

Journal of Structural Engineering and Geotechnics,
1 (1), 37-49, Spring 2011

37

Journal of Structural Engineering and Geotechnics,
1 (1), 37-48, Spring 2011

QIAU

Comparison Study on Neural Networks in Damage
Detection of Steel Truss Bridge

Hassan Aghabaratia,*,Mohsen Tehranizadehb
a Department of Civil and Architectural Engineering, Islamic Azad University, Qazvin Branch, Iran

b Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
Received 15 Dec. 2010; accepted 10 Feb. 2011

Abstract

This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has
the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural
response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear nature of the inverse
problem, three neural networks, Multi-Layer Perceptron Neural Network (MLPNN), Radial Basis Function Neural Network (RBFNN) and
General Regression Neural Network (GRNN) are employed to simulate damage states of steel bridges. It was observed that the
performance of all three networks is well and they have good agreement with actual results performed with Finite Element analysis. The
efficiency of GRNN in structural identification is so good, although RBFNN has results close to GRNN and MLPNN results are
satisfactory. All networks have good results while there is a little damage in structural members. Generally, results would have more error
when damages in structural members extend. The engineering importance of the whole exercise can be appreciated once we realize that the
measured input at only a few locations in the structure is needed in the identification process using neural networks.
Keywords: Damage Detection; System Identification; Artificial Neural Networks; Finite Elements; Steel Bridges

1. Introduction

In civil engineering practice, existing structures are
inspected by experienced engineers who determine the
location of damage zone in the structure and the extent of
the damage. Generally, it is believed that System
Identification Technique (SIT) [1] can be extended to
structures for systematic damage detection and evaluation.
Structural identification is a process for constructing a
mathematical description of a physical system when both
the input and the corresponding output are known. When
a structure undergoes various degrees of damage, certain
characteristics have been found to undergo changes. In the
order to identify those changes, during inspection, a
sequence of tests may be conducted and the resulting data
such as load, displacement, strains, acceleration etc., can
be measured. From such data, mechanical properties, such
as stiffness/strength, and dynamic characteristics, such as
natural frequency and damping ratio, can be estimated.
All these are dealt with by system identification
techniques. Structural identification can be done both

under static [2] and dynamic conditions. Parameter
identification problems lack unique solution and are, thus,
often formulated in an optimization framework in which
the parameters of the assumed model are found within the
predefined space of variables to minimize the difference
between measured and computed responses in some
norms. These techniques have been demonstrated in the
past in structural damage detection using conventional
computing techniques. The algorithm adopted is generally
complex and is not appropriate for the situations where
the measured data are imprecise or inadequate [3]. The
recent emergence of artificial neural networks can be
explored as an alternative tool for identification exercises
in such situations. Many good reviews on the neural
networks paradigms are available in the literature. Here,
only a brief conceptualization of neural networks and
their computational counterpart is given [4].

Ghaboussi et al. and Wu et al. demonstrated the use of
back-propagation algorithm in structural application [4,5].

*corresponding Author Email: aghabarati@qiau.ac.ir

Hassan Aghabarati, Mohsen Tehranizadeh

38

Hajela and Berke implemented neural networks paradigm
in automated structural design [6]. They examined two
distinct architectures, namely conventional layered
architecture with input-output layers and hidden layers
and modified flat network termed as function link nets.
They adopted supervised learning for both types of
networks with a “back-propagation” algorithm.

Wu et al. used back-propagation neural networks
architecture with single hidden layer to simulate damage
states in a three-story frame [4]. The structure was
subjected to earthquake base acceleration and the transient
response was computed in time domain. The Fourier
spectra of the computed relative acceleration time
histories of the top floor for various members were used
in training the networks. The member damaged was
defined as a reduced in member stiffness. In the course of
training the network, they observed that if the hidden
layer was too small, the network would not converge. On
the other hand, if the network was too large, it would not
converge either. Obviously, the performance of the
network which depends on the hidden layer is a problem
dependent and must be investigated further.

Szewczyk and Hajela considered the damage detection
of structures as an inverse problem [7]. They modeled the
damage as a reduction in the stiffness of structural
elements which was associated with observed static
displacement under prescribed loads. To generate this
reverse mapping between stiffness of individual members
of structure and the global static displacement, an
improved counter propagation neural network was
utilized. They performed simulation of frame structures
with nine bending elements and degrees of freedom
displacement and rotation at each node. The size of
architecture was governed by control parameter, also
called as resolution parameter. They observed, from the
exercises on the frame structure, that the network
performance was generally precise with gradual
deterioration in presence of noisy and incomplete
measurements. They also concluded that the resolution
parameter plays an important role in designing the size of
network and is highly problem dependent.

Elkordy et al. adopted back-propagation neural
networks to model damage states of five-story steel
frames. Three networks were used [8]. These networks
trained with analytically generated states of damage, were
used to diagnose damage states obtained experimentally
from a series of shaking tests. Although the results were
promising, they concluded that the relation between the
number of damage patterns required for training the
network to perform satisfactorily and the degree of
simplification of the model should be investigated further.

Adeli and Yeh presented ANN model of machine
learning in engineering design [9]. They demonstrated the
application of ANN model in the detection of structural
damage. The applications of NN models in structural
engineering have also been done by researchers such as
Hajela and Berke [6], Masri et al [10], Stephen and

Vanluchene [11], Elkordy et al [12], etc. As to the
application in model updating, Atalla and Inman used
frequency domain data to train a ANN model; the trained
ANN model can estimate the updated parameters quickly
and yield a model representative of the measured data.
They verified the proposed method on a frame structure
with noisy, experimental data, and reported that the
particular choice of input data can make the training more
robust with respect to noise [13].

