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Abstract 

This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has 
the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural 
response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear nature of the inverse 
problem, three neural networks, Multi-Layer Perceptron Neural Network (MLPNN), Radial Basis Function Neural Network (RBFNN) and 
General Regression Neural Network (GRNN) are employed to simulate damage states of steel bridges. It was observed that the 
performance of all three networks is well and they have good agreement with actual results performed with Finite Element analysis. The 
efficiency of GRNN in structural identification is so good, although RBFNN has results close to GRNN and MLPNN results are 
satisfactory. All networks have good results while there is a little damage in structural members. Generally, results would have more error 
when damages in structural members extend. The engineering importance of the whole exercise can be appreciated once we realize that the 
measured input at only a few locations in the structure is needed in the identification process using neural networks.  
Keywords: Damage Detection; System Identification; Artificial Neural Networks; Finite Elements; Steel Bridges  

1. Introduction 

In civil engineering practice, existing structures are 
inspected by experienced engineers who determine the 
location of damage zone in the structure and the extent of 
the damage. Generally, it is believed that System 
Identification Technique (SIT) [1] can be extended to 
structures for systematic damage detection and evaluation. 
Structural identification is a process for constructing a 
mathematical description of a physical system when both 
the input and the corresponding output are known. When 
a structure undergoes various degrees of damage, certain 
characteristics have been found to undergo changes. In the 
order to identify those changes, during inspection, a 
sequence of tests may be conducted and the resulting data 
such as load, displacement, strains, acceleration etc., can 
be measured. From such data, mechanical properties, such 
as stiffness/strength, and dynamic characteristics, such as 
natural frequency and damping ratio, can be estimated. 
All these are dealt with by system identification 
techniques. Structural identification can be done both 

under static [2] and dynamic conditions. Parameter 
identification problems lack unique solution and are, thus, 
often formulated in an optimization framework in which 
the parameters of the assumed model are found within the 
predefined space of variables to minimize the difference 
between measured and computed responses in some 
norms. These techniques have been demonstrated in the 
past in structural damage detection using conventional 
computing techniques. The algorithm adopted is generally 
complex and is not appropriate for the situations where 
the measured data are imprecise or inadequate [3]. The 
recent emergence of artificial neural networks can be 
explored as an alternative tool for identification exercises 
in such situations. Many good reviews on the neural 
networks paradigms are available in the literature. Here, 
only a brief conceptualization of neural networks and 
their computational counterpart is given [4].  

Ghaboussi et al. and Wu et al. demonstrated the use of 
back-propagation algorithm in structural application [4,5]. 
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Hajela and Berke implemented neural networks paradigm 
in automated structural design [6]. They examined two 
distinct architectures, namely conventional layered 
architecture with input-output layers and hidden layers 
and modified flat network termed as function link nets. 
They adopted supervised learning for both types of 
networks with a “back-propagation” algorithm. 

Wu et al. used back-propagation neural networks 
architecture with single hidden layer to simulate damage 
states in a three-story frame [4]. The structure was 
subjected to earthquake base acceleration and the transient 
response was computed in time domain. The Fourier 
spectra of the computed relative acceleration time 
histories of the top floor for various members were used 
in training the networks. The member damaged was 
defined as a reduced in member stiffness. In the course of 
training the network, they observed that if the hidden 
layer was too small, the network would not converge. On 
the other hand, if the network was too large, it would not 
converge either. Obviously, the performance of the 
network which depends on the hidden layer is a problem 
dependent and must be investigated further. 

Szewczyk and Hajela considered the damage detection 
of structures as an inverse problem [7]. They modeled the 
damage as a reduction in the stiffness of structural 
elements which was associated with observed static 
displacement under prescribed loads. To generate this 
reverse mapping between stiffness of individual members 
of structure and the global static displacement, an 
improved counter propagation neural network was 
utilized. They performed simulation of frame structures 
with nine bending elements and degrees of freedom 
displacement and rotation at each node. The size of 
architecture was governed by control parameter, also 
called as resolution parameter. They observed, from the 
exercises on the frame structure, that the network 
performance was generally precise with gradual 
deterioration in presence of noisy and incomplete 
measurements. They also concluded that the resolution 
parameter plays an important role in designing the size of 
network and is highly problem dependent. 

Elkordy et al. adopted back-propagation neural 
networks to model damage states of five-story steel 
frames. Three networks were used [8]. These networks 
trained with analytically generated states of damage, were 
used to diagnose damage states obtained experimentally 
from a series of shaking tests. Although the results were 
promising, they concluded that the relation between the 
number of damage patterns required for training the 
network to perform satisfactorily and the degree of 
simplification of the model should be investigated further. 

