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ABSTRACT

In this paper, thermal dynamic stability analysis of sandwich
microbeams made of a honeycomb core and piezoelectric and
porous visco graphene sheets resting on visco Pasternak is studied.
The microbeam is modeled based on the zigzag theory and in order
to incorporate the size effect, strain gradient theory is utilized. The
set of the governing equations are derived Hamilton’s principle and
are solved numerically using Galerkin method. The influences of
various parameters on the thermal dynamic stability characteristics
of the sandwich nanobeam are investigated including small scale,
temperature changes, core to face sheets thickness ratio, intensity of
electric fields and stiffness of elastic medium. The results of present
work can be used to optimum design and control of micro-
thermal/electro-mechanical devices.

Keywords: Thermal dynamics stability; Graphene; Honeycomb;
Piezoelectric; Visco Pasternak foundation.

1 INTRODUCTION

RECENTLY, micro structures made of smart materials have been widely used in mechanical engineering [1-7]

and military, aviation, marine and shipbuilding industries [8-10]. Therefore, there is a considerable number of
works regarding mechanical analysis of structures in macro [11-17], micro [18-21] and nano [22-24] scales.
Yoosefian et al. [25] studied nonlinear bending analysis of sandwich structures affected by thermal and mechanical
loads. They showed that decrease in thickness ratio of the core reduces the radial stress. Using micro strain gradient
theory and higher-order shear deformation beam theory, Al-shujairi and Mollamahmutoglu [26] investigated
buckling and vibration analyses of sandwich microbeams under thermal load and resting on elastic foundation. They
concluded that elastic foundation increases the critical buckling load and natural frequencies. Aria and Friswell [27]
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studied thermal buckling and vibration analyses of sandwich microbeams. It was shown by them that temperature
rise leads to reduction in natural frequencies and critical buckling load. Chen et al. [28] focused on the buckling
analysis of sandwich structures with thermal sectional properties. Using first-order shear deformation theory (FSDT)
and finite element method (FEM), dynamic response of the beams in a thermal environment was studied by Esen
[29]. Ghorbanpour Arani et al. [30] studied free vibration analysis of sandwich microbeams resting on elastic
foundation. They showed that vibration characteristics of sandwich composite microbeams with piezoelectric and
piezomagnetic face sheets is controllable by the intensity of electric and magnetic fields [31-33]. Using strain
gradient and surface stress elasticity theories, size-dependent vibration analysis of double-bonded isotropic
piezoelectric Timoshenko microbeams under initial stress was investigated by Mohammadimehr et al. [34].

Due to the low density, honeycomb structurs have been used as the core in the sandwich structures in various
fields to reduce the total weight of the structures like mechanics, civil and aerospace engineering [35]. Li et al. [36]
and Liu et al. [37] studied thermal buckling analysis of sandwich beams with honeycomb core. Both negative
Poisson’s ratio and functionally graded configurations were taken into account which were the novelty of their work.
The buckling and vibration analyses of sandwich beams in thermal environment were studied by Marynowski [38].
He studied the effect of the transport speed and the cover parameters on the dynamic behavior of the moving system
in under-critical range of transport speed. Pradhan and Dash [39] studied stability analysis of sandwich beam
subjected to thermal and mechanical axial loads. Waddar et al. [40] studied vibration and buckling analyses of
sandwich beams under axial compressive load.

In this paper, thermal dynamic stability analysis of sandwich microbeams resting on visco Pasternak foundation
is studied for the first time. In order to consider size effect strain gradient theory is employed and the microbeam is
modeled based on the zigzag beam theory. The set of the governing equations are derived using Hamilton’s
principle are solved using Galerkin method. The effects of various parameters on the thermal dynamic stability
characteristics of sandwich microbeam are investigated such as small scale parameter, temperature rise, core to face
sheets thickness ratio, intensity of electric fields and stiffness and damping coefficients of the foundation.

Nevertheless, the review of literature confirms that no research has been carried out to study on the influence of
porosity and viscoelastic behavior of graphene face sheets and temperature-dependent materials on the dynamic
stability of five-layer microbeam based on zig-zag beam theory. Motivated by the aforementioned ideas, the
presented study is conducted for the first time.

