of gravity on generalized magneto-thermoelastic medium for three-

phase -lag model. Kalkal and Deswal [24] examined the effects of phase lags on three dimensional wave 

propagation with temperature dependent properties. Youssef et al. [25] considered vibration of gold nano beam in 

context of two-temperature generalized thermoelasticity subjected to laser pulse. 

In this problem we have considered two dimensional generalized thermoelasticity with Green-Naghdi type-III 

model of thermoelasticity in the presence of a magnetic field. Normal mode analysis is employed to the governing 

equations and then the problem is solved using state space approach. To observe the nature of waves in a more clear 

way and illustrate the analytical results, we further perform numerical computations of the problem. The present 

study is believed to enhance the understanding of thermoelasticity for magneto-thermoelastic problems.  

2    FORMULATION OF THE PROBLEM   

We assume that the medium under consideration is a perfect electric conductor and the initial magnetic field vector 

H is oriented in such a way that propagation of plane waves in the xz  plane is possible. Under these assumptions 

we can obtain very simple expressions for the displacement, temperature and the electromagnetic quantities. We 

begin our consideration with the linearized equations of electromagnetism, valid for slowly moving media. 

 

curlh J E
0
   (1) 

 

curlE h
0

   (2) 

 

E u H
0
( )    (3) 
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divh 0  (4) 

 

The above equations are supplemented by the displacement equations of the theory of elasticity, taking into 

account the Lorentz force, 

 

j ij i jj i i i
u u T J H u

, , , 0
( ) ( )            (5) 

 

The constitutive equation  

 

ij kk ij ij ij
e e T T

0
2 ( )          (6) 

 

and the strain-displacement relations 

 

ij i j j i
e u u

, ,

1
( )

2
   (7) 

 

In the above equations i x, j y and k z.  In the above equations, a superposed dot denotes differentiation 

with respect to time, while a comma denotes material derivatives. We shall consider only the simplest case of the 

two-dimensional problem. We assume that all causes producing the wave propagation is independent of the variable 

y and that waves are propagated only in the xz plane. Thus all quantities appearing in Eqs. (1)-(7) are independent 

of the variable y. Then the displacement vector has components  u x z t w x z t[ ( , , ),0, , , ].
 
Assume now that the initial 

conditions are homogeneous and the initial magnetic field has component H
0

(0, ,0). The relations (1)-(4) yield 

 

J curlh E
0
   (8) 

 

E H w u
0 0

( ,0, )   (9) 

 

h H e
0
(0,0, )   (10) 

 

We shall consider a thermoelastic medium governed by the equations of generalized electro-magneto 

thermoelasticity whose state depends on the space variables x y,  and the time variable t .  The initial conditions are 

taken to be homogeneous. The heat conduction equation of Green –Naghdi theory type-III is given by (Pramanik 

and Biswas [26]) 

 

 e
K T K T C T T e2 * 2

0
       (11) 

 

We use the following non-dimensional variables:

   

ij e

ij

T T C
x c x z c z u c u w c w T

c K

0

0 0 0 0 0 0 0 0 02 *

0

( )
, , , , , ,

 
     




              

 

where the dashed quantities denote non-dimensional variables. In terms of these non-dimensional variables, the 

equations of motion has the form (dropping primes) 

 

xx zz xz x
u u w T u2 2 2

, , , , 0
( 1)         (12) 

 

xz zz xx z
u w w T w2 2 2

, , , , 0
( 1)         (13) 

 

and the components of the stress are 
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xx x z
u w T2 2 2

, ,
( 2)        (14a) 

 

xz z x
u w

, ,
    (14b) 

 

zz x z
u w T2 2 2

, ,
( 2)      

    
 (14c) 

 

The Eq. (11) in non-dimensional form is obtained as: 

 

   xx zz xx zz
K T T T T T e

, , , ,
( )    

    
 (15) 

 

 where 
Kc

K
K

0 0

*
.