Adeli and Yeh presented ANN model of machine 
learning in engineering design [9]. They demonstrated the 
application of ANN model in the detection of structural 
damage. The applications of NN models in structural 
engineering have also been done by researchers such as 
Hajela and Berke [6], Masri et al [10], Stephen and 

Vanluchene [11], Elkordy et al [12], etc. As to the 
application in model updating, Atalla and Inman used 
frequency domain data to train a ANN model; the trained 
ANN model can estimate the updated parameters quickly 
and yield a model representative of the measured data. 
They verified the proposed method on a frame structure 
with noisy, experimental data, and reported that the 
particular choice of input data can make the training more 
robust with respect to noise [13].  

Levin and Lieven found that the ANN model is robust 
and can withstand the presence of noise in experimental 
data, and that the ANN approach can avoid the common 
problem of coordinate incompleteness [14]. The inputs 
and outputs of the ANN model can be selected with a 
certain flexibility, which provides the possibility of the 
direct updating of the structural parameters and boundary 
conditions by supplying only a limited number of modal 
parameters from the measurement. Instead of dealing with 
the sensitivity matrix that might be potentially ill-
conditioned, the ANN model requires proper training 
using simulated or measured data. The training process 
could be very time-consuming and the accuracy of the 
predictions of this trained ANN model depends very 
much on the training data. However, once the model is 
properly trained, the ANN calculation is relatively fast 
regardless of the complexity of the structure to be 
updated. In addition, the ANN technique is well known 
for its ability to model nonlinear and complex relationship 
that is exactly the case between the structural parameters 
and the modal properties.  

The application of the ANN methods in the area of 
model updating and damage identification appears to be 
still at its early stage. Most of the numerical examples 
presented so far are confined to simple structures such as 
cantilever beams and frames [13,14]. As the complexity 
of the structure and the number of structural parameters to 
be updated increase, problems associated with the ANN 
model will arise accordingly and this issue needs to be 
addressed. Also, as the number of structural parameters to 
be updated increases, the number of training samples 
required to ensure sample completeness increases 
exponentially. A large number of training samples would 
inevitably require a longer training time and a more 
efficient training algorithm.  

Masri et al showed that two hidden layers could be 
sufficient in most of the structure-related problems [10]. 
The numbers of neurons in the hidden layers are 
determined normally by numerical experimentation (trial 
and error). The inputs considered would include modal 
parameters such as the natural frequencies and the mode 
shapes. The outputs on the other hand are the structural 
parameters to ensure sample completeness increases 
exponentially. A large number of training samples would 
inevitably require a longer training time and a more 
efficient training algorithm. The objective of the ANN 
model is to predict the structural parameters by inputting 
some measured modal parameters. A survey paper 



Journal of Structural Engineering and Geotechnics, 1 (1), 37-48, 2011 
 

39 
 

summarizing the application of neural networks to 
problems in computational mechanics was recently 
published by Yagawa and Okuda [15]. Soft computing 
encompasses a large class of often biologically inspired 
methods, including neural networks and genetic 
algorithms, which are frequently applied to inverse 
problems. These methods are model-free and robust to 
imprecision and uncertainty, making it possible to solve 
otherwise intractable problems [16].  

From the literature survey, it is observed that the design 
of reliable ANN is as yet an unresolved issue. With the 
development of artificial intelligent techniques, the neural 
network methods have recently become widely accepted 
in the civil engineering area. This paper presents the 
application of three main neural networks, Multi-layer 
Perceptron Neural Network (MLPNN), Radial Basis 
Function Neural Network (RBFNN) and General 
Regression Neural Network (GRNN) in identification of 
damage in trussed bridge structures. A more detailed 
treatment on the aspect of ANNs is given in this paper. 
The efficiency of the neural networks is also looked at 
with special reference to bridge truss structure. 

2. Artifical Neural Network Concept 

Based on the current understanding of neurons, a 
computational model is developed. Artificial neural 
networks are non-linear mapping systems with a structure 
loosely based on principles observed in biological nervous 
systems. In greatly simplified terms, as a typical real 
neuron has a branching dendritic tree that collects signals 
from many other neurons in a limited area; a cell body 
that integrates collected signals and generates a response 
signal (as well as manages metabolic functions); and a 
long branching axon that distributes the response through 
contacts with dendritic trees of many other neurons. The 
response of each neuron is a relatively simple non-linear 
function of its inputs and is largely determined by the 
strengths of the connections from its inputs. In spite of the 
relative simplicity of the individual units, systems 
containing many neurons can generate complex and 
interesting behaviours. 

An ANN shown in Fig.1 is very loosely based on these 
ideas. In the most general terms, an ANN consists of large 
number of simple processors linked by weighted 
connections. By analogy, the processing nodes may be 
called neurons. Each node output depends only on 
information that is locally available at the node, either 
stored internally or arriving via the weighted connections. 
Output depends only on information that is locally 
available at the node, either stored internally or arriving 
via the weighted connections. 

Each unit receives inputs from many other nodes and 
transmits its output to yet other nodes. By itself, a single 
processing element is not very powerful; it generates a 
scalar output with a single numerical value, which is a 

simple non-linear function of its inputs. The power of the 
system emerges from the combination of many units in an 
appropriate way. Many good reviews on the neural 
network paradigms are available in the literature. Here, 
only a brief conceptualization of neural nets and its 
computational counterpart is given.  