The result of this work can be useful to control and improve the performance of nano and micro devices which
are employed in military equipment.

2 SANDWICH MICRO-BEAM MODELING

As depicted in Fig. 1, a sandwich microbeam of length L, width b and total thickness of / under the uniform electric
field and resting on visco Pasternak foundation is considered. The microbeam is consisted of five layers including a
honeycomb core of thicknesses 4,,, two piezoelectric face sheets of thicknesses /. and two visco graphene face
sheets of thicknesses /..

According to the zigzag beam theory displacement field in the kth layer can be stated as [41]

uf (x,z)=u(x)+29(x)+(pk (z)l//(x), (1)
it (x,2) = wix), @)

where u; and u; are displacement along x and z directions, respectively; u and w are corresponding displacement at
the mid-plane and 0 and w stand for the bending rotation and amplitude of the zigzag displacement, respectively.
Also ¢ is zigzag function which can be expressed as follows [42]:

o (2)=(h) o1 o
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in which G, and G are shear moduli of the honeycomb core and Qk44 is the shear modulus of the kth layer.
The strains associated with the displacement field in Eq. (1) are given by [43]:
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Fig. 1
Sandwich microbeam with honeycomb core and piezoelectric and porous viscoelastic graphene face sheets resting on visco

Pasternak foundation.
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where ¢_and y_ are the normal and shear components of the strain tensor.

2.2. Piezoelectric layers

The constitutive equations for piezoelectric (Ti-6A1-4V) layers under electric field are given by [44]:

0. ] _[oum) 0 e~aaTT [0 e E, (11)
_O-xz - 0 QSS(T) }/)(z 0 0 Ez '

] o o[eT [n, O7E, (12)
_Dz - O e3l yxz 0 h33 Ez ’

in which D;, E;, Q; e, hy, o and AT are the electric inductions, electric potential, elastic constants, piezoelectric
constants and electric permeability coefficient, thermal expansion coefficient and temperature rise, respectively.

The piezoelectric stress constants can be obtained by using the piezoelectric strain and elastic constants as
follows [44]:

0 o] [0 o], © (13)
e 0) [dy OJL 0 0u()]

where dj; is piezoelectric strain constant.

Distribution of electric potential along the thickness direction is supposed to be changed as a combination of a
cosine as follows [45]:
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where o and ¥, are the natural frequency of system and the initial external electric voltage, respectively. Therefore,

x(x,z,t)= R (14)

the nonzero components of electric fields (£, and E) can be written as [45]:

oy T h,\|0y
E = —-——= — —__m =,
N o cos[he (z 5 H o (15a)
oy T .|\ h
E=—%t=—— —|z——= .
: P I sm[he (z 5 H;{ (15b)

2.3. porous visco graphene face sheets

Material properties bottom (b) and top (t) face sheet can be written based on the symmetric pattern as [46-47]:

(ot fotb-sofet-4-a-4])
p(2)=pif1-ceos| (== -n, %)

{gij 1 §cos[hl(z+ +h, += )}}

P (z)= {1 fcos[ (z+ +h +E )J}

(16)

a7

where  denoted porosity index and & described mass density which can be written as [48]

E=1-\1-¢ (18)

Stress in FG visco Porous graphene can be defined as [49]

A a5

where
0
@11(T)=Qij(T)(l+gEj (20
in which g is visco coefficient and Qj is defined as follows [49]:
E
0, :: 055 =G, (21

in which £ and G, represent elastic and shear moduli, respectively.
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Fig. 2
Honeycomb structure cell (a) regular (b) 1st order hierarchy [50].

2.4. Honeycomb core

In Figure 2 a typical honeycomb cell with its parameters is depicted. It is supposed in this paper that the hexagonal
honeycomb core is made of Aluminum.
The relative material properties of the honeycomb structure can be calculated as [51-52]

2p't,,
pe =\/§—L(1+2y)’ (22)
0
. 3
56 4 [l 1 23)
3L, ) 1-4.7y+4.8y> +3.78y°
ve=vl1- ! (24)
0.75-3.525y +3.6p> +2.9y°

where p*, E and v" are the density, Young’s modulus and Poisson’s ratio of the material and y is defined as
follows [50]:

y== (25)