                                                                                    

 

 

3    NORMAL MODE ANALYSIS 
  

For harmonic wave propagation in x  direction, we seek solution of Eqs. (12), (13) and (15) in the following form: 

 

       u w e T x z t u w e T z ik x ct, , , , , , , , exp         
 (16) 

 

where k  is wave number and c is the phase velocity. Applying normal mode analysis to both sides of Eqs. (12), 

(13) and (15) we obtain 

 

k u D u ik Dw ik T k c u2 2 2 2 2 2 2

0
( 1)         

    
 (17) 

 

  
ik Du D w k w DT k c w2 2 2 2 2 2 2

0
( 1)        

  
 (18) 

 

D T k T P T e2 2 ( )  
    

 (19) 

 

where 
d

D
dz

,
 

k c
P

ikcK

2 2

1



 

 

 

4    STATE –SPACE FORMULATION   

 

We take the quantities e T De DT, , ,  as state variables. Now 

 

e iku Dw 
    

 (20) 

 

Eliminating u and w between Eqs. (17), (18) and (19) with the help of Eq. (20), we obtain the following 

equation  

 

D e k c k P e PT2 2 2 2( )     
    

 (21) 

 

D T P e k P T2 2( )  
    

 (22) 

 

Eqs. (21) and (22) can be written in matrix differential equation form as follows: 

 
 

dV z
AV z

dz


    
 (23) 
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where  A
k c k P P

P k P

2 2 2

2

0 0 1 0

0 0 0 1
,

0 0

0 0

 



 
 
 
   
 

 

e

T
V

De

DT

.

 
 
 
 
 
 

  

The formal solution of system (24) can be written in 

the form  

 

 V z Az V z
0

( ) exp( )
    

 (24) 

 

where z
0

denotes any arbitrarily chosen initial value for z.  The characteristic equation for the matrix A is 

 

k c k P P k k k c P P P k c4 2 2 2 2 4 2 2 2 2 2( 2 ) ( ) 0                 
    

 (25) 

 

The roots of the Eq. (25) satisfy the relations 

 

k k k c k P P2 2 2 2 2

1 2
2      

    
 (26a) 

 

k k k k k c P P P k c2 2 4 2 2 2 2 2

1 2
( )       

    
 (26b) 

 

The Maclaurin series expansion of  Azexp is given by  
n

n

A z
Az

n0

.
exp .

!





 
 


 

Using Cayley-Hamilton theorem, 

the infinite series representing  Azexp can be truncated to the following form: 

 

Az L b I b A b A b A2 3

0 1 2 3
exp( )     

    
 (27) 

 

where I is the unit matrix of order 4 and b b
0 3
,...., are some parameters depending on z k, and t.   

We shall stress here that the above expressions for the matrix exponential is a formal one. In the actual physical 

problem, the space is divided into two regions accordingly as; z 0 or z 0.  By Cayley-Hamilton theorem, the 

characteristic roots k
1

 and k
2

 of the matrix A  must satisfy the equations 

 

k z b b k b k b k2 3

1 0 1 1 2 1 3 1
exp( )    

  
k z b b k b k b k2 3

1 0 1 1 2 1 3 1
exp( )    

  
k z b b k b k b k2 3

2 0 1 2 2 2 3 2
exp( )    

 
k z b b k b k b k2 3

2 0 1 2 2 2 3 2
exp( )      

 

 

The solution of the above system is given by  

 

b k k z k k z
k k

2 2

0 1 2 2 12 2

1 2

1
[ cosh( ) cosh( )] 

   

k k
b k z k z

k kk k

2 2

1 2

1 2 12 2

2 11 2

1
[ sinh( ) sinh( )] 

    

b k z k z
k k

2 1 22 2

1 2

1
[cosh( ) cosh( )] 

   

b k z k z
k kk k

3 1 22 2

1 21 2

1 1 1
[ sinh( ) sinh( )] 


 

(28) 
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Substituting the expressions (28) into (27) and computing A2 and A3 , we obtain after repeated use of Eqs. (26a) 

and (26b), the elements 
ij
l i j( , 1,2,3,4)  of the matrix L  as: 

 

l k k P k z k k P k z
k k

2 2 2 2

11 1 1 2 22 2

1 2

1
[( )cosh( ) ( )cosh( )]     


 

P
l k z k z

k k
12 1 22 2

1 2

[cosh( ) cosh( )] 


 
k k P k k P

l k z k z
k kk k

2 2 2 2

1 2

13 1 22 2

1 21 2

( ) ( )1
[ sinh( ) sinh( )]

   
 


 

P
l k z k z

k kk k
14 1 22 2

1 21 2

1 1
[ sinh( ) sinh( )] 


 

P
l k z k z

k k
21 1 22 2

1 2

[cosh( ) cosh( )]


 