Levin and Lieven found that the ANN model is robust
and can withstand the presence of noise in experimental
data, and that the ANN approach can avoid the common
problem of coordinate incompleteness [14]. The inputs
and outputs of the ANN model can be selected with a
certain flexibility, which provides the possibility of the
direct updating of the structural parameters and boundary
conditions by supplying only a limited number of modal
parameters from the measurement. Instead of dealing with
the sensitivity matrix that might be potentially ill-
conditioned, the ANN model requires proper training
using simulated or measured data. The training process
could be very time-consuming and the accuracy of the
predictions of this trained ANN model depends very
much on the training data. However, once the model is
properly trained, the ANN calculation is relatively fast
regardless of the complexity of the structure to be
updated. In addition, the ANN technique is well known
for its ability to model nonlinear and complex relationship
that is exactly the case between the structural parameters
and the modal properties.

The application of the ANN methods in the area of
model updating and damage identification appears to be
still at its early stage. Most of the numerical examples
presented so far are confined to simple structures such as
cantilever beams and frames [13,14]. As the complexity
of the structure and the number of structural parameters to
be updated increase, problems associated with the ANN
model will arise accordingly and this issue needs to be
addressed. Also, as the number of structural parameters to
be updated increases, the number of training samples
required to ensure sample completeness increases
exponentially. A large number of training samples would
inevitably require a longer training time and a more
efficient training algorithm.

Masri et al showed that two hidden layers could be
sufficient in most of the structure-related problems [10].
The numbers of neurons in the hidden layers are
determined normally by numerical experimentation (trial
and error). The inputs considered would include modal
parameters such as the natural frequencies and the mode
shapes. The outputs on the other hand are the structural
parameters to ensure sample completeness increases
exponentially. A large number of training samples would
inevitably require a longer training time and a more
efficient training algorithm. The objective of the ANN
model is to predict the structural parameters by inputting
some measured modal parameters. A survey paper

Journal of Structural Engineering and Geotechnics, 1 (1), 37-48, 2011

39

summarizing the application of neural networks to
problems in computational mechanics was recently
published by Yagawa and Okuda [15]. Soft computing
encompasses a large class of often biologically inspired
methods, including neural networks and genetic
algorithms, which are frequently applied to inverse
problems. These methods are model-free and robust to
imprecision and uncertainty, making it possible to solve
otherwise intractable problems [16].

From the literature survey, it is observed that the design
of reliable ANN is as yet an unresolved issue. With the
development of artificial intelligent techniques, the neural
network methods have recently become widely accepted
in the civil engineering area. This paper presents the
application of three main neural networks, Multi-layer
Perceptron Neural Network (MLPNN), Radial Basis
Function Neural Network (RBFNN) and General
Regression Neural Network (GRNN) in identification of
damage in trussed bridge structures. A more detailed
treatment on the aspect of ANNs is given in this paper.
The efficiency of the neural networks is also looked at
with special reference to bridge truss structure.

2. Artifical Neural Network Concept

Based on the current understanding of neurons, a
computational model is developed. Artificial neural
networks are non-linear mapping systems with a structure
loosely based on principles observed in biological nervous
systems. In greatly simplified terms, as a typical real
neuron has a branching dendritic tree that collects signals
from many other neurons in a limited area; a cell body
that integrates collected signals and generates a response
signal (as well as manages metabolic functions); and a
long branching axon that distributes the response through
contacts with dendritic trees of many other neurons. The
response of each neuron is a relatively simple non-linear
function of its inputs and is largely determined by the
strengths of the connections from its inputs. In spite of the
relative simplicity of the individual units, systems
containing many neurons can generate complex and
interesting behaviours.

An ANN shown in Fig.1 is very loosely based on these
ideas. In the most general terms, an ANN consists of large
number of simple processors linked by weighted
connections. By analogy, the processing nodes may be
called neurons. Each node output depends only on
information that is locally available at the node, either
stored internally or arriving via the weighted connections.
Output depends only on information that is locally
available at the node, either stored internally or arriving
via the weighted connections.

Each unit receives inputs from many other nodes and
transmits its output to yet other nodes. By itself, a single
processing element is not very powerful; it generates a
scalar output with a single numerical value, which is a

simple non-linear function of its inputs. The power of the
system emerges from the combination of many units in an
appropriate way. Many good reviews on the neural
network paradigms are available in the literature. Here,
only a brief conceptualization of neural nets and its
computational counterpart is given.

ANNs comprise a massively interconnected network of
a large number of artificial neurons or computational
units. Neural networks models are specified by the net
topology, node (artificial neuron) characteristics and
training or learning rules. The function of neural network
is determined by these parameters. The architecture of the
network determines the input of the node. The training or
learning ruled determine how the network will react when
an unknown input is presented to it.

The large connectivity degree of the neurons and
massive parallelism as well as their nonlinear analogue
response and learning capabilities are the basic factors
which characterize the computational effectiveness of
neural networks.

Computing devices based on neural network are a
greater fault tolerance than a classical sequential computer
due to the increased number of locally connected
processing nodes. Thus, some neurons or links out of
order do not diminish considerably the performance of the
network.

Neural networks hold the promise of providing a fast,
data-drive modeling system with desirable robustness
properties since their strengths and weaknesses
complement those of more traditional analytic technique.