3 HAMILTON’S PRINCIPLE

The set of the governing equations for the dynamic analysis of sandwich microbeam restingg on visco Pasternak
foundation can be derived using Hamilton’s principle as follows [53]:

5T[U—(K+z)]dt=o

(26)
in which U, K and X are strain energy, kinetic energy and work done by external loads, respectively.
The energy U that occupying region A is given as [54]:
1
Uzgj-(oijgjk —D.E, + py, +Tont) +m,z, )dA, (27)

A

Journal of Solid Mechanics Vol. 16, No. 2 (2024)



125 1 Safari et al.

in which y,, 77;.2 and y, represent the dilatation gradient vector, deviatoric stretch gradient and symmetric rotation
o

gradient tensors, respectively and p,, 7,/ and m, are the higher-order stresses. These terms are defined as follows

ijk
[54]:
& = l ai_,_% (28)

) ox, ’

_ 6gmm 29

Y o (29)
o€, - Og, _ o¢ .

77[(.;) — l Jk + % 0| i 51” a‘c"mm +2 agmk + 5'k a‘c"mm +2 agmz + 5ki a‘c"mm +2M , (30)

T3l ox, ox; ox, ) 15] T ox, ox,, " ox, ox,, x; ox,,

1 68{” 68{][

. =—|e. —+e. , 31
Xij 2( ipq 6xp Jrq 6xp 31
p, =21,’Gy, (32)
) =217Gn), (33)
my; = 2122G)(!./., (34)

where u, , 6, and e, are the displacement vector, well-known kronecker delta and alternate tensor, respectively and
Iy, I, and [, indicate to the three material length scale parameters.

Using Egs. (5) and (6), the terms appeared in Eqgs. (27-34) can be written in a expanded form presented in
Appendix A.
The strain energy of the each layer of the nanobeam can be stated as [53]

h
J 1), (1)

2
m _.m
(O',-,- Eq DY AT My My, )dz dx, (35)
’VVV
2
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j j (Gijé'jk —DE +py, + T,y +ml./.)(l./.)dzdx
0 A

1
iezoelectric
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(36)

LE [ (o0
+E-[ I (o0&, —DE, + py, +7y/n) +m, , ) dzdx,
0

h
*f*h«

1% . e
_ : C 1),,(1)
U eraphene = 2.[ I (o-l./.gjk DY T My My X )dz dx

. (37)

1 L
M), (1)
+E-[ j (G;gjk + DY+ Ty +m,.j.)(,.j.)dzdx,
0

and the kinetic energy can be written as following form [54-55]:
By
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in which p,_, p,, p, stand for density of the core, piezoelectric layers and graphene layers, respectively.

Substituting Eqgs. (35)-(40) into Eq. (26) and using Eqs (A-1)-(A-21) leads to the following ste of the governing
equations:

¢ = honeycomb core, p = piezoelectric, g = graphene,t or b =top and bottem sheet
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(45)

where [, is defined in Appendix B in which subscripts ¢, p, g stand for honeycomb core, piezoelectric layer and

graphene layer respectively. Also, k., N?

electric voltage and thermal load, respectively, which are defined as follows [30,56]:

N¢ =-2e,V,
N/ = [E,aATdz
= [ E,anTdz
N} = [ E,aATd:
N™ =2NT +2NT + N/

Also, boundary conditions can be stated as follows:
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4 SOLUTION METHOD

For simply supported sandwich microbeam, the following solution can be considered [57]:

U(x,t)= 2U (t)cos(Ax), (52)
W(x,t)= 2% (r)sin(4x), (33)
y(x,t)= ily/ (t)cos(Ax), (54)
O(x,t)= gam (t)cos(Ax), (55)
N, (x,t)= ZNT (r)sin(Ax), (36)

>, (1)s (57)

where A =mzx/L and m is the half wave numbers in the x direction. Inserting the equations (41)-(57) into equations
(41) to (44) and employing the Galerkin method, the following system of the algebraic equations can be obtained:

[Mm][Am } + [Cm][Am } + ([K] +N,(0[X,, ])[Am] =0 (58)

where dot indicates to derivative with respect to time and with the following definitions, [K ], [K p[J and [M,,]

are the stiffness, geometric stiffness and mass matrices, respectively
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_mll m12 0 0 mlS ] _kll k12 O k14 le 1
My My 00 my ky  ky  kyy kyy o
[M]= 0 0 my; 0 0|, [K]= 0 ky ky ky k|,
0 0 0 0 O ky kyo ko ko ks
| M5, M, 0 0 Mss | _k51 ksz k53 k54 k55 | (59)
¢, ¢, 0 0 ¢ 00 0 00
Cy Cp Gy 0 oy 00 0 0O
[C]=] 0 ¢y ¢y 0 ¢4, [K,]=|0 0 k, 0 O],
0 0 0 0 O 00 0 0O
Cs; C G5 0 | 00 0 0O

in which the components of mentioned matrices are shown in Appendix C.
Eq. (58) can be written in a reduced form to study static buckling analysis of the sandwich microbeam as follows
[58]:

(K )+p,[K, D[A,]=0 (60)

where p, is dimensionless critical buckling load of the structure.

4.1 Dynamic stability analysis

For dynamic stability analysis the periodic axial load is considered as [59]:
N, (t)=p,[a+Bcos(Qt)], (61)

wherea and f are the static and dynamic load factors, respectively. AlsoQ=wL./p/E is dimensionless

excitation frequency, in which @ is the excitation frequency.
By substituting Eq. (61) into Eq. (58) following relation can be obtained:

[Mm][Am}[cm][Am}+([1<t]+ p[a+peos(@V)][K, ])[A,] =0 ©2)

According to this Bolotin method, the first instability region which is the most important region can be obtained
by solving the following equation [58]:

[k]-ap. 5,14 0. [5,]5 510w

5 ” = 0. (63)

where | | indicates to determinant operator.
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5 VERIFICATION

In order to verify the presented solution, a comparison is carried out for thermal dynamic stability analysis of

sandwich microbeam of #,,, =17.5um with honeycomb core covered with piezoelectric and porous viscoelastic

graphene face sheets. Material properties are considered asE®=380GPa,E, =70GPa. v=023,

p, =3800kg/ m’ and p. =2700kg /m’ . Table 1 shows the dimensionless deflection which are compared with

those reported by Al shujairi and Mollamahmutoglu [26]. This comparison confirms the high accuracy of he
presented solution.

6 NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are provided for the presented solution. Results are presented in dimensionless
form using following dimensionless parameters:

u w X z |- t /E — ¢
_’ _’9’ = _’—’9’ > _a_ e = ,C,. :ia
(u : (0) (L h" (oj (x Z) (L hc] t L pm ! cm

_ G, - E . h — kb . 0
Gi/':_jaE: 631 5L :ia?/:_L,Kw: — 7i :Law :K
» Gm E m* hm hc c E m hc hc
o . (64)
— e[' * * 7 ii~m E
KG: G ¢ ,_’_j:—j,l :L,Q :COL E’hij: 12 5g:§1 —
Em e}l h E € L pm
— N, — N.
N, = e ’NT :_T’ _L &
Echc Echc ' m

The material properties are considered to be temperature-dependent and for each mechhanical properties like P,
following relation can be used [60]:

P(T)=C,(C,T +1+ CT+C,T* +C,T*), (65)

in which 7} =T, + AT and 7, =300K (room temperature) and Co-C; are presented in Table 2. Also the material

properties for the piezoelectric material are presented in Table 3.

In what follows, except for the cases which are mentioned directly, following values are considered:
b = h, = hy = lum, L=10pm, Iy = [; = [,=107%, b=0.2 pm, £&=0.4, AT=100 K.

The effect of the static load factor (&) on the instability regions of the sandwich microbeam is illustrated in Fig.
3. As depicted in this figure, with increase in the static load factor, the instability region of the sandwich microbeam
tends to become wider and shifts to the coordinate origin which can be explained by decrease in total stiffness of the
microbeam created by the static load.

The effect of slenderness ratio (length-to-thickness ratio) on the dynamic instability region of the sandwich
microbeams is illustrated in Fig. 4. This figure shows that increase in the aspect ratio leads to lower excitation
frequency. In addition, increase in length and decrease in thickness of the microbeam dramatically reduces the
stiffness of microbeam.