ANNs comprise a massively interconnected network of 
a large number of artificial neurons or computational 
units. Neural networks models are specified by the net 
topology, node (artificial neuron) characteristics and 
training or learning rules. The function of neural network 
is determined by these parameters. The architecture of the 
network determines the input of the node. The training or 
learning ruled determine how the network will react when 
an unknown input is presented to it. 

The large connectivity degree of the neurons and 
massive parallelism as well as their nonlinear analogue 
response and learning capabilities are the basic factors 
which characterize the computational effectiveness of 
neural networks. 

Computing devices based on neural network are a 
greater fault tolerance than a classical sequential computer 
due to the increased number of locally connected 
processing nodes. Thus, some neurons or links out of 
order do not diminish considerably the performance of the 
network.  

Neural networks hold the promise of providing a fast, 
data-drive modeling system with desirable robustness 
properties since their strengths and weaknesses 
complement those of more traditional analytic technique. 

A robust damage assessment methodology must be 
capable of recognizing pattern in the observed response of 
structures resulting from individual member damaged 
including the capacity of determining the extent of 
member damage. The area of damage assessment 
paradigm in the context of steel bridges has been 
presented by Pandey and Barai discussing in various 
issues [3]. The difficulty is encountered because the data 
available from site’s measurement are often imprecise and 
inadequate. This problem can be illustrated more 
effectively by using ANN as demonstrated in the recent 
papers. However, there is a gap in our understanding 
concerning the development of architecture of networks 
and simulation research should be carried out in order to 
design a reliable network. The present paper attempts to 
examine the suitability of three neural networks in 
damage detection of bridges [4]. 

2.1. Multilayer Perceptron Neural Network (MLPNN) 

Here, we have adopted the Multi-Layer Perceptron 
Neural Network (MLPNN) or Multi-Layer Feed-Forward 
(MLFF) for this inverse problem [16-20]. Neural 
networks are massively parallel computational models. 
Through training, neural networks learn and generalize 
complex relations and associations between input and 
output data. The trained neural networks are then capable 
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of estimating output given new input according to the 
mapping or association resulting from the training 
procedure. A typical MLPNN consisting of thee layers of 
neurons is shown in Fig.1. The outer layers are input and 
output; the intermediate layers are hidden. Neurons or 
nodes in each layer are fully connected to all nodes in the 
adjoining layers. Each neuron receives signals through its 
incoming connections, performs some simple operations, 
adding the received signals to the bias to get an input 
value, calculating the output value by applying a transfer 
function to the input value, and sends signals through its 
outgoing connections. The strength of each connection 
depends on its weight. Learning is a procedure in which 
the connection weights and biases are updated using a 
back-propagation training algorithm such that the given 
input produces the known corresponding output. The 
resulting knowledge is stored in the connection weights 
and biases [21]. The application of neural networks to 
inverse problems consists of three stages:  

(1) Determination of the neural network architecture,  
(2) Selection of training patterns for ANN,  
(3) Training the ANN. 
The three stages are interrelated and interactive. For the 

MLPNN, error back-propagation is the most popular and 
efficient training algorithm [22]. Convergence of error 
back-propagation is strongly affected by the neural 

network architecture and the quality and quantity of 
selected training patterns. The quality and quantity of 
training patterns also have strong influence on the 
generalization capability of the neural network, and 
application of some kind of regularization of the input and 
output data before training has become standard practice 
[23]. With respect to network architecture, the number of 
nodes in the input and output layers corresponds to the 
number of elements of input and output, respectively. 
However, there is no rigorous method for selecting the 
appropriate numbers of hidden layers and neurons, 
although the automatic node generation of neural 
networks has been studied. ‘Trial and error’ is still the 
most widely used method in practical applications. The 
learning capability of a neural network depends on the 
number of hidden layers and the number of nodes in each. 
If the size of the neural network is too small compared to 
the complexity of the mapping between input and output 
data, the training procedure can be slow to converge, or 
the neural network can fall into a local minimum. On the 
other hand, if the neural network is too large, the training 
time increases dramatically, and the likelihood of over-
fitting, in which case the neural network produces very 
accurate output upon input of training samples but gives 
large errors when subjected to a new input set,increases.

 

 
Fig. 1. Architecture of Multi-Layer Perceptron Neural Network (MLPNN) 

 
A network's architecture is a specification of artificial 

neurons and their relationships. The multi-layer 
perceptron is very popular ANN architecture and had 
performed well in variety of applications in several 
domains including a few structural engineering 
applications so far. A multi-layer perceptron consist of 
an array of input neurons, known as an input layer, an 
array of output neurons, known as the output layer and 
number of hidden layers. Each neuron receives a 
weighted sum from each neuron in the preceding layer 
and provides an input to every neuron of next layer. The 
activation of each neuron is governed by a threshold 
function. In order to train the network, a popular 
training algorithm of multi-layer perceptron is the back-
propagation method where the error calculated at the 
output of the network is propagated through the layers 
of neurons to update the weights. The learning 

algorithm is illustrated follow. Back-propagation 
algorithm (the generalized delta rule algorithm) is very 
effective for learning examples of the behavioral 
phenomena. The derivation of generalized delta rule is 
included in some follow steps. The schematic view of 
the network is shown in Fig.1 and steps involved for 
implementing the algorithm are as follows.  