A robust damage assessment methodology must be
capable of recognizing pattern in the observed response of
structures resulting from individual member damaged
including the capacity of determining the extent of
member damage. The area of damage assessment
paradigm in the context of steel bridges has been
presented by Pandey and Barai discussing in various
issues [3]. The difficulty is encountered because the data
available from site’s measurement are often imprecise and
inadequate. This problem can be illustrated more
effectively by using ANN as demonstrated in the recent
papers. However, there is a gap in our understanding
concerning the development of architecture of networks
and simulation research should be carried out in order to
design a reliable network. The present paper attempts to
examine the suitability of three neural networks in
damage detection of bridges [4].

2.1. Multilayer Perceptron Neural Network (MLPNN)

Here, we have adopted the Multi-Layer Perceptron
Neural Network (MLPNN) or Multi-Layer Feed-Forward
(MLFF) for this inverse problem [16-20]. Neural
networks are massively parallel computational models.
Through training, neural networks learn and generalize
complex relations and associations between input and
output data. The trained neural networks are then capable

Hassan Aghabarati, Mohsen Tehranizadeh

40

of estimating output given new input according to the
mapping or association resulting from the training
procedure. A typical MLPNN consisting of thee layers of
neurons is shown in Fig.1. The outer layers are input and
output; the intermediate layers are hidden. Neurons or
nodes in each layer are fully connected to all nodes in the
adjoining layers. Each neuron receives signals through its
incoming connections, performs some simple operations,
adding the received signals to the bias to get an input
value, calculating the output value by applying a transfer
function to the input value, and sends signals through its
outgoing connections. The strength of each connection
depends on its weight. Learning is a procedure in which
the connection weights and biases are updated using a
back-propagation training algorithm such that the given
input produces the known corresponding output. The
resulting knowledge is stored in the connection weights
and biases [21]. The application of neural networks to
inverse problems consists of three stages:

(1) Determination of the neural network architecture,
(2) Selection of training patterns for ANN,
(3) Training the ANN.
The three stages are interrelated and interactive. For the

MLPNN, error back-propagation is the most popular and
efficient training algorithm [22]. Convergence of error
back-propagation is strongly affected by the neural

network architecture and the quality and quantity of
selected training patterns. The quality and quantity of
training patterns also have strong influence on the
generalization capability of the neural network, and
application of some kind of regularization of the input and
output data before training has become standard practice
[23]. With respect to network architecture, the number of
nodes in the input and output layers corresponds to the
number of elements of input and output, respectively.
However, there is no rigorous method for selecting the
appropriate numbers of hidden layers and neurons,
although the automatic node generation of neural
networks has been studied. ‘Trial and error’ is still the
most widely used method in practical applications. The
learning capability of a neural network depends on the
number of hidden layers and the number of nodes in each.
If the size of the neural network is too small compared to
the complexity of the mapping between input and output
data, the training procedure can be slow to converge, or
the neural network can fall into a local minimum. On the
other hand, if the neural network is too large, the training
time increases dramatically, and the likelihood of over-
fitting, in which case the neural network produces very
accurate output upon input of training samples but gives
large errors when subjected to a new input set,increases.

Fig. 1. Architecture of Multi-Layer Perceptron Neural Network (MLPNN)

A network's architecture is a specification of artificial

neurons and their relationships. The multi-layer
perceptron is very popular ANN architecture and had
performed well in variety of applications in several
domains including a few structural engineering
applications so far. A multi-layer perceptron consist of
an array of input neurons, known as an input layer, an
array of output neurons, known as the output layer and
number of hidden layers. Each neuron receives a
weighted sum from each neuron in the preceding layer
and provides an input to every neuron of next layer. The
activation of each neuron is governed by a threshold
function. In order to train the network, a popular
training algorithm of multi-layer perceptron is the back-
propagation method where the error calculated at the
output of the network is propagated through the layers
of neurons to update the weights. The learning

algorithm is illustrated follow. Back-propagation
algorithm (the generalized delta rule algorithm) is very
effective for learning examples of the behavioral
phenomena. The derivation of generalized delta rule is
included in some follow steps. The schematic view of
the network is shown in Fig.1 and steps involved for
implementing the algorithm are as follows.

A network is specialized to implement different
functions by varying the connection topology and the
values of the connecting weights. Complex functions
can be implemented by connecting units together with
appropriate weights. In fact, it has been shown that a
sufficiently large network with an appropriate structure
and property chosen weights can approximate arbitrary
accuracy any function satisfying certain broad
constraints.

Usually, the processing units have responses like,

Xn

X1 P1

Pm

P2 X2

Journal of Structural Engineering and Geotechnics, 1 (1), 37-48, 2011

41









= ∑

i
iufy

Where iu are the output signals of hidden layer to

output layer, f is a simple non-linear function such as
the sigmoid, or logistic function. This unit computes a
weighted linear combination of its inputs and passes
this through the non-linearity to produce a scalar output.
In general, it is a scalar output. In general, it is a
bounded non-decreasing non-linear function; the
logistic function is a common choice.

This model is, of course, a drastically simplified
approximation of real nervous systems. The intent is to
capture the major characteristics important in the
information processing functions of real networks
without varying too much about physical constraints
imposed by biology.
Select a number of input nodes (n), output nodes (p)

and hidden nodes (m) and first training example (ix)

{ }































=

n

i

x

x
x

x

.

.

.
2

1

 (1)

Initialize the weights using random number generator in
range of [-0.5-+0.5].

[]



























=

mnmmm

n

n

n

ji

wwww

wwww
wwww
wwww

W

..
......
......

..

..

..

321

3333231

2232221

1131211

 (2)

Compute the value of { jnet } for the hidden nodes.

{ } []{ }iji

m

j Xw

net

net
net

net .

.

.