Fig. 5. shows the dynamic instability regions of sandwich microbeams for different values of the temperature
rise. According to this figure, it can be concluded that increase in the temperature moves the origins of the instability
region to lower excitation frequency and decreases the width of the instability region of the sandwich microbeam at
a certain values of dynamic load factor. For explain this conclusion, it should be noted that temperature rise
generates a compressive axial load which reduces the stiffness of the microbeam.

Journal of Solid Mechanics Vol. 16, No. 2 (2024)



133 1 Safari et al.

1 [l
0.8+ 0
0.6 -

Q
0.4r

—0—a=0.5
0.2FH B —a=04
——0=(.3
——a=0.2

0 1

0 2

4

6

N
8 1

0 12

Dimensionless frequency (2)

Fig. 3

Effect of static load factor on the instability region for sandwich microbeams.
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Fig. 4

Effect of beam aspect ratio on the instability region for a microbeam.

Fig. 6 is devoted to study the effect of small scale parameter on the instability region for sandwich microbeams.
As shown in this figure, increase in value of small scale parameters moves the origins of the instability region to
lower excitation frequency. It shows that small scale parameter has softening effect and increase in small scale
parameter reduces the stiffness of the microbeam.

The influences of Winkler and Pasternak spring constants and viscoelastic coefficient of the foundation on the
instability region for sandwich microbeams are depicted in Figs. 7-9. As shown in this figures, increase in the
Winkler and Pasternak spring constants and viscoelastic coefficient of the foundation leads to higher excitation
frequency and increase in the width of the instability region. It should be noticed that increasing in Winkler and
Pasternak spring constants cause to increase the stiffness of foundation and increase in viscoelastic coefficient of the

foundation leads to increase in damping of the foundation and stability of the microbeam.
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Effect of temperature change on the instability region for sandwich microbeams.
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Fig. 6
Small scale effect on the instability region for sandwich microbeams.
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Fig. 10. shows the effect of porosity index on the instability region for sandwich microbeams. As depicted in this
figure, increase in the porosity index leads to reduction in excitation frequency which can be explained by reduction

on stiffness of the microbeam created by increasing in size of pores.

The influence of visco porous graphene on the instability region for sandwich microbeams is shown in Fig. 11.
As this figure shows, increase in the visco graphene reduces excitation frequency which can be explained by

decrease in stiffness of the microbeam.
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Effect of Winkler spring constant of the foundation on the instability region for sandwich microbeams.
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Effect of Pasternak spring constant of the foundation on the instability region for sandwich microbeams.

Fig. 12. shows the dynamic instability region of a sandwich microbeam for different values of the electric load.
As shown in this figure, positive values of the electric load move the origins of the instability regions to higher
excitation frequency and increase the width of the instability region and negative values of the electric load have
opposite effects. It is noteworthy that positive values of the electric load increase the stiffness of the microbeam and
negative values of the electric load reduce the stiffness of the microbeam.
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Effect of visco porous graphene on the instability region for sandwich microbeams.
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Effect of versus electric load on the instability region for sandwich microbeams.

6 CONCLUSIONS

In this paper, thermal dynamic stability analysis of sandwich microbeam with honeycomb core and piezoelectric and
porous viscoelastic graphene face sheets resting on visco Pasternak foundation was studied. The microbeam was
modeled based on the zigzag beam theory. In order to consider the size effect, modified strain gradient theory was
utilized and the set of the governing equations were derived using Hamilton’s principle and were solved using
Galerkin method. Using the presented numerical examples, the following conclusions can be drawn:

v Increase in the static load factor, increase the width of the instability region of sandwich microbeams and

shifts it closer to the coordinate origin.

v'Decrease in the effect of porosity indexes and visco graphene leads to increase in excitation frequency.

v Increase in the Winkler spring constant and Pasternak medium leads to higher excitation frequency.

v Increase in aspect ratio leads to lower excitation frequency.

v'Increase in temperature moves the origins of the instability regions to lower excitation frequency and

decreases the width of the instability region of sandwich microbeam at a certain dynamic load factor.
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v'Decrease in small scale parameters moves the origins of the instability regions to higher excitation

frequencies.
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