A network is specialized to implement different 
functions by varying the connection topology and the 
values of the connecting weights. Complex functions 
can be implemented by connecting units together with 
appropriate weights. In fact, it has been shown that a 
sufficiently large network with an appropriate structure 
and property chosen weights can approximate arbitrary 
accuracy any function satisfying certain broad 
constraints. 

Usually, the processing units have responses like,  
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
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
= ∑

i
iufy   

Where iu are the output signals of hidden layer to 

output layer, f  is a simple non-linear function such as 
the sigmoid, or logistic function. This unit computes a 
weighted linear combination of its inputs and passes 
this through the non-linearity to produce a scalar output. 
In general, it is a scalar output. In general, it is a 
bounded non-decreasing non-linear function; the 
logistic function is a common choice. 

This model is, of course, a drastically simplified 
approximation of real nervous systems. The intent is to 
capture the major characteristics important in the 
information processing functions of real networks 
without varying too much about physical constraints 
imposed by biology. 
Select a number of input nodes ( n ), output nodes ( p ) 

and hidden nodes ( m ) and first training example ( ix ) 
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Initialize the weights using random number generator in 
range of [-0.5-+0.5]. 
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Compute the value of { jnet } for the hidden nodes. 
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Calculation the activation value { jout } for the hidden 
nodes. Here the Tangent Sigmoidal function has been 
used. 
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Calculation the value of { knet } for the output nodes. 
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Calculation the activation value  
{ kout } for output nodes.
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              (6) 

Calculation error [ kjW∆ ]. 

[ ] { }{ }{ } [ ]kjp
T

jkkkkj WoutootW ∆+−=∆ αη  (7) 

Where α  and η are momentum and learning parameter 
and usually selected from experience. Compute the new 
value of weights between the hidden and output layers. 
[ ] [ ] [ ]kjkjkj WWW ∆+=                           (8) 

Calculate the [ jiW∆ ] for input to hidden weights. 

[ ] { }{ }{ }[ ] { } [ ]jip
T

i
T

kjkkkjji WXWootoutW ∆+−=∆ αη
 

 

(9) 
Calculate the new value of weights between input and 
hidden layer. 
[ ] [ ] [ ]jijiji WWW ∆+=  (10) 
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The algorithm continues for all set until the Average 
System Error (ASE) between the target output and 
computed output is close to the tolerance specified.  

2.2. Radial Basis Function Neural Network 
(RBFNN) 

The basic concept underlying the RBF is that of a 
fixed non-linear mapping of the input space to a higher 
dimensional space followed by a linear, adjustable 
output mapping. As it was shown in Fig.1, the structure 
of the RBF is a model of three-layer feed forward 
network like MLPNN. The hidden and output layer 
consists of a set of basis function units, each of which 
associated with a parametric vector known as its 
receptive field. These units compute the distance 
between the center of the field and the input vector. The 
output of the units is then a function of the distance 
measure. The RBF is expressed by [17-20]: 

( ) ( )∑
=

−=
N

j
jjj cxywxf

1
 (11) 

Where x is a n -dimensional input vector; N , the 
number of hidden units and jc , the receptive field. The 

basis function is such that jy has a significant result 

only in the neighborhood of jc . There are several 
possibilities for the choice of basis functions. However, 
Gaussian type functions offer desirable properties 
making the hidden units responsive to locally tuned 
regions. The typical example of basis function has been 
explained. Gaussian type activation is employed in the 
proposed NN. The Gaussian activation function can be 
expressed as follows: 
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The chosen basis function influences both the 
learning and modeling abilities of the network, and will 
also influence the choice of learning rule used to train 
the network. The performance of the radial basis neural 
network depends critically on the placement of the 
centers of the receptive and the localization associated 
with each radial basis function is a vital factor for 
attaining faster training speeds. In this study, radial 
basis Gaussian function and back-propagation learning 
algorithm are employed to train the proposed NN. The 
learning algorithm topology, which was employed for 
the NN updating the weight can be described as 
follows; define the error function as: 
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Where ( )tydi  are the i th desired outputs and ( )tyi

are the i th outputs of the network. This error function 

is to be minimized with respect to all the unknown 
parameters Θ . In the steepest descent approach the 
parameter vector [ ]Tnθθθ ...,21=Θ is adjusted 

using the increment vector [ ]Tnθθθ ∆∆∆ ...,21  
defined along the negative gradient direction of J , 
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Although the one-hidden-layer model is used in the 
present application, it is useful to derive the gradient of 
J for the general case, and the result for the one-

hidden-layer model can readily be obtained as a special 
case. Starting from the output layer m  of the network 

and setting m
iji W=θ , the application of the chain rule 

gives rise to: 
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From Equation (4-3) we have: 
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Where m
iδ is called the error signal of the i th neuron 

in the m th layer. From Equation (15): 
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And ( )izg is the activation of neuron i . By defining 

the error signal for the i th neuron of the ( )1−m th 
layer as: 
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Equation (13) can be rewritten as: 
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Similarly it can be shown that, 
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Where 1−m
ib is the bias input to neuron i in layer 1−m  

