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ABSTRACT

In this research, a new 3D elasticity numerical solution based on the 
Semi-Analytical Polynomial Method (SAPM) is presented for the 
nonlinear bending analysis of orthotropic annular/circular 
micro/nano plates resting on a Winkler-Pasternak elastic foundation, 
utilizing re-modified couple stress theory. This is the first report of a 
3D elasticity numerical solution specifically based on re-modified 
couple stress theory. Moreover, while previous 3D analytical 
solutions based on couple stress theory have primarily focused on 
the bending of rectangular plates with simply supported edges, this 
study investigates the nonlinear bending of circular plates under 
various boundary conditions. Additionally, the variation in thickness 
under different types of loading (mechanical, thermal, and thermo-
mechanical) is reported for the first time. The effects of boundary 
conditions, couple stress scale parameters, aspect ratio, thickness, 
loading, and the elastic foundation are examined. Both the 
increasing and decreasing impacts of scale parameters on deflection 
are observed in this study.
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1    INTRODUCTION

ANOTECHNOLOGY is one of the most intriguing research fields across various branches of science. The 
unique properties of nanomaterials and the challenges posed by experimental studies at the nanoscale motivate 

researchers to explore their mechanical properties through various theoretical or semi-experimental methods. As a 
result, theoretical approaches such as the Molecular Mechanics Method (MMM) [1-5] and the Molecular Dynamics 
Method (MDM) [6,7] have been introduced and employed to investigate these properties, both of which are 
grounded in molecular and mechanical sciences. Among the mechanical properties, only stretching properties and 
vibration frequencies can be experimentally evaluated due to the limitations of available instruments. Other 
mechanical properties, such as buckling behavior, must be assessed using MMM and MDM. However, certain 
analyses, such as bending, cannot be evaluated experimentally or even through molecular-based methods. Due to 
these limitations, alternative theoretical mechanical approaches, such as mechanical plate theories, are employed to 
examine the bending behavior of micro or nanoplates, some of which are mentioned here.

Experimental observations reveal that at the nanoscale, the mechanical behavior of structures is size-dependent. 
Since classical continuum theory neglects this size dependency, several non-classical continuum theories have been 
developed. These include classical couple stress theory [8–11], strain gradient theory [12], nonlocal elasticity [13], 
surface elasticity [14], and modified couple stress theory (MCST) [15]. Reddy and Berry [16] proposed nonlinear 
size-dependent models based on Classical Laminate Plate Theory (CLPT) and First-Order Shear Deformation 
Theory (FSDT) for the bending of circular plates. Reddy and Kim [17] utilized MCST and the nonlinear strains of 
von Karman to develop a size-dependent third-order plate model. Dastjerdi and Jabbarzadeh [18-23] employed 
Eringen's nonlocal theory and the Differential Quadrature Method (DQM), as well as introduced a new Semi-
Analytical Polynomial Method (SAPM), to investigate the nonlinear thermo-mechanical bending of monolayer and 
bilayer graphene sheets based on FSDT and Third-Order Shear Deformation Theory (TSDT).Thai et al. [24–26] 
proposed new models based on Classical Plate Theory (CPT), FSDT, TSDT, and sinusoidal shear deformation plate 
theories for analyzing the bending and free vibration of rectangular microplates with simply-supported edges. 
Sahmani and Ansari [27] analyzed the free vibration of rectangular microplates using strain gradient theory and 
TSDT. Using nonlocal elasticity and a Higher-Order Shear Deformation Plate Theory (HSDT), Daneshmehr et al. 
[28] examined the size-dependent instability of nanoplates under biaxial in-plane loadings, solving the governing 
equations with the Generalized Differential Quadrature (GDQ) method. Also, there are some other valuable 
researches [29-35] which have examined nanomaterials from various aspects.