 

l k k P k z k k P k z
k k

2 2 2 2

22 1 2 2 12 2

1 2

1
[( )cosh( ) ( )cosh( )]     


 

P
l k z k z

k kk k
23 1 22 2

1 21 2

1 1
[ sinh( ) sinh( )]


 


 

k k P k k P
l k z k z

k kk k

2 2 2 2

1 2

24 2 12 2

2 11 2

( ) ( )1
[ sinh( ) sinh( )]

   
 


 

 l k k k P k z k k k P k z
k k

2 2 2 2

31 1 1 1 2 2 22 2

1 2

1
( ) sinh( ) ( ) sinh( )           

 
P

l k k z k k z
k k

32 1 1 2 22 2

1 2

[ sinh( ) sinh( )] 


 

l k k P k z k k P k z
k k

2 2 2 2

33 1 1 2 22 2

1 2

1
[( )cosh( ) ( )cosh( )]     


 

P
l k z k z

k k
34 1 22 2

1 2

[cosh( ) cosh( )] 


 
P

l k k z k k z
k k

41 1 1 2 22 2

1 2

[ sinh( ) sinh( )]


 


 

 l k k P k k z k k P k k z
k k

2 2 2 2

42 1 2 1 2 1 22 2

1 2

1
[ ( )]sinh( ) [ ( )]sinh( )     


 

P
l k z k z

k k
43 1 22 2

1 2

[cosh( ) cosh( )]


 


 

l k k P k z k k P k z
k k

2 2 2 2

44 1 2 2 12 2

1 2

1
[( )cosh( ) ( )cosh( )]     


 

(29) 

 

It should be noted that we have repeatedly used Eqs. (26a) and (26b) in order to write (29) in the simplest 

possible form. Furthermore, the corresponding expressions for generalized thermoelasticity in the absence of 

magnetic field can be deduced by setting 1   in Eqs. (26a) and (26b). Using Eq. (24), upon equating Matrices we 

obtain 

 

 e z l e l l e l
11 0 12 0 13 0 14 0

     
    

 (30) 

 

 T z l e l l e l
21 0 22 0 23 0 24 0

     
    

 (31) 
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where  e e z
0 0

,  T z
0 0

,     e De z DT z
0 0 0 0

,    

Using Eq. (29) into Eqs. (30) and (31) we obtain 

 

   i

i i i

i i

M
T M k z k z

k

2

1

cosh sinh


 
  

 
     

 (32) 

 

   i

i i i

i i

N
e N k z k z

k

2

1

cosh sinh


 
  

 
     

 (33) 

 

where  

 

 
  

i

i
M Pe k k P

k k

1

2 2

0 1 02 2

1 2

1
 




   
   

 
  

i

i
M Pe k k P

k k

1

2 2

0 1 02 2

1 2

1
 




     


 

 
  

i

i i
N k k P e P

k k

1

2 2

0 02 2

1 2

1





   


 

 
  

i

i i
N k k P e P

k k

1

2 2

0 02 2

1 2

1





     
    

 

(34) 

 

Using Eq. (20) in the Eq. (17), we obtain 

 

     
 

 
i i

i i i i

i i

N M
D k u ik N M k z k z

k

2 2
2

2 2 2 2

3

1

1
1 cosh sinh

 
 



             
  


    

  

 

where k k c k2 2 2 2

3 0
.  
 
Now solving the above equation, we get 

 

 
 

 
 

 
 

 
i i i i

i i

i i i i

N M N M
u C k z ik k z k z

k k k k k

2 2 2 2
2

3 2 2 2 2
1 3 3

1 1
cosh cosh sinh

   



      
   

   


    

 (35) 

 

Substituting (35) into (20) and integrating the resulting equation, we get 

 

 
  

 
 

  
 

 
i i i i

i i

i i

i i ii i i i

k N M k N MN NikC
w k z k z k z

k k kk k k k k k

2 2 2 2 2 2
2

3 22 2 2 2 2
13 3 3

1 1
sinh sinh cosh

   



                  
         

     
 (36) 

 

Maxwell’s electromagnetic stress tensor ij
  is given by  

 

   ij i j j i ij
H h H h H h

0
.     

   

zz o
H e2

0
, 
 xz

0 
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5    BOUNDARY CONDITIONS   
 

We consider the case where the surface of the half space is subjected to a time dependent thermal shock and the 

surface is traction free.  