.
2

1

=































= (3)

Calculation the activation value { jout } for the hidden
nodes. Here the Tangent Sigmoidal function has been
used.

{ }

()
()

()




























=































=

mmm

j

netf

netf
netf

out

out
out

out

.

.

.

.

.

.
22

11

2

1

 (4)

Calculation the value of { knet } for the output nodes.

{ } []{ }jkj

p

k outw

net

net
net

net .

.

.

.
2

1

=































= (5)

Calculation the activation value
{ kout } for output nodes.

 { }

()
()

()




























=































=

ppp

k

netf

netf
netf

o

o
o

out

.

.

.

.

.

.
22

11

2

1

 (6)

Calculation error [kjW∆].

[] { }{ }{ } []kjp
T

jkkkkj WoutootW ∆+−=∆ αη (7)

Where α and η are momentum and learning parameter
and usually selected from experience. Compute the new
value of weights between the hidden and output layers.
[] [] []kjkjkj WWW ∆+= (8)

Calculate the [jiW∆] for input to hidden weights.

[] { }{ }{ }[] { } []jip
T

i
T

kjkkkjji WXWootoutW ∆+−=∆ αη

(9)
Calculate the new value of weights between input and
hidden layer.
[] [] []jijiji WWW ∆+= (10)

Hassan Aghabarati, Mohsen Tehranizadeh

42

The algorithm continues for all set until the Average
System Error (ASE) between the target output and
computed output is close to the tolerance specified.

2.2. Radial Basis Function Neural Network
(RBFNN)

The basic concept underlying the RBF is that of a
fixed non-linear mapping of the input space to a higher
dimensional space followed by a linear, adjustable
output mapping. As it was shown in Fig.1, the structure
of the RBF is a model of three-layer feed forward
network like MLPNN. The hidden and output layer
consists of a set of basis function units, each of which
associated with a parametric vector known as its
receptive field. These units compute the distance
between the center of the field and the input vector. The
output of the units is then a function of the distance
measure. The RBF is expressed by [17-20]:

() ()∑
=

−=
N

j
jjj cxywxf

1
 (11)

Where x is a n -dimensional input vector; N , the
number of hidden units and jc , the receptive field. The

basis function is such that jy has a significant result

only in the neighborhood of jc . There are several
possibilities for the choice of basis functions. However,
Gaussian type functions offer desirable properties
making the hidden units responsive to locally tuned
regions. The typical example of basis function has been
explained. Gaussian type activation is employed in the
proposed NN. The Gaussian activation function can be
expressed as follows:

() ()










 −
−= 2

2

exp
j

j
j

x
xy

σ
ξ

 (12)

The chosen basis function influences both the
learning and modeling abilities of the network, and will
also influence the choice of learning rule used to train
the network. The performance of the radial basis neural
network depends critically on the placement of the
centers of the receptive and the localization associated
with each radial basis function is a vital factor for
attaining faster training speeds. In this study, radial
basis Gaussian function and back-propagation learning
algorithm are employed to train the proposed NN. The
learning algorithm topology, which was employed for
the NN updating the weight can be described as
follows; define the error function as:

() ()()∑
=

−=
0

1

2

2
1 n

i
idi tytyJ (13)

Where ()tydi are the i th desired outputs and ()tyi

are the i th outputs of the network. This error function

is to be minimized with respect to all the unknown
parameters Θ . In the steepest descent approach the
parameter vector []Tnθθθ ...,21=Θ is adjusted

using the increment vector []Tnθθθ ∆∆∆ ...,21
defined along the negative gradient direction of J ,

i
i

J
θ

ηθ
∂
∂

−=∆ (14)

Although the one-hidden-layer model is used in the
present application, it is useful to derive the gradient of
J for the general case, and the result for the one-

hidden-layer model can readily be obtained as a special
case. Starting from the output layer m of the network

and setting m
iji W=θ , the application of the chain rule

gives rise to:

m
ij

i

i
m

ij W
y

y
J

W
J

∂
∂

∂
∂

=
∂
∂

 (15)

From Equation (4-3) we have:

() m
iidi

j

yy
y
J δ−=−−=

∂
∂

 (16)

Where m
iδ is called the error signal of the i th neuron

in the m th layer. From Equation (15):

1−=
∂
∂ m

jm
ij

i x
W
y

 (17)

Thus,

1−−=
∂
∂ m

j
m
im

ij

x
W

J δ (18)

Next consider the ()1−m th layer. Using the chain rule
yields:

1

1

1
1

1

11

0

−

−

=
−

−

−− ∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂ ∑ m

ij

m
i

n

k
m
i

m
i

m
i

k

k
m

ij W
z

z
x

x
y

y
J

W
J

 (19)

Then,

()1
1

1
−

−

−

′=
∂
∂ m

im
i

m
i zg

z
x

 (20)

And:

1
1

1
−

−

−

=
∂
∂ m

jm
ij

m
i x

W
z

() ()
z
zgzg

∂
∂

=′

(21)

(22)

And ()izg is the activation of neuron i . By defining

the error signal for the i th neuron of the ()1−m th
layer as:

Journal of Structural Engineering and Geotechnics, 1 (1), 37-48, 2011

43

()∑
=

−− ′=
0

1

11
n

k

m
ki

m
k

m
i

m
i Wzg δδ (23)

Equation (13) can be rewritten as:

21
1

−−
− −=

∂
∂ m

j
m
im

ij

x
W

J δ (24)

Similarly it can be shown that,

1
1

−
− −=

∂
∂ m

im
ib
J δ (25)

Where 1−m
ib is the bias input to neuron i in layer 1−m

By carrying on this procedure, Equations (23) to (25)
can be used as a general algorithm for updating weights
in other layers.