To the best of the authors' knowledge, no numerical study has been conducted on the bending analysis of circular 
plates (whether at the macro, micro, or nanoscale) based on 3D elasticity theory. In a few studies that utilize 3D 
analytical solutions, the bending of homogeneous or functionally graded (FG) rectangular plates subjected to 
sinusoidal transverse loading with simply supported edges has been examined [36-40]. Among these, the only 
research based on re-modified couple stress theory is the recent work by Salehipour et al. [40], which was the first to 
report a 3D analytical solution for the bending of FG micro/nanoplates. Additionally, the first report of finite 
element (FE) bending analysis of circular plates based on modified couple stress theory is by Reddy et al. [41], 
which is grounded in Classical Plate Theory (CPT) and First-Order Shear Deformation Theory (FSDT).

The absence of a numerical solution for 3D bending analysis in the literature is due to the challenges associated 
with developing such a solution for plates. Additionally, in existing analytical solutions, various restrictions on plate 
geometry (rectangular or circular), loading types, and boundary conditions are imposed to facilitate the solvability of 
the resulting governing equations. This study addresses this gap by introducing a new numerical approach to 3D 
elasticity solutions using the Semi-Analytical Polynomial Method (SAPM) recently presented by Dastjerdi and 
Jabbarzadeh [19]. For the first time, a novel numerical solution approach based on 3D elasticity theory is introduced 
for the nonlinear bending of annular/circular plates without imposing any restrictions on plate geometry or loading 
types, applicable to all boundary conditions.

This is also the first report of a 3D elasticity solution for the nonlinear bending analysis of orthotropic 
annular/circular micro/nanoplates based on re-modified couple stress theory. The analysis covers all boundary 
conditions, including clamped, simply supported, and free edges, under various types of loading such as mechanical, 
thermal, and thermo-mechanical. The effects of different elastic foundations, including Winkler, Pasternak, and 
Winkler-Pasternak, are also examined. Additionally, the influence of various parameters, particularly thermal 
loading, on the thickness variation of plates is investigated. The study explores the impact of all factors affecting 
plate deflection, including boundary conditions, couple stress scale parameters, aspect ratio, thickness, loading 
types, and elastic foundations.

N
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2. GOVERNIN EQUATIONS

2.1 Re-modified couple stress theory

According to the Modified Couple Stress Theory (MCST) proposed by Yang et al. [42], the strain energy for an 
elastic and isotropic material within region V is [42]:

 
v ijijijij )dv:χm:ε(σU

2

1
(1)

where 3,2,1, ji and ij is the Cauchy stress tensor, ij is the strain tensor, ijm is the deviatory part of couple stress 

tensor and ij is the symmetric curvature tensor which are defined respectively as [42]:
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where G and  are Lame constants, iu is the displacement vector, ij is the stress tensor, l is the material length 

scale parameters (MLSP), i is the rotation vector and ij is Kronecker delta symbol which T and i are defined as 

[42]:
TT  (6)

)(
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uCurli  (7)

where is thermal diffusivity and T is the temperature difference.
Chen et al. [36] developed a re-modified couple stress theory for anisotropic elasticity, in which the curvature 

and couple stress tensors are redefined as [36]:

ijjjijiiij GlGlm  22  (8)

jiij ,  (9)

where il and iG )3,2,1( i are MLSPs and shear modules in different directions respectively.

2.2 3D elasticity theory formulation

A schematic of an annular/circular micro/nanoplate is shown in Fig.1 with an inner radius ir , an outer radius or , and 

a thickness h subjected to uniform transverse loading q while resting on a Winkler-Pasternak elastic foundation 
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characterized by two parameters. wk and pk are the Winkler and Pasternak stiffness coefficients of elastic foundation, 

respectively. According to the 3D elasticity theory of plates, the displacements filed can be expressed as follow:
),,(),,(1 zruzru   (10)

),,(),,(2 zrvzru   (11)

),,(),,(3 zrwzru   (12)

where wvu ,, are the displacement components along the zr ,, directions respectively and ),,( zrv  is equal to 

zero due to the symmetry. It is obvious that no assumption or simplification is employed in definition of 
displacement vectors. Substituting Eqs. (10)-(12) into Eq. (3),the non-zero components of the Von-Karman strain 
field can be written as [41]:
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Due to the symmetry of the geometry and boundary conditions, other strain components are zero. Substituting 
Eqs. (10)–(12) into Eqs. (7) and (9) yields the non-zero components of curvature as [41]:

Fig. 1
The schematic view of an annular/circular graphitic plate under uniform loading and rested on elastic foundation.
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Due to the orthotropic behavior of the employed micro/nanoplates, the stress-strain relations are derived as 
follows [43]:
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where ij is poison ratio, rz is shear strain, rE is the elastic module in r direction, rzG is the shear module of 

orthotropic micro/nanoplate and rzzrzrzrzrrzrrzz   1 which rrr EE   ,

rzrzzr EE and   EEzzz  . The E and zE are the elastic module in and z directions.

2.3 Constitutive equations

In this study, the constitutive equations and boundary conditions are derived based on the principle of minimum 
total potential energy, as follows [43]:
  0 extWU                                                                                                                                                            (24)

where δ represents the variation symbol, and extW is the potential of applied forces, which includes the effects of 

transverse loading q and the Winkler-Pasternak elastic foundation on the surface of the micro/nanoplate. The 

components of the total potential energy are defined as follows:
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The constitutive relations for orthotropic elasticity can be expressed as:

Tijij DC                                                                                                                                                            (27)

where  Tzzrrrzzzrrij mmmm    ,  Tzzrrrzzzrrij    and C is the stiffness matrix which 

based on re-modified coupled stress theory is defined as:
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and D is the coefficients matrix of thermal strains as:
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By substituting Eqs. (13)–(19) into Eq. (25) and neglecting body forces and external couples, the 3D equilibrium 
equations for an orthotropic annular/circular micro/nanoplate based on the re-modified couple stress theory are 
derived as follows:
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For sake of generality and convenience, the following non-dimensional parameters are introduced:
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As the final step, by substituting Eqs. (13)–(16) into Eqs. (20)–(23) to express the stress components, and Eqs. 
(17)–(19) into Eq. (8) to define the couple stress components in terms of the displacement fields, the stress terms in 
Eqs. (30) and (31) are replaced. Using non-dimensional parameters, two equilibrium equations are derived as 
follows:
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3. SOLUTION PROCEDURE

In this study, based on SAPM [20], by considering each partial differential equation (two equilibrium equations) as 
follows:
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where the function  zrF , is defined as:

      
   
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i

M

j

ji
Miji zrazrF

1 1

11
111,                                                                                                                 (36)

where N is the number of grid points in r direction and M is the number of grid point in z direction, the partial 
differential equation is converted to the algebraic equation. The schematic view of grid points is illustrated in Fig. 2. 
The empty points must satisfy the equilibrium equations, while the filled points must satisfy the boundary 
conditions.
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Fig. 2
The schematic view of grid points based on SAPM.

Based on the above explanations of SAPM, two displacement fields can be defined as follows:
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The obtained algebraic equations are solved using numerical methods, such as the Newton-Raphson method.

4. BOUNDARY CONDITIONS

In the present study, all types of boundary conditions are categorized into three types: simply supported (S), clamped 
(C), and free edges (F). At the inner and outer radii (ri and ro), the boundary conditions can be defined as follows:

0: *  zrr mmwS  (39)

0:
*

*

*

*
** 









z

u

r

w
wuC (40)



255                                A.R. Golkarian and M. Jabbarzadeh

Journal of Solid Mechanics Vol. 16, No. 3 (2024)  

0:
*

2
*

2
*

2
*

*

*

*

*
2 



























 zr

zrrr
rzrrz

r
r mm

z

m

r

mm

r

m

z

w

r

w

z

m
F 

                     (41)

The displacement components should satisfy the following boundary conditions at the top and bottom surfaces of 
the plate:
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5. NUMERICAL RESULTS AND DISCUSSIONS

To investigate the convergence of the SAPM results for different grid sizes, an orthotropic annular/circular plate 
with the following properties is considered for various boundary conditions. The results are reported in Table 1. The 
nonzero components of the stiffness matrix are as follows [44]:

GPa.q;.r/r;nm.h;GPaG;GPaG;GPaGC

;GPaC;GPaC;GPaC;GPa.C;TPa.C;TPa.C

oirzrz 1020340157394319

151513563203010781

44

231312332211




          
(46)

Table 1. 
Convergence checking of dimensionless deflections of an orthotropic annular/circular plate versus the number of grid points.

n

(number of 
domain nodes)

w*

Boundary Condition Type

C - C S - S C - S S - C C - F F - C S - F F - S

3 0.000841 0.000841 0.000841 0.000841 - 0.01970 - 0.0839

5 0.003033 0.010096 0.006110 0.004381 - 0.04427 - 0.3823

7 0.003178 0.009951 0.005887 0.004519 0.02539 0.03438 0.3002 0.2077

9 0.003252 0.009828 0.005843 0.004549 0.04008 0.03242 0.1844 0.1847

11 0.003303 0.009801 0.005894 0.004574 0.04500 0.03198 0.1587 0.1795

13 0.003338 0.009820 0.005969 0.004597 0.04563 0.03180 0.1472 0.1782
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Convergence is achieved with 11 grid points in the radial direction. For all cases, the number of grid points in the 
z direction is set to 5.

As the first step of validation, the deflection of an isotropic circular plate with the following properties and 
clamped edges is compared with results from Refs. [21, 45–47], as shown in Table 2:

1.0/;3.0;2  oijzr rhMPaEEE  (47)

Table 2. 
Comparison of the non-dimensional deflection of an isotropic circular plate with clamped edges.

q* 3

32
*

64

)1(12

Eh

rq

r

w
w o

o




[21] [45] [46] [47] Present study

0.0001 0.1685 0.1678 0.1687 0.1706 0.1774

0.0003 0.4642 0.4583 0.4655 0.5119 0.5322

0.001 1.0557 1.0509 1.0937 1.7069 1.7742

Good agreement is observed between the results, particularly with Ref. [47]. Additionally, the results for an 
isotropic annular plate with both clamped and simply supported edges are compared with those from Refs. [21, 48, 
49] under the following conditions, as shown in Table 3:

054.0;15.0/;288.0;280 *  qrhGPaEEE oijzr  (48)

Table 3. 
Comparison of the non-dimensional deflection of an isotropic annular plate with clamped and simply supported edges.

Study
w*

Clamped Simply supported

[21] 2.810 10.633

[48] 2.781 10.623

[49] 2.774 10.572

Present study 3.015 11.406

good agreement is observed.
To verify the results for orthotropic material behavior, and since deflection data for all boundary conditions 

considered in this study are not reported in the literature for an orthotropic annular/circular plate, the results are 
compared with those from a finite element model produced using ABAQUS software. The comparison, shown in 
Table 4, is based on the mechanical properties reported in Eq. (53), and the results demonstrate good agreement.
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Table 4. 
Comparison of the deflections for an orthotropic annular/circular plate with ABAQUS model for all boundary conditions.

Boundary 
condition type

w*

ABAQUS model Present study

C - C 0.00370 0.00330

S - S 0.01048 0.00980

C - S 0.00686 0.00589

S - C 0.00470 0.00457

C - F 0.04500 0.04500

F - C 0.03392 0.03198

S - F 0.14100 0.15870

F - S 0.18302 0.17950

To validate the deflection of an orthotropic annular/circular plate with elastic foundations, the results for the 
following properties are compared with those from Ref. [21], as shown in Table 5:

nmGPa.k;nm/GPa.k;GPa.q

;.r/r;nm.h;GPaG;.;GPa.E;TPa.E;TPa.E

pw

oirzijzr



 

13113110

2034031930632850061

  

(49)

Table 5. 
Comparison of the dimensionless deflections with the literatures.