Thermal boundary condition that the surface of the half-space is subjected to a time dependent thermal shock i.e. 

exponentially decaying with respect to time  

 

   T x t F t H a x( ,0, )  
    

 (37) 

 

 where a  is constant and if we take t 0 , F t( ) becomes constant. 

 Mechanical boundary condition that the surface to the half-space is traction free 

 

 

 

zz zz

xz xz

x t x t

x t x t

( ,0, ) ,0, 0

( ,0, ) ,0, 0

 

 

 

      
 (38) 

6    APPLICATION   

We shall apply our results to solve a problem for a half-space  z 0 . Inside the region z0    , the positive 

exponential terms, not bounded at infinity, must be suppressed. Thus, for z 0  we should replace each  kzsinh by 

 kz
1

exp
2

  and each  kzcosh by  kz
1

exp .
2



 

The solution of the problem is given by Eq. (24) with z
0
chosen as 

zero for convenience. Thus, the two components of the initial vectors  V V
0

0 are known, i.e., e
0 0

0.  
 
Now 

replacing each  kzsinh by  kz
1

exp
2

  and each  kzcosh
 
by  kz

1
exp

2
  , we obtain 

 

 i i

i

T M k z
2

1

1
exp

2 

 
  

 i i

i

e N k z
2

1

1
exp

2 

 
  

 
 

 
 

i i

i

i i

N MC ik
u k z k z

k k

2 2
2

3 2 2
1 3

1
exp exp

2 2

 



 
   


   

 
 

 
 

i i
i

i

i i i i

k N MNikC
w k z k z

k k k k k

2 2 2
2

3 2 2
13 3

11
exp exp

2 2

 



     
     

  

  
 

(39a) 

 

The displacement components are obtained as: 

 

 
 

 
   

i i

i

i i

N MC ik
u k z k z ik x ct

k k

2 2
2

3 2 2
1 3

1
exp exp exp

2 2

 



  
        
 
 

  (39b) 

 

 
 

 
   

i i
i

i

i i i i

k N MNikC
w k z k z ik x ct

k k k k k

2 2 2
2

3 2 2
13 3

11
exp exp exp

2 2

 



                      

  (39c) 
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Using (39) in Eqs. (14a-14c), the stress components are obtained as: 

 

 
 

   
   

 

     

i ii i

xx i i

i ii i

i i

i

k N MN Mk
k z ikC k z N

k k k k

k z M k z ik x ct

2 2 22 2 22 2 2 2

32 2 2 2
1 13 3

2 2

3

1

11 2
[ exp exp

2 2

exp exp ]exp
2

   




 



        
      

   

     

 



 (40) 

 

   
 

 
 

 
 

     

i ii i

zz i i i

i ii i

i i

i

k N Mk N M
k z N k z

k k k k

ikC k z M k z ik x ct

2 2 22 2 2 2 22 2

2 2 2 2
1 13 3

2 2

3

1

12 1
[ exp exp

2 2

exp exp ]exp
2

    




 



         
     

   

      

 



 (41) 

 

 

 
 

 

 
 

     

i i i i
i i

xz i i

i i ii i i

N M k N Mikk Nik
k z k z

kk k k k k

C
k k k z ik x ct

k

2 2 2 2 2
2 2

2 2 2 2
1 13 3

2 2

3 3

3

1 1
[ exp exp

2 2

exp ]exp
2

   


 

            
     

   

     

 
 (42) 

 

Now applying boundary conditions (37) and (38), we obtain 

 

     i

i

M F t H a x ik x ct
2

1

1
exp

2 

       (43) 

 

   
 

   

 
i ii i

i i

i i ii i

k N Mk H N M H
N ikC M

k k k k

2 2 22 2 2 2 2 2 2 22 2 2
0 0 0 0

2 2 2 2
1 1 13 3

12 1
0

2 2 2

       

  

           
     

   

    (44) 

 

 

 

 

 
 

i i i i

i

i ii i

N M k N Mik ik C
N k k

kk k k k

2 2 2 2 2
2 2

2 2

32 2 2 2
1 1 33 3

1 1
0

2 2 2

   

 

           
     

   

   (45) 

 

From (34), we see that 
i

M and 
i

N are expressed in terms of e
0

and 
0

 . By solving the Eqs. (43), (44) and (45), 

e
0
,

0
 and C can be obtained. This completes the solution of the problem. 