By carrying on this procedure, Equations (23) to (25) 
can be used as a general algorithm for updating weights 
in other layers.  

Equations (23) to (25) indicate how the error signals 
propagate backwards from the output layer of the 
network through the hidden layer to the input layer, 
hence the famous name back-propagation. The steepest-
descent minimization of the error function defined in 
Equation (13) produces the following increments for 
updating Θ : 

( ) ( ) ( )txttW m
j

m
iw

m
ij

1−=∆ δη  

( ) ( )ttb m
ib

m
i δη=∆  

(26) 
 

(27) 
Where in the output layer, 

( ) ( ) ( )tytyt idi
m
i −=δ  (28) 

And in other layers,  
( ) ( )( ) ( )111 −′= ++∑ tWtzgt m

ji
j

m
j

m
i

m
i δδ  (29) 

The constants wη (0 < wη < 1) and bη (0 < bη < 1) 
represent the learning rates for the weights and biases, 
respectively. In practice, a large value of the learning 
rate would be preferable, because this would result in 
rapid learning. Unfortunately, a large value of the 
learning rate can also lead to oscillation or even 
divergence. To help speed up learning, but avoid undue 
oscillations, a momentum term is usually included so 
that Equations (26) and (27) become: 

( ) ( ) ( ) ( )11 −∆+=∆ − tWtxttW m
ijw

m
j

m
iw

m
ij µδη  

( ) ( ) ( )1−∆+=∆ tbttb m
ib

m
ib

m
i µδη  

(30) 
 

(31) 

Where wµ and bµ are momentum constants, which 

determine the effect of past changes of ( )tW m
ij∆ and 

( )tbm
i∆ on the current updating direction in the weight 

and the bias space respectively. This effectively filters 
out high frequency variations in the error surface. To 
summarize, the back-propagation algorithm updates the 
weights and thresholds of the networks according to: 

( ) ( ) ( )tWtWtW m
ij

m
ij

m
ij ∆+−= 1  (32) 

And, 

( ) ( ) ( )tbtbtb m
i

m
i

m
i ∆+−= 1  (33) 

Where the increments ( )tW m
ij∆  and ( )tbm

i∆ are 
given in Equations (30) and (31). This simulation study 
will carry out using radial basis Gaussian NN for 
analyzing steel bridge parameters in next portion. The 
back-propagation algorithm is used to update the 
network weights.  

2.3. General Regression Neural Network (GRNN) 

The multi-layer perception and radial basis function 
are the best known feed-forward networks, which have 
been studied extensively and used widely in many 
fields. However, due to its learning process, RBF and 
specially MLP, have some shortcomings such as easy to 
converge to a local minimum, a slow convergence rate, 
sensitivity to initial conditions, low learning efficiency, 
etc. These disadvantages generally result from the use 
of the back-propagation learning algorithm. In the past 
few years, many advanced neural network architectures 
and learning algorithms have emerged and have been 
successfully applied to practical problems. Examples 
include Recurrent Neural Networks (RNN), 
Probabilistic Neural Network (PNN), General 
Regression Neural Network (GRNN), etc. As an 
alternative to the conventional heuristic methods, 
general regression neural network appears promising 
and can offer more formal and robust methods for the 
design of neural network. For example, GRNN can be 
used to aid in determining the best connections among 
network units, selecting the weights in a relatively fixed 
architecture, evolving appropriate network structures 
and learning parameters, developing the learning rule 
for ANN, finding an effective set of weights for a fixed 
set of connections, etc [24]. 