Boundary 
condition type

w*

Ref. [21] Present study

(3D Elasticity)CPT FSDT

C – C 0.0030 0.0034 0.0031

S – S - 0.0085 0.0085

C – S - 0.0065 0.0053

F – C - 0.026 0.0263

It is observed that the results show good agreement.
To verify the accuracy of the employed re-modified couple stress theory and the effect of scale parameters, the 

nonlinear bending analysis of both circular and annular micro/nanoplates under the following conditions is 
compared with the results reported by Reddy et al. [41], as shown in Table 6:

nmhnmrMPaEEE oijzr 1.0;1;25.0;1   (50)



A New 3D Elasticity Numerical Solution for Nonlinear ….                          258

Journal of Solid Mechanics Vol. 16, No. 3 (2024)  

Table 6. 
Comparison of the deflections for circular and annular micro/nanoplates with the literatures.

w*

Study

Circular plate ( 0ir ) Annular plate ( nmri 25.0 )

F - C F - S F - C C - F F - S

q = 100 Pa q = 100 Pa q = 100 Pa q = 50 Pa q = 50 Pa

0/ hl 6.0/ hl 0/ hl 6.0/ hl 0/ hl 6.0/ hl 0/ hl 6.0/ hl 0/ hl 6.0/ hl

[41] 
CPT

0.01757 0.0071 0.050 0.048 0.01624 0.0055 0.02358 0.01663 0.04273 0.02963

[41] 
FSDT

0.01829 0.0072 0.050 0.048 0.01685 0.0055 0.02358 0.01663 - -

Present 
study

0.01822 0.0076 0.072 0.052 0.01761 0.0053 0.01860 0.01381 0.04407 0.02557

In all three parts of the validation, the results fall within an accurate range. Additionally, it is observed that, in 
most cases, the 3D elasticity theory estimates higher deflections compared to other theories such as CPT, FSDT, and 
TSDT.

To investigate the influence of MLSP, its effect was examined using different combinations of MLSP values for 
a plate with conditions based on Eq. (46). The results are reported in Table 7.It is observed that for CC, SS, CS, and 
SC boundaries, the use of MLSP decreases the deflection, indicating that the plates become stiffer. This observation 
aligns with the results reported by Reddy et al. [41]. The minimum deflection is occurs in 0/ hlr and 1/ hl .with 

one exception: when 1/ hlr and 0/ hl ,the deflection of the plates increases, indicating that the plates become 

more flexible. This behavior was not reported by [41], which could be due to the use of the isotropic form of 
modified couple stress theory in Ref. [41].

Table 7. 
The influence of MLSP on the non-dimensional deflection of an orthotropic annular/circular micro/nanoplate for different B.C.s.

w*

B.C.
0/ hlr 5.0/ hlr 1/ hlr

0/ hl 5.0/ hl 1/ hl 0/ hl 5.0/ hl 1/ hl 0/ hl 5.0/ hl 1/ hl

C – C 0.00325 0.00312 0.00278 0.00325 0.00313 0.00278 0.00327 0.00314 0.00279

S – S 0.00983 0.00959 0.00890 0.00988 0.00964 0.00895 0.01006 0.00982 0.00909

C – S 0.00584 0.00553 0.00474 0.00585 0.00554 0.00475 0.00589 0.00558 0.00478

S – C 0.00455 0.00441 0.00403 0.00457 0.00443 0.00404 0.00463 0.00449 0.00410

C – F 0.04008 0.0412 0.0413 0.0404 0.0415 0.0417 0.0415 0.0427 0.0430

F – C 0.0324 0.0326 0.0362 0.0326 0.0328 0.0369 0.0331 0.0336 0.0395

S – F 0.1844 0.2027 0.2953 0.1866 0.2056 0.3038 0.1933 0.2174 0.3324

F – S 0.1847 0.1877 0.2299 0.1870 0.1909 0.2439 0.1944 0.2016 0.3045
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Additionally, for FS, SF, CF, and FC boundaries, an increasing trend in deflection is observed, with the 
maximum occurring in 1/ hlr and 1/ hl . The results indicate that the effect of MLSP also depends on the 

boundary conditions. Some literature [18-23] reports a reduction in deflection for these cases using nonlocal 
theories. Moreover, Reddy et al. [41] observed a reduction in deflection for FC, FS, and CF boundaries using 
modified couple stress theory.