7    SPECIAL CASES  

Now we discuss some special cases as follows: 

(a) If we take K 0 then Eq. (11) reduces to without energy dissipation i.e. Green-Naghdi type-II (GN-II). 

(b) If we take H
0

0 then the study reduces to a problem without magnetic field. 

8    NUMERICAL DISCUSSION   

In order to illustrate the above results graphically the time dependent thermal shock  F t is taken in the following 

form: 
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 F t bt10exp( )    

 

The copper material is chosen for the purpose of numerical computation (Pramanik and Biswas [26]) 

 
2N/m107.76 10 ,   2N/m ,103.86 10   1

t
K51.78 10 ,    3 2

e
4Kg/m C m /K895 , 383.1 ,  

 
K W/mK K 4W/mKs,T K.*

0
386 , 12 293    

 

 

Further for numerical purpose we take 1x a m,t 1s,b k Hm .
0

0, 2 0.1, 1.2, 1.2      
 

In the figures red color represents the first value, blue color represents second value and green color represents 

third value.  

In Fig. 1(a) the effect of magnetic field on u  with respect to z  is presented. It is observed that u decreases with 

the increase of magnetic field. So the value of u  in the presence of a magnetic field will be less than the value of u  

in the absence of a magnetic field. The value of u  for GN-II model is greater than the value of u  for GN-III model. 

In Fig. 1(b) the effect of electric field on u with respect to z is presented. It is observed that u decreases with the 

increase of electric field. The value of u  for GN-II model is greater than the value of u  for GN-III model. u  is 

converging towards zero with the increase of z . In Fig. 1(c) the effect of phase velocity on u with respect to z  is 

presented. It is observed that u decreases with the increase of phase velocity. The value of u  for GN-II model is 

greater than the value of u for GN-III model. u is converging towards zero with the increase of z . 

       

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

Fig.1 

Variation of magnetic field, electric field, and phase speed on 

Horizontal displacement u with respect to z: (GN III ___, GN II 

……..).
 

 

In Fig. 2(a) the effect of magnetic field on w with respect to z  is presented. It is observed that w decreases with 

the increase of magnetic field. So the value of w  in the presence of a magnetic field will be less than the value of 

w  in the absence of a magnetic field. w is converging towards zero with the increase of z . The value of w  for GN-

II model is almost same with the value of w for GN-III model. In Fig. 2(b) the effect of electric field on w with 

respect to z  is presented. It is observed that w remains same with the increase of electric field. The value of w  for 

GN-II model is almost same with the value of w for GN-III model. w is converging towards zero with the increase 

of z . In Fig. 2(c) the effect of phase velocity on w with respect to z  is presented. It is observed that w  increases 

with the increase of phase velocity. The value of w  for GN-III model is greater than the value of w for GN-II model.  
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(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

 

 

Fig.2 

Variation of magnetic field, electric field and phase speed on 

vertical displacement w with respect to z: (GN III ___, GN II 

……..).
 

 

In Fig. 3(a) the effect of magnetic field on e  with respect to z  is presented. It is observed that e  decreases with 

the increase of magnetic field. So the value of e  in the presence of a magnetic field will be less than the value of e  

in the absence of a magnetic field. e  is converging towards zero with the increase of z . The value of e  for GN-II 

model is almost same with the value of e  for GN-III model. In Fig. 3(b) the effect of electric field on e  with respect 

to z  is presented. It is observed that e  remains same with the increase of electric field. The value of e  for GN-II 

model is almost same with the value of e  for GN-III model. e  is converging towards zero with the increase of z . In 

Fig. 3(c) the effect of phase velocity on e  with respect to z  is presented. It is observed that e  increases with the 

increase of phase velocity. The value of e  for GN-II model is greater than the value of e  for GN-III model.  

 

 
(a) 

 
(b) 
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(c) 

 

 

 

 

 

 

 

Fig.3 

Variation of magnetic field, electric field and phase speed on 

volume expansion e with respect to z: (GN III ___, GN II 

……..).
 