Equations (23) to (25) indicate how the error signals
propagate backwards from the output layer of the
network through the hidden layer to the input layer,
hence the famous name back-propagation. The steepest-
descent minimization of the error function defined in
Equation (13) produces the following increments for
updating Θ :

() () ()txttW m
j

m
iw

m
ij

1−=∆ δη

() ()ttb m
ib

m
i δη=∆

(26)

(27)
Where in the output layer,

() () ()tytyt idi
m
i −=δ (28)

And in other layers,
() ()() ()111 −′= ++∑ tWtzgt m

ji
j

m
j

m
i

m
i δδ (29)

The constants wη (0 < wη < 1) and bη (0 < bη < 1)
represent the learning rates for the weights and biases,
respectively. In practice, a large value of the learning
rate would be preferable, because this would result in
rapid learning. Unfortunately, a large value of the
learning rate can also lead to oscillation or even
divergence. To help speed up learning, but avoid undue
oscillations, a momentum term is usually included so
that Equations (26) and (27) become:

() () () ()11 −∆+=∆ − tWtxttW m
ijw

m
j

m
iw

m
ij µδη

() () ()1−∆+=∆ tbttb m
ib

m
ib

m
i µδη

(30)

(31)

Where wµ and bµ are momentum constants, which

determine the effect of past changes of ()tW m
ij∆ and

()tbm
i∆ on the current updating direction in the weight

and the bias space respectively. This effectively filters
out high frequency variations in the error surface. To
summarize, the back-propagation algorithm updates the
weights and thresholds of the networks according to:

() () ()tWtWtW m
ij

m
ij

m
ij ∆+−= 1 (32)

And,

() () ()tbtbtb m
i

m
i

m
i ∆+−= 1 (33)

Where the increments ()tW m
ij∆ and ()tbm

i∆ are
given in Equations (30) and (31). This simulation study
will carry out using radial basis Gaussian NN for
analyzing steel bridge parameters in next portion. The
back-propagation algorithm is used to update the
network weights.

2.3. General Regression Neural Network (GRNN)

The multi-layer perception and radial basis function
are the best known feed-forward networks, which have
been studied extensively and used widely in many
fields. However, due to its learning process, RBF and
specially MLP, have some shortcomings such as easy to
converge to a local minimum, a slow convergence rate,
sensitivity to initial conditions, low learning efficiency,
etc. These disadvantages generally result from the use
of the back-propagation learning algorithm. In the past
few years, many advanced neural network architectures
and learning algorithms have emerged and have been
successfully applied to practical problems. Examples
include Recurrent Neural Networks (RNN),
Probabilistic Neural Network (PNN), General
Regression Neural Network (GRNN), etc. As an
alternative to the conventional heuristic methods,
general regression neural network appears promising
and can offer more formal and robust methods for the
design of neural network. For example, GRNN can be
used to aid in determining the best connections among
network units, selecting the weights in a relatively fixed
architecture, evolving appropriate network structures
and learning parameters, developing the learning rule
for ANN, finding an effective set of weights for a fixed
set of connections, etc [24].

In this paper, the GRNN is also used to model the
damage detection and to predict the states of damage at
steel bridges. GRNN is known for its ability to train
quickly with sparse data sets. Its architecture is of a
three-layer network consisting of one hidden layer
neuron. There are no training parameters such as
learning rate and momentum as in back-propagation,
but there is a smoothing factor that is applied after the
network is trained. GRNN works by measuring how far
a given sample pattern is from patterns in the training
set in N dimensional space, where N is the number of
neurons in the hidden layer. When a new pattern is
presented to the network, the input pattern is compared
in the N dimensional space to all of the patterns in the
training set to determine how far in distance it is from
those patterns. The output of the network is the
proportional amount of all the outputs in the training
set. The proportion is based upon how far the new
pattern is from the given patterns in the training set
[25]. A generalized regression neural network is also
used for function approximation. As discussed below, it
has a radial basis layer and a special linear layer. The

Hassan Aghabarati, Mohsen Tehranizadeh

44

architecture for the GRNN is similar to the radial basis
network, but has a slightly different second layer. The
first layer is just like that for RBF. It has as many
neurons as there are input- target vectors in P
Specifically, the first layer weights are set
approximately P′ and the bias is set to column vector
of 0.8326/spread. The user chooses spread; the distance
an input vector must be from a neuron’s weight to be
0.5. Again, the first layer operates just like the radial
basis layer described previously. Each neuron's
weighted input is the distance between the input vector
and its weight vector, calculated with a function of
distance. Each neuron’s net input is the product of its
weighted input with its bias, calculated with a function.
Each neuron’s output is its net input passed through
radial basis layer. If a neuron's weight vector is equal to
the input vector (transposed), its weighted input will be
0, therefore its net input will be 0, and its output will be
1. If a neuron's weight vector is a distance of spread
from the input vector, its weighted input will be spread,
and its net input will be Sqrt (-log .5). The second layer
also has as many neurons as input- target vectors.

Suppose we have an input vector p close to ip , one
of the input vectors among the input vector/target pairs
used in designing layer one weights. This input p

produces a layer 1 ia output close to 1. This leads to a

layer 2 outputs close to it , one of the targets used
forming layer 2 weights. A larger spread leads to a large
area around the input vector where layer 1 neurons will
respond i th significant outputs. Therefore, if spread is
small, the radial basis function is very steep so that the
neuron with the weight vector closest to the input will
have a much larger output than other neurons. The
network will tend to respond with the target vector
associated with the nearest design input vector. As
spread gets larger, the radial basis function's slope gets
smoother and several neuron's may respond to an input
vector. The network then acts as if it is taking a
weighted average between target vectors whose design
input vectors are closest to the new input vector. As
spread gets larger, more and more neurons contribute to
the average with the result that the network function
becomes smoother. In the present research, GRNN also
was used to stimulate the structural response of bridge.