In this paper, the GRNN is also used to model the 
damage detection and to predict the states of damage at 
steel bridges. GRNN is known for its ability to train 
quickly with sparse data sets. Its architecture is of a 
three-layer network consisting of one hidden layer 
neuron. There are no training parameters such as 
learning rate and momentum as in back-propagation, 
but there is a smoothing factor that is applied after the 
network is trained. GRNN works by measuring how far 
a given sample pattern is from patterns in the training 
set in N dimensional space, where N is the number of 
neurons in the hidden layer. When a new pattern is 
presented to the network, the input pattern is compared 
in the N dimensional space to all of the patterns in the 
training set to determine how far in distance it is from 
those patterns. The output of the network is the 
proportional amount of all the outputs in the training 
set. The proportion is based upon how far the new 
pattern is from the given patterns in the training set 
[25]. A generalized regression neural network is also 
used for function approximation. As discussed below, it 
has a radial basis layer and a special linear layer. The 
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architecture for the GRNN is similar to the radial basis 
network, but has a slightly different second layer. The 
first layer is just like that for RBF. It has as many 
neurons as there are input- target vectors in P  
Specifically, the first layer weights are set 
approximately P′  and the bias is set to column vector 
of 0.8326/spread. The user chooses spread; the distance 
an input vector must be from a neuron’s weight to be 
0.5. Again, the first layer operates just like the radial 
basis layer described previously. Each neuron's 
weighted input is the distance between the input vector 
and its weight vector, calculated with a function of 
distance. Each neuron’s net input is the product of its 
weighted input with its bias, calculated with a function. 
Each neuron’s output is its net input passed through 
radial basis layer. If a neuron's weight vector is equal to 
the input vector (transposed), its weighted input will be 
0, therefore its net input will be 0, and its output will be 
1. If a neuron's weight vector is a distance of spread 
from the input vector, its weighted input will be spread, 
and its net input will be Sqrt (-log .5). The second layer 
also has as many neurons as input- target vectors.  

Suppose we have an input vector p  close to ip , one 
of the input vectors among the input vector/target pairs 
used in designing layer one weights. This input p  

produces a layer 1 ia output close to 1. This leads to a 

layer 2 outputs close to it , one of the targets used 
forming layer 2 weights. A larger spread leads to a large 
area around the input vector where layer 1 neurons will 
respond i th significant outputs. Therefore, if spread is 
small, the radial basis function is very steep so that the 
neuron with the weight vector closest to the input will 
have a much larger output than other neurons. The 
network will tend to respond with the target vector 
associated with the nearest design input vector. As 
spread gets larger, the radial basis function's slope gets 
smoother and several neuron's may respond to an input 
vector. The network then acts as if it is taking a 
weighted average between target vectors whose design 
input vectors are closest to the new input vector. As 
spread gets larger, more and more neurons contribute to 
the average with the result that the network function 
becomes smoother. In the present research, GRNN also 
was used to stimulate the structural response of bridge.  

3. Simulation Results 

An extensive neural networks investigation was 
carried out on a problem of 21-bar bridge truss as 
shown in Fig.2 with three distinct zones assumed as 
damage state in Fig.3. The bottom chord nodes, 7, 8, 9, 
10 and 11 were considered for measuring the response 
of the structure under given loads as shown in Fig.2 The 
purpose of the exercise was to identify the members in 
the damaged zone and the reduction in their stiffness 

from the response data. Three networks employed to do 
this exercise. In this networks, the input nodes represent 
the measured parameters, Vertical displacement at the 
nodes, U7, U8, U9, U10 and U11 and the output nodes 
are the identified parameter, response data of a1, a2, … 
to a21 in the member representing the stiffness in 
assumed damage state for the neural networks. The 
details study was carried out with the following three 
networks,

 
Fig. 2. Steel Bridge Configuration 

 
(1). For MLPNN, it’s need to find the best 

architecture that has minimum ASE between the target 
output and computed output from all set of architecture 
that would be chosen and it’s close to the tolerance 
specified. In Fig.4 the performance of MLPNN is 
depited. As showed in Fig.4 when the number of 
neurons in hidden layer had chosen 19 the MSE error is 
minimum (9.02E-13), then the best architecture for 
design MLPNN is 5-19-21; this network has 5 neurons 
in input layer, 19 neurons in hidden layer and 21 
neurons in output layer. Learning parameter η and 
momentum parameter α are 0.05 and 0.9, respectively 
that are quite appropriate in such application. It should 
be noted that this architecture is best for this 
investigation. The best architecture should be found via 
trial and error in practice.  

(2). The RBFNN with architecture 5-19-21 (consists 
of three layers, input layer, one hidden layer and output 
layer) that have Gaussian function with non-linear 
neurons in hidden and output layer. Training parameters 
of RBF network are selected as 001.0=η

 (learning 

parameter) and 01.0=µ  (momentum parameter) via 
trial and error. The input layer has 5 neurons; hidden 
layer and output layer have 19 and 21 Gaussian 
function with RBF non-linear neurons, respectively.  

(3). The GRNN with the architecture 5-19-21, as 
illustrated in previous section it has a non-linear RBF 
layer and special linear layer. For this study, spread 
parameter has chosen 1.0 that it helps more neurons to 
contribute to the average, and the result that the 
network’s function becomes smoother. 