 

In Fig. 4(a) the effect of magnetic field on xx
 with respect to z is presented. It is observed that xx

 decreases with 

the increase of magnetic field. So the value of xx
  in the presence of a magnetic field will be less than the value of 

xx
  in the absence of a magnetic field. xx


 
is converging towards zero with the increase of z . The value of xx

  for 

GN-III model is greater than the value of xx


 
for GN-II model. In Fig. 4(b) the effect of electric field on xx

 with 

respect to z  is presented. It is observed that xx
 remains same with the increase of electric field. The value of xx

  for 

GN-II model is almost same with the value of xx


 
for GN-III model. xx


 
is converging towards zero with the 

increase of z . In Fig. 4(c) the effect of phase velocity on xx
 with respect to z is presented. It is observed that xx


 

increases with the increase of phase velocity. The value of xx
  for GN-III model is greater than the value of xx


 
for 

GN-II model.  

         

 

(a) 

 

(b) 

  

 
(c) 

 

 

 

 

 

 

 

 

Fig.4 

Variation of magnetic field, electric field and phase speed on 

normal stress τxx  with respect to z: (GN III ___, GN II ……..). 
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In Fig. 5(a) the effect of magnetic field on 
zz

 with respect to z is presented. It is observed that 
zz

 decreases with 

the increase of magnetic field. So the value of 
zz

  in the presence of a magnetic field will be less than the value of 

zz
  in the absence of a magnetic field. 

zz
 is converging towards zero with the increase of z . The value of 

zz
  for 

GN-III model is almost same with the value of 
zz

 for GN-II model. In Fig. 5(b) the effect of electric field on 
zz

 with 

respect to z is presented. It is observed that 
zz

 increases with the increase of electric field. The value of 
zz

  for GN-

II model is almost same with the value of 
zz

 for GN-III model. 
zz

 is converging towards zero with the increase of 

z . In Fig. 5(c) the effect of phase velocity on 
zz

 with respect to z is presented. It is observed that 
zz

 increases with 

the increase of phase velocity. The value of 
zz

  for GN-II model is greater than the value of 
zz

 for GN-III model.  

     

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

 

 

Fig.5 

Variation of magnetic field, electric field and phase speed on 

normal stress τzz with respect to z: (GN III ___, GN II ……..). 

 

   

In Fig. 6(a) the effect of magnetic field on xz
 with respect to z is presented. It is observed that xz

 increases with 

the increase of magnetic field. So the value of xz
  in the absence of a magnetic field will be less than the value of 

xz
  in the presence of a magnetic field. xz

 is converging towards zero with the increase of z . The value of xz
  for 

GN-III model is almost same with the value of xz
 for GN-II model. In Fig. 6(b) the effect of electric field on 

xz
 with respect to z is presented. It is observed that xz

 increases with the increase of electric field. The value of xz
  

for GN-II model is greater than the value of xz
 for GN-III model. xz

 is converging towards zero with the increase 

of z . In Fig. 6(c) the effect of phase velocity on xz
 with respect to z is presented. It is observed that xz

 increases 

with the increase of phase velocity. The value of xz
  for GN-III model is greater than the value of xz

 for GN-II 

model.  
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(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of magnetic field, electric field and phase speed on 

shear stress τxz with respect to z: (GN III ___, GN II ……..).
 

 

In Fig. 7 the effect of phase velocity on T with respect to z is presented. It is observed that T  increases with the 

increase of phase velocity. The value of T  for GN-II model is greater than the value of T for GN-III model. T is 

converging towards zero with the increase of z  
 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Variation of phase speed on Temperature T with respect to z: 

(GN III ___, GN II ……..).
 

9    CONCLUSIONS 

Two-dimensional problem of generalized thermoelasticity has been formulated with state space approach and the 

problem is treated under Green-Naghdi type-III model i.e., with energy dissipation theory of thermoelasticity in the 

presence of a magnetic field.  The effect of magnetic field, electric field and phase velocity on the considered 

parameters is observed in the figures. 

From theoretical and numerical discussion the following concluding remarks can be drawn: 

All the considered parameters decrease with the increase of z and they are converging towards zero. 
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(a) Displacements, dilatation, 
xx

 and 
zz

  decrease with the increase of magnetic field. 

(b) All parameters except u  increase with the increase of phase velocity. 

(c) w e, and 
xx

 remain same with the increase of electric field but 
zz

 and 
xz

 increase with the increase of 

electric field. 

(d) There is significant change in some parameters for GN-III and GN-II models. The value of xx
  and 

xz
 for 

GN-III model is greater than the value of xx
 and 

xz
 for GN-II model. The value of 

zz
  for GN-II model is 

greater than the value of 
zz

 for GN-III model.  

(e) The value of T  for GN-II model is greater than the value of T  for GN-III model. 
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