It should be noted that the results obtained in the current study, as shown in Table 6, are consistent with those of 
[41] and indicate a reduction in plate deflection. This suggests that other parameters might influence the effect of 
MLSP. To further illustrate this point, additional examinations were conducted. A comparison between the results of 
the current study and the literature suggests that parameters such as the mechanical properties of the plates, aspect 
ratio, or thickness may affect the outcomes.

To investigate the influence of material behavior, the nonlinear bending of plates with the same dimensions as 
specified in Eq. (50) was examined for both the circular case (with ri=0) and the annular case (with ri=0.25 nm), 
using the mechanical properties defined in Eq. (46) (see Table 8).For plates with simply supported edges, both 
circular and annular, a reduction in deflection is observed. However, for clamped boundaries (C-F or F-C), an 
increase in deflection occurs. Thus, it can be concluded that the effect of MLSP depends on the material behavior.

Table 8. 
The influence of MLSP on the non-dimensional deflection of circular and annular plates for various B.C.s.

Annular/Circular plate B.C.
w*

0//  hlhlr  6.0//  hlhlr 

Circular C 1.806110-8 2.330010-8

Circular S 8.296610-8 6.732110-8

Annular F-C 1.393910-8 6.785010-8

Annular F-S 9.636010-8 5.660010-7

Annular C-F 1.504410-8 4.000910-8

Next, to investigate the influence of aspect ratio and thickness, the nonlinear bending of plates was examined 
under the conditions specified in Eq. (46) for two different aspect ratios (thick and thin plates) (see Table 9). The 
results indicate that the bending behavior of thick and thin plates under the same conditions differs. Specifically, the 
decreasing effect of MLSP observed for thick plates with S-S, C-S, and S-C boundaries changes to an increasing 
effect as the plate becomes thinner.

Table 9. 
The influence of aspect ratio on the non-dimensional deflection of annular/circular micro/nanoplate.

w*

B.C. nmro 5.2 nmro 20

0//  hlhlr  1//  hlhlr  0//  hlhlr  1//  hlhlr 

C - C 0.003178 0.002727 21.474 20.084

S - S 0.009951 0.009026 65.394 66.893

C - S 0.005887 0.004791 54.294 56.701

S - C 0.004519 0.004041 33.604 34.040
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Upon reviewing the literature, it is noted that some studies based on couple stress theory [41, 52, 53], nonlocal 
theory [19, 50, 51], or nonlocal strain gradient theory [54] report a decreasing effect on plate or beam deflection 
with an increase in the MLSP in couple stress theory or the nonlocal parameter in nonlocal theory. Conversely, other 
studies [53-57] observe an increasing effect. Additionally, Ref. [53] found that considering the nonlocal size effect 
results in greater deflection for the nonlinear bending of a micro/nanobeam, while accounting for strain gradient size 
dependency leads to the opposite observation.

Next, the effects of elastic foundation and temperature on deflection and thickness are investigated. From Table 
7,it is deduced that C-C, S-S, C-S and S-C boundaries experiences their minimum deflection 
at 0/ hlr , 0/ hl and their maximum at 1/ hlr , 1/ hl . Additionally, C-F, F-C, S-F and F-S boundaries show 

their minimum deflection at 0/ hlr , 1/ hl and their maximum deflection at 1/ hlr , 0/ hl . Therefore, the 

influence of elastic foundations and thermal effects is examined for these specific cases for a plate with conditions 

specified in Eq. (46) with 61002.2  and nmGPakw /1 , nmGPak p 1 , under thermal loading 

of C500 .Table 10 presents the effect of elastic foundations under mechanical loading, Table 11 shows the 
effect of a combination of thermo-mechanical loading, and Table 12 illustrates the influence of thermo-mechanical 
loading in the presence of elastic foundations.

Table 10. 
The effect of elastic foundation on the non-dimensional deflection of annular/circular micro/nanoplate under mechanical loading.