3. Simulation Results

An extensive neural networks investigation was
carried out on a problem of 21-bar bridge truss as
shown in Fig.2 with three distinct zones assumed as
damage state in Fig.3. The bottom chord nodes, 7, 8, 9,
10 and 11 were considered for measuring the response
of the structure under given loads as shown in Fig.2 The
purpose of the exercise was to identify the members in
the damaged zone and the reduction in their stiffness

from the response data. Three networks employed to do
this exercise. In this networks, the input nodes represent
the measured parameters, Vertical displacement at the
nodes, U7, U8, U9, U10 and U11 and the output nodes
are the identified parameter, response data of a1, a2, …
to a21 in the member representing the stiffness in
assumed damage state for the neural networks. The
details study was carried out with the following three
networks,

Fig. 2. Steel Bridge Configuration

(1). For MLPNN, it’s need to find the best

architecture that has minimum ASE between the target
output and computed output from all set of architecture
that would be chosen and it’s close to the tolerance
specified. In Fig.4 the performance of MLPNN is
depited. As showed in Fig.4 when the number of
neurons in hidden layer had chosen 19 the MSE error is
minimum (9.02E-13), then the best architecture for
design MLPNN is 5-19-21; this network has 5 neurons
in input layer, 19 neurons in hidden layer and 21
neurons in output layer. Learning parameter η and
momentum parameter α are 0.05 and 0.9, respectively
that are quite appropriate in such application. It should
be noted that this architecture is best for this
investigation. The best architecture should be found via
trial and error in practice.

(2). The RBFNN with architecture 5-19-21 (consists
of three layers, input layer, one hidden layer and output
layer) that have Gaussian function with non-linear
neurons in hidden and output layer. Training parameters
of RBF network are selected as 001.0=η

 (learning

parameter) and 01.0=µ (momentum parameter) via
trial and error. The input layer has 5 neurons; hidden
layer and output layer have 19 and 21 Gaussian
function with RBF non-linear neurons, respectively.

(3). The GRNN with the architecture 5-19-21, as
illustrated in previous section it has a non-linear RBF
layer and special linear layer. For this study, spread
parameter has chosen 1.0 that it helps more neurons to
contribute to the average, and the result that the
network’s function becomes smoother.

Again all networks consist of three layers, five input
neurons, one hidden layer with nineteen neurons and

1 2 3 4 5

6

7 8 9 10 11

12

1 2 3 4

5

6

7
8

9
10

11
12

13
14

15

16 17 18 19 20 21

731.5
cm

6 Spans @ 532.1
cm
Load ate each
indicated joint is
1000 kg.
E=2e6 kg/cm2

Journal of Structural Engineering and Geotechnics, 1 (1), 37-48, 2011

45

twenty one neurons in output layer. The steel bridge
structure has been identified having three distinct
damage zones where members are assumed to be
damaged in turn. Considering each damaged zone
independently and separately, a total of 48 training
patterns, 16 patterns for each damage zone were
generated with the help of finite element method stored
in files and additional 12 testing patterns were
generated and stored separately for verification of the
trained networks after proper normalization. The
normalization is essential while using the Tangent-
Sigmidal or Gaussian function, in order to have the
input and training patterns values between 0 and 1.
These normalized training patterns presented to the

network help faster convergence. For normalization of
the input – output pair, an interface program was
developed. In this study, the back-propagation
algorithm was implemented for RBFNN and MLPNN.
The networks were trained for the three distinct
damaged zones and then tested for 12 testing patterns.
For each zone, all the testing patterns were presented
here for the three zones. Form sample.1 to sample.4, the
damage in every zone will be extending. The results
obtained for computational experimentation were quite
promising. Some of the typical results for the three
zones are given in Tables 1-3. The observations of this
study are discussed in the following section.

(a) Damaged Zone 1

(b) Damaged Zone 2

(c) Damaged Zone 3

Fig.3: States of Damage in Steel Bridge and Identification of Damaged Zones

Hassan Aghabarati, Mohsen Tehranizadeh

46

 Table1. Typical samples of zone 1

 Actual Stiffness (FEM) MLPNN model (%) RBFNN model (%) GRNN model (%)

Sample 1.
 member 1. 103304.03 0.0030 0.0008 0.0007
 member 5. 38693.273 0.0037 0.0009 0.0008
 member 6. 61517.430 0.0039 0.0005 0.0005
 member 7. 38693.273 0.0044 0.0009 0.0008
 member 8. 61517.430 0.0030 0.0005 0.0005
 member 16. 103304.03 0.0031 0.0008 0.0007
 member 17. 103304.03 0.0035 0.0008 0.0007

Sample 2.
 member 1. 93967.299 0.0025 0.0006 0.0006
 member 5. 33165.662 0.0036 0.0013 0.0013
 member 6. 54682.159 0.0033 0.0005 0.0005
 member 7. 33165.662 0.0040 0.0013 0.0013
 member 8. 54682.159 0.0028 0.0005 0.0005
 member 16. 93967.299 0.0026 0.0006 0.0006
 member 17. 93967.299 0.0028 0.0006 0.0006