Again all networks consist of three layers, five input 
neurons, one hidden layer with nineteen neurons and 
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twenty one neurons in output layer. The steel bridge 
structure has been identified having three distinct 
damage zones where members are assumed to be 
damaged in turn. Considering each damaged zone 
independently and separately, a total of 48 training 
patterns, 16 patterns for each damage zone were 
generated with the help of finite element method stored 
in files and additional 12 testing patterns were 
generated and stored separately for verification of the 
trained networks after proper normalization. The 
normalization is essential while using the Tangent-
Sigmidal or Gaussian function, in order to have the 
input and training patterns values between 0 and 1. 
These normalized training patterns presented to the 

network help faster convergence. For normalization of 
the input – output pair, an interface program was 
developed. In this study, the back-propagation 
algorithm was implemented for RBFNN and MLPNN. 
The networks were trained for the three distinct 
damaged zones and then tested for 12 testing patterns. 
For each zone, all the testing patterns were presented 
here for the three zones. Form sample.1 to sample.4, the 
damage in every zone will be extending. The results 
obtained for computational experimentation were quite 
promising. Some of the typical results for the three 
zones are given in Tables 1-3. The observations of this 
study are discussed in the following section. 
 

 
 
 
 
 
 
 
 

 
 

(a) Damaged Zone 1 
 
 
 
 
 
 
 
 
 

 
(b) Damaged Zone 2 

 
 
 
 
 

 

 
 
 
 
 
 

(c) Damaged Zone 3 
 

Fig.3: States of Damage in Steel Bridge and Identification of Damaged Zones 
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       Table1. Typical samples of zone 1 
 
                     Actual Stiffness (FEM)   MLPNN model (%)   RBFNN model (%)   GRNN model (%)        

Sample 1. 
         member 1.   103304.03  0.0030     0.0008  0.0007    
         member 5.   38693.273  0.0037  0.0009  0.0008 
         member 6.   61517.430  0.0039  0.0005  0.0005  
         member 7.   38693.273  0.0044  0.0009  0.0008 
         member 8.   61517.430  0.0030  0.0005   0.0005 
         member 16.   103304.03  0.0031  0.0008  0.0007 
         member 17.   103304.03  0.0035  0.0008  0.0007 
 
 

Sample 2. 
         member 1.             93967.299     0.0025        0.0006  0.0006 
         member 5.  33165.662   0.0036      0.0013  0.0013 
         member 6.  54682.159    0.0033      0.0005  0.0005 
         member 7.  33165.662  0.0040      0.0013  0.0013 
         member 8.  54682.159  0.0028      0.0005  0.0005 
         member 16.  93967.299  0.0026      0.0006  0.0006 
         member 17.  93967.299  0.0028     0.0006  0.0006 
 
 

Sample 3. 
         member 1.             84570.569  0.0014       0.0004  0.0003 
         member 5.  27638.052  0.0092     0.0024  0.0023 
         member 6.  47846.889  0.0016     0.0002  0.0002 
         member 7.  27638.052  0.0051     0.0024  0.0023 
         member 8.  47846.889  0.0065     0.0002  0.0002 
         member 16.  84570.569  0.0019    0.0004  0.0003 
         member 17.  84570.569  0.0008  0.0004  0.0003 
 
 

Sample 4. 
         member 1.             75173.839  0.1608          0.0137  0.0137 
         member 5.  22110.441  0.2125     0.0364  0.0364 
         member 6.  41011.619  0.1842     0.0404  0.0403 
         member 7.  22110.441  0.2235     0.0364  0.0364 
         member 8.  41011.619  0.1270     0.0404  0.0403 
         member 16.  75173.839  0.1251     0.0137  0.0137 
         member 17.  75173.839  0.1267  0.0137  0.0137 
  

The following observations are made based on all the 
twelve tested patterns: 

1- Training networks were able to identify the 
damaged zones for all the testing patterns. 

2- Training networks had provided reasonable 
value of stiffness of all members for the testing 
patterns. They have good agreement with the 
actual stiffness that is present by solution of 
Finite Element Method.   

3- The performance of the GRNN was the best, 
although RBFNN has results so closed to 
GRNN. RBFNN and GRNN have better 
results than MLPNN in all case of damage and 
for all samples. The percentage error in 

MLPNN, RBFNN and GRNN is increase 
when the damage of the structure will be 
extended.     

4- As we expected form the results, the error in 
the members that have same stiffness should 
be equal in ANN with liner mapping or non-
linear mapping.   

5- Time consumed for training GRNN and 
RBFNN networks is more than MLPNN, but 
they have less error than MLPNN, 

6- In training MLPNN, when the number of 
neurons in hidden layer increase, it will take 
further time in the CPU time usage to train the       
MLPNN 

Number of neurons in hidden layer 
Fig. 4. Performance design of MLP networks, The MLPNN with single hidden layer 

architecture 5-19-21 was the best architecture from all the examined MLPNNs 

ASE 
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.
Table2. Typical samples of zone 2 

 
                   Actual Stiffness (FEM)   MLPNN model (%)   RBFNN model (%)   GRNN model (%)        