B.C.
0//  hlhlr  1//  hlhlr  0//  hlhlr  1//  hlhlr 

w* Δh* w* Δh* w* Δh* w* Δh*

C – C 0.00311 0.0011 0.00268 0.0011 0.00313 0.0011 0.00269 0.001

S – S 0.00865 0.0012 0.00795 0.0012 0.00883 0.0012 0.0081 0.0012

C – S 0.00536 0.0012 0.00443 0.0012 0.00541 0.0012 0.00446 0.0012

S – C 0.00428 0.0011 0.00382 0.0011 0.00435 0.0011 0.00388 0.0011

C – F 0.03218 0.0011 0.0337 0.0016 0.03318 0.0011 0.03493 0.0016

F – C 0.02696 0.0013 0.02964 0.0018 0.02752 0.0013 0.03199 0.0019

S – F 0.1134 0.0015 0.1545 0.0018 0.1166 0.0015 0.1646 0.0018

F – S 0.08852 0.0018 0.09803 0.0022 0.09105 0.0018 0.1109 0.0023

Table 11.
The effect of thermo-mechanical loading on the non-dimensional deflection of annular/circular micro/nanoplate.

B.C.
0//  hlhlr  1//  hlhlr  0//  hlhlr  1//  hlhlr 

w* Δh* w* Δh* w* Δh* w* Δh*

C – C 0.00355 0.0038 0.00299 0.0038 0.00358 0.0038 0.0031 0.0038

S – S 0.01361 0.0026 0.01187 0.0028 0.0140 0.0026 0.0122 0.0026

C – S 0.00722 0.0026 0.00562 0.0026 0.00730 0.0026 0.0056 0.0026

S – C 0.00509 0.0037 0.00446 0.0037 0.00520 0.0037 0.00454 0.0037

C – F 0.0404 0.0038 0.0472 0.0038 0.0418 0.0025 0.0494 0.0038

F – C 0.0398 0.0037 0.0478 0.0058 0.0409 0.0037 0.0544 0.0059

S – F 0.1425 0.0025 0.2978 0.0031 0.1472 0.0025 0.3279 0.0031
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Table 12. 
The influence of thermo-mechanical loading on the non-dimensional deflection of annular/circular micro/nanoplate rested on 

elastic foundation.

B.C.
0//  hlhlr  1//  hlhlr  0//  hlhlr  1//  hlhlr 

w* Δh* w* Δh* w* Δh* w* Δh*

C – C 0.0034 0.0039 0.00293 0.0039 0.00346 0.0039 0.0029 0.0039

S – S 0.01149 0.0027 0.01030 0.0027 0.0118 0.0027 0.0105 0.0027

C – S 0.00653 0.0027 0.00522 0.0027 0.0066 0.0027 0.00526 0.0027

S – C 0.00482 0.0038 0.00428 0.0038 0.0049 0.0038 0.00435 0.0038

C – F 0.0326 0.0026 0.0367 0.0038 0.0336 0.0026 0.03814 0.0038

F – C 0.0322 0.0040 0.0373 0.0060 0.0330 0.0040 0.0414 0.0062

S – F 0.1005 0.0027 0.01702 0.0036 0.1029 0.0027 0.1806 0.0036

F – S 0.2184 0.0042 0.3079 0.0057 0.2313 0.0043 0.4722 0.0072

It is observed that employing an elastic foundation and increasing temperature do not cause significant changes 
in the effect of MLSP or the behavior of plate deflection. As expected, the use of an elastic foundation reduces the 
plate deflection, while an increase in temperature leads to greater deflection. The most significant increase in 
deflection due to thermal loading is observed under S-S boundary conditions, while the minimum increase occurs 
under C-F boundary conditions. Conversely, the most significant decrease in deflection due to the elastic foundation 
is observed under F-S and S-F boundary conditions, with the minimum decrease occurring under C-C boundary 
conditions.

The most significant thickness variation under mechanical loading and in the absence of an elastic foundation is 
observed for F-S and S-F conditions, where increasing MLSP has a notable effect on the plate thickness, especially 
for plates with one free edge. The inclusion of an elastic foundation does not show a considerable impact on plate 
thickness under mechanical loading. However, with thermo-mechanical loading, significant changes in plate 
thickness are observed, particularly in plates with no free edges. When an elastic foundation is added under thermo-
mechanical loading, thickness variation becomes more pronounced for plates with one free edge, especially under 
the F-C boundary condition.