Sample 3.
 member 1. 84570.569 0.0014 0.0004 0.0003
 member 5. 27638.052 0.0092 0.0024 0.0023
 member 6. 47846.889 0.0016 0.0002 0.0002
 member 7. 27638.052 0.0051 0.0024 0.0023
 member 8. 47846.889 0.0065 0.0002 0.0002
 member 16. 84570.569 0.0019 0.0004 0.0003
 member 17. 84570.569 0.0008 0.0004 0.0003

Sample 4.
 member 1. 75173.839 0.1608 0.0137 0.0137
 member 5. 22110.441 0.2125 0.0364 0.0364
 member 6. 41011.619 0.1842 0.0404 0.0403
 member 7. 22110.441 0.2235 0.0364 0.0364
 member 8. 41011.619 0.1270 0.0404 0.0403
 member 16. 75173.839 0.1251 0.0137 0.0137
 member 17. 75173.839 0.1267 0.0137 0.0137

The following observations are made based on all the
twelve tested patterns:

1- Training networks were able to identify the
damaged zones for all the testing patterns.

2- Training networks had provided reasonable
value of stiffness of all members for the testing
patterns. They have good agreement with the
actual stiffness that is present by solution of
Finite Element Method.

3- The performance of the GRNN was the best,
although RBFNN has results so closed to
GRNN. RBFNN and GRNN have better
results than MLPNN in all case of damage and
for all samples. The percentage error in

MLPNN, RBFNN and GRNN is increase
when the damage of the structure will be
extended.

4- As we expected form the results, the error in
the members that have same stiffness should
be equal in ANN with liner mapping or non-
linear mapping.

5- Time consumed for training GRNN and
RBFNN networks is more than MLPNN, but
they have less error than MLPNN,

6- In training MLPNN, when the number of
neurons in hidden layer increase, it will take
further time in the CPU time usage to train the
MLPNN

Number of neurons in hidden layer
Fig. 4. Performance design of MLP networks, The MLPNN with single hidden layer

architecture 5-19-21 was the best architecture from all the examined MLPNNs

ASE

Journal of Structural Engineering and Geotechnics, 1 (1), 37-48, 2011

47

.
Table2. Typical samples of zone 2

 Actual Stiffness (FEM) MLPNN model (%) RBFNN model (%) GRNN model (%)

Sample 1.
member 2. 103304.030 0.0007 0.0004 0.0003
member 3. 103304.030 0.0001 0.0004 0.0003
member 9. 38693.273 0.0022 0.0004 0.0004
member 10. 61517.430 0.0005 0.0006 0.0005
member 11. 38693.273 0.0009 0.0004 0.0004
member 18. 103304.030 0.0012 0.0004 0.0003
member 19. 103304.030 0.0001 0.0004 0.0003

Sample 2.
member 2. 93967.299 0.0008 0.0016 0.0016
member 3. 93967.299 0.0004 0.0016 0.0016
member 9. 33165.662 0.0020 0.0027 0.0027
member 10. 54682.159 0.0008 0.0020 0.0019
member 11. 33165.662 0.0012 0.0027 0.0027
member 18. 93967.299 0.0009 0.0016 0.0016
member 19. 93967.299 0.0004 0.0016 0.0016

Sample 3.
 member 2. 84570.569 0.0043 0.0035 0.0035
 member 3. 84570.569 0.0042 0.0035 0.0035
 member 9. 27638.052 0.0075 0.0057 0.0056
 member 10. 47846.889 0.0055 0.0043 0.0042
 member 11. 27638.052 0.0075 0.0057 0.0056
 member 18. 84570.569 0.0040 0.0035 0.0034
 member 19. 84570.569 0.0043 0.0035 0.0034

Sample 4.
 member 2. 75173.839 0.0420 0.0031 0.0030
 member 3. 75173.839 0.0419 0.0031 0.0030
 member 9. 22110.441 0.0778 0.0648 0.0648
 member 10. 41011.619 0.0554 0.0436 0.0436
 member 11. 22110.441 0.0820 0.0648 0.0648
 member 18. 75173.839 0.0372 0.0310 0.0309
 member 19. 75173.839 0.0431 0.0310 0.0309

Table3. Typical samples of zone 3

 Actual Stiffness (FEM) MLPNN model (%) RBFNN model (%) GRNN model (%)
Sample 1.

 member 4. 103304.03 0.0025 0.0010 0.0009
 member 12. 61517.430 0.0027 0.0008 0.0007
 member 13. 38693.273 0.0035 0.0012 0.0012
 member 14. 61517.430 0.0012 0.0008 0.0007
 member 15. 38693.273 0.0034 0.0012 0.0015
 member 20. 103304.03 0.0028 0.0010 0.0009
 member 21. 103304.03 0.0036 0.0010 0.0009

Sample 2.
 member 4. 93967.299 0.0020 0.0008 0.0008
 member 12. 54682.159 0.0043 0.0007 0.0007
 member 13. 33165.662 0.0052 0.0016 0.0015
 member 14. 54682.159 0.0070 0.0007 0.0007
 member 15. 33165.662 0.0048 0.0016 0.0015
 member 20. 93967.299 0.0022 0.0008 0.0008
 member 21. 93967.299 0.0005 0.0008 0.0008

Sample 3.
 member 4. 84570.569 0.0188 0.0004 0.0004
 member 12. 47846.889 0.0202 0.0014 0.0137
 member 13. 27638.052 0.0304 0.0037 0.0037
 member 14. 47846.889 0.0175 0.0014 0.0013
 member 15. 27638.052 0.0301 0.0037 0.0037
 member 20. 84570.569 0.0200 0.0004 0.0004
 member 21. 84570.569 0.0220 0.0004 0.0004