Sample 1. 
member 2.                                 103304.030                                      0.0007       0.0004  0.0003  
member 3.                                 103304.030                        0.0001      0.0004  0.0003 
member 9.                                   38693.273  0.0022      0.0004  0.0004 
member 10.                                 61517.430  0.0005            0.0006  0.0005  
member 11.                                 38693.273  0.0009  0.0004  0.0004 
member 18.                               103304.030  0.0012  0.0004  0.0003  
member 19.                               103304.030  0.0001  0.0004  0.0003 

Sample 2. 
member 2.                                   93967.299  0.0008                      0.0016  0.0016 
member 3.                                   93967.299  0.0004     0.0016  0.0016 
member 9.         33165.662  0.0020     0.0027  0.0027 
member 10.     54682.159  0.0008     0.0020   0.0019 
member 11.     33165.662  0.0012    0.0027  0.0027 
member 18.     93967.299  0.0009    0.0016  0.0016 
member 19.     93967.299  0.0004      0.0016  0.0016 

Sample 3. 
         member 2.      84570.569  0.0043  0.0035       0.0035    
         member 3.     84570.569  0.0042     0.0035  0.0035 
         member 9.     27638.052  0.0075    0.0057  0.0056 
         member 10.     47846.889  0.0055     0.0043  0.0042  
         member 11.     27638.052  0.0075      0.0057  0.0056 
         member 18.     84570.569  0.0040      0.0035  0.0034 
         member 19.     84570.569  0.0043    0.0035  0.0034 
 

Sample 4. 
         member 2.      75173.839 0.0420     0.0031   0.0030   
         member 3.      75173.839 0.0419      0.0031  0.0030 
         member 9.      22110.441 0.0778      0.0648  0.0648 
         member 10.      41011.619 0.0554    0.0436  0.0436 
         member 11.      22110.441 0.0820     0.0648  0.0648 
         member 18.      75173.839 0.0372    0.0310  0.0309 
         member 19.      75173.839 0.0431    0.0310  0.0309 
 

Table3. Typical samples of zone 3 
 

                  Actual Stiffness (FEM)   MLPNN model (%)   RBFNN model (%)   GRNN model (%)        
Sample 1. 

         member 4.            103304.03  0.0025  0.0010   0.0009 
         member 12.         61517.430  0.0027  0.0008    0.0007 
         member 13.        38693.273  0.0035  0.0012  0.0012 
           member 14.       61517.430  0.0012  0.0008  0.0007 
         member 15.         38693.273  0.0034  0.0012    0.0015   
         member 20.       103304.03  0.0028  0.0010   0.0009 
           member 21.        103304.03  0.0036  0.0010  0.0009 

Sample 2. 
         member 4.       93967.299  0.0020  0.0008  0.0008  
         member 12.      54682.159  0.0043     0.0007  0.0007 
         member 13.     33165.662  0.0052       0.0016  0.0015 
         member 14.      54682.159  0.0070    0.0007  0.0007 
         member 15.      33165.662  0.0048      0.0016  0.0015 
         member 20.      93967.299  0.0022       0.0008  0.0008 
         member 21.     93967.299  0.0005       0.0008  0.0008 

Sample 3. 
         member 4.       84570.569  0.0188  0.0004  0.0004 
         member 12.     47846.889  0.0202  0.0014  0.0137 
         member 13.     27638.052  0.0304  0.0037  0.0037 
         member 14.     47846.889  0.0175     0.0014  0.0013 
         member 15.    27638.052  0.0301   0.0037  0.0037 
         member 20.    84570.569  0.0200  0.0004  0.0004 
         member 21.     84570.569  0.0220  0.0004  0.0004 
 

Sample 4. 
         member 4.          75173.839  0.1707     0.0023  0.0023 
         member 12.        41011.619  0.1854    0.0287  0.0286 
         member 13.        22110.441  0.3163    0.0119  0.0118 
         member 14.        41011.619  0.3244  0.0287  0.0286 
         member 15.        22110.441  0.3312  0.0119  0.0118 
         member 20.        75173.839  0.1294  0.0023  0.0023 
         member 21.        75173.839  0.0725  0.0023  0.0023 
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4. Conclusion 

Two neural networks with back-propagation learning 
algorithm (MLPNN and RBFNN) and GRNN have 
been adapted to model typical bridge truss simulated 
damaged states. The training patterns were generated 
using general structural analysis program finite element 
method with assumed zones of damage in the structure. 
The working of the networks was demonstrated by 
computing the output with the algorithmically generated 
performance parameter not considered in the training. 
The issues related to the performance of networks were 
examined. From observations, it is concluded that the 
GRNN is quite appropriate for the structural damage 
identification and RBFNN has results closer to GRNN. 
For the case illustrated, the performance of architecture 
and the MSE was discussed for MLPNN.  

All three networks have good agreement with 
analytical solution and they represent good results when 
damage in members is little but when damage extend, 
MLPNN has more error than GRNN and RBFNN. The 
engineering significance of this investigation lies in the 
fact that the measured data at only a few locations in the 
structure is needed to train the network for 
identification exercise. 
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