The effect of thickness variation on an annular plate with conditions of 1/ hlr , 1/ hl , and different 

boundary conditions, without an elastic foundation, is investigated and presented in Fig. 3. The plate properties are 
based on Eq. (46). It is observed that as the thickness increases, the deflection decreases, with the most noticeable 
reduction occurring in the S-S case. Additionally, it is noted that the effect of boundary conditions diminishes with 
increasing thickness.

The influence of temperature variation on deflection and thickness for the conditions specified in Eq. (46) and 
1/ hlr , 1/ hl , with different boundary conditions and in the absence of an elastic foundation, is examined. The 

results are reported in Fig. 4 and Fig. 5, respectively. It is observed that increasing the temperature leads to increased 
deflection, with the most significant effect occurring in the S-S boundary condition which can be due to the most 
available degree of freedom in S condition. Additionally, temperature increases result in linear variation of 
thickness, which is more pronounced in C-C and S-C (plates with an outer clamped edge) compared to S-S and C-S 
boundaries which this linear variations shows direct effect between temperature and thickness variation.

As the final step, the influence of elastic foundation parameters on deflection is investigated. The variation of 
plate deflection under the conditions specified in Eq. (46) versus changes in elastic foundation parameters for 
different boundaries and 1/ hlr , 1/ hl is reported in Fig. 6 and Fig. 7. The results indicate that the effect of the 

Winkler parameter on decreasing deflection is much more pronounced compared to the Pasternak parameter. 
Nonlinear behavior is observed with the Winkler foundation, while linear behavior is noted with increasing stiffness 
coefficients of the Pasternak elastic foundation.
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Fig. 3
The variation of non-dimensional deflection versus thickness of annular micro/nanoplate.

Fig. 4
The variation of non-dimensional deflection versus temperature variation of annular micro/nanoplate.
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Fig. 5
The variation of non-dimensional thickness versus temperature variation of annular micro/nanoplate.

Fig. 6
The variation of non-dimensional deflection versus Winkler elastic foundation of annular micro/nanoplate.
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Fig. 7
The variation of non-dimensional deflection versus Pasternak elastic foundation of annular micro/nanoplate.

6. CONCLUSION

In this study, a new numerical solution approach based on 3D elasticity theory and the SAPM is presented for the 
nonlinear thermo-mechanical bending analysis of orthotropic annular/circular micro/nanoplates resting on an elastic 
foundation, using re-modified couple stress theory. The effects of various parameters, including boundary 
conditions, couple stress scale parameters, aspect ratio, thickness, thermal stresses, and elastic foundation 
parameters, are investigated. Some of the key results are summarized below:

- The results obtained using 3D elasticity theory are higher compared to those obtained with CPT, FSDT, and 
TSDT under the same conditions.

- The influence of MLSP for isotropic materials with a single MLSP may differ from the effect of various 
combinations of MLSPs for anisotropic materials with three MLSPs.

- The influence of MLSPs may vary depending on the boundary conditions and different mechanical properties.
-  Changing the plate aspect ratios, especially by making the plate thicker or thinner, can alter the effect of 

MLSPs.
- The influence of MLSP does not show significant changes when an elastic foundation is added or thermal 

loading is applied.
- The extent of the decreasing effect of the elastic foundation and the increasing effect of thermal loading on 

deflection depends on the boundary conditions.
- The most significant variation in plate thickness occurs in plates with one free edge, with thickness increasing 

under thermal loading.
- The effect of thermal loading on plate thickness is more pronounced in plates without free edges.
-Increasing the thickness decreases deflection, with the effect being more pronounced for the S-S boundary 

condition.
- The increasing effect of temperature on deflection is more significant for S-S boundaries.
- The influence of temperature on thickness variation increases linearly and is more pronounced in plates with an 

outer clamped edge.
- The decreasing effect of the Winkler parameter on deflection is more pronounced than that of the Pasternak 

parameter.
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