Sample 4.
 member 4. 75173.839 0.1707 0.0023 0.0023
 member 12. 41011.619 0.1854 0.0287 0.0286
 member 13. 22110.441 0.3163 0.0119 0.0118
 member 14. 41011.619 0.3244 0.0287 0.0286
 member 15. 22110.441 0.3312 0.0119 0.0118
 member 20. 75173.839 0.1294 0.0023 0.0023
 member 21. 75173.839 0.0725 0.0023 0.0023

Hassan Aghabarati, Mohsen Tehranizadeh

48

4. Conclusion

Two neural networks with back-propagation learning
algorithm (MLPNN and RBFNN) and GRNN have
been adapted to model typical bridge truss simulated
damaged states. The training patterns were generated
using general structural analysis program finite element
method with assumed zones of damage in the structure.
The working of the networks was demonstrated by
computing the output with the algorithmically generated
performance parameter not considered in the training.
The issues related to the performance of networks were
examined. From observations, it is concluded that the
GRNN is quite appropriate for the structural damage
identification and RBFNN has results closer to GRNN.
For the case illustrated, the performance of architecture
and the MSE was discussed for MLPNN.

All three networks have good agreement with
analytical solution and they represent good results when
damage in members is little but when damage extend,
MLPNN has more error than GRNN and RBFNN. The
engineering significance of this investigation lies in the
fact that the measured data at only a few locations in the
structure is needed to train the network for
identification exercise.

References

[1] P. Hajela and F. J. Soeiro, Recent development in
damage detection based on system identification method
Structural Optimization. 1-10, 1990.

[2] M. Sanyayei and O. Oinpede, Damage assessment of
structures using static test data. AIAA Jnl 29,1174- 1179,
1991.

[3] P. C. Pandey and S. V. Barai, Damage assessment of steel
bridges. J. Struct. Engng 20, 9-21, 1993.

[4] X. Wu, J. Ghaboussi and J. H. Garrett, Use of neural
networks in detection of structural damage.
Computer&Structures. 42, 649-659, 1992.

[5] J. Ghaboussi, J. H. Garrett and X. Wu, Knowledge based
modeling of material behaviour with neuralnetworks. J.
Engn Mech, ASCE..117, 132-153, 1991.

[6] P. Hajela and Berke, Neurobiological computational
model in structural analysis and design.
Computer&Structures. 41, 657-667, 1991.

[7] Z.P.Szewczyk and P.Hajela, Neural networks based
damage detection in structures. Technical Report, RPI,
Troy 1992.

[8] M. F. Elkordy, K. C. Chang and G. C. Lee, Neural
networks trained by analytically simulated damage
states.J. Computing in Civil Engng, ASCE 7, 130-145,
1993.

[9] H. Adeli and C. Yeh, Perceptron learning in engineering
design. Microcomput. Civil Engng 4, 247–56, 1989.

[10] S. F. Masri, A. G. Chassiakos and T. K. Caughey,
Identification of nonlinear dynamics system using neural
networks. J. Appl. Mech. 60, 123–33, 1993.

[11] J. E. Stephens and R. D. Vanluchene, Integrated
assessment of seismic damage in structures. Microcomput.
Civil Engng 9, 119–28, 1994.

[12] M. F. Elkordy, C. K. Chang and G. C. Lee, A structural
damage neural network monitoring system.Microcomput.
Civil Engng 9, 83–96, 1994.

[13] M. J. Atalla and D. J. Inman, On model updating using
neural networks. Mech. Syst. Signal Process. 12, 135–61,
1998.

[14] R. I. Levin and N. A. J. Lieven, Dynamic finite element
model updating using neural networks. J. Sound Vib. 210,
593–607, 1998.

[15] G. Yagawa, H. Okuda, Neural networks in computational
mechanics. Archives of Computational Methods in
Engineering. 3,4, 435–512, 1996.

[16] J. Ghaboussi, Biologically inspired soft computing
methods in structural mechanics and
engineering.Structural Engineering and Mechanics 11,
485–502, 2001.

[17] L. Fausett, Fundamentals of Neural Network, Prentice Hall
International, Inc. New Jersey, 1994.

[18] J. E. Dayhoff, Neural Networks Architecture: An
Introduction, Van Nostrand Reinhold, New York, 1990.

[19] J. A. Freeman, D.M. Skapura, Neural Networks:
Algorithms, Applications, and Programming Techniques,
Addison-Wesley, Reading, MA, 1991.

[20] L. Tarassenko, A Guide to Neural Computing
Applications, Wiley, New York, 1998.

[21] P.C. Pandey, S.V. Barai, Multilayer perception in damage
detection of bridge structures. Computers & Structures, 54,
597–608, 1995.

[22] S.V. Barai, P.C. Pandey, Performance of the generalized
delta rule in structural damage detection.Engineering
Application of Artificial Intelligence. 8, 211–221, 1995.

[23] S. Yoshimura, A. Matsuda, G. Yagawa, New
regularization by transformation for neural network
basedinverse analyses and its application to structural
identification. International Journal for Numerical
Methods in Engineering. 39, 3953–3968, 1996.

[24] Q.S.Li, D.K.Liu, J.Q.Fang, A.P.Jeary, C.K.Wong,
Damping in buildings: its neural network model and AR
model. Engineering Structures. 22, 1216-1223, 2000.

[25] D. Howard, M. Beale, Neural Network Toolbox, for Use
with MATLAB, User’s Guide, Version 4, The
MathWorks, Inc., Natick, MA, 2000.

	Abstract
	ASE

