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Abstract  

Click here and insert your abstract text.Please provide an abstract of 150 to 250 words. The abstract 
should not contain any undefined abbreviations or unspecified Land Subsidence often causes irreversible damage to 

infrastructures and costs lots of expenses for governments annually; Hence, studying and monitoring subsidence in either plains or 

urban areas has become necessary in last decades. Studies have introduced excessive depletion of aquitards as the dominant factor 

in the occurrence of this hazard. In this study, the main aim was to take the impact of other spatial factors involving land 

subsidence into consideration. To devise a plan whether to pause or reduce the subsidence rate, we need to understand the 

mechanism of each factor inducing land subsidence. Here, we show the outcomes of a Geographically Weighted Regression 

(GWR) method with a fixed Gaussian kernel to identify the impact of each of the spatial factors inducing subsidence compared 

with the results from a Multi Linear Regression (MLR). In this regard, outputs of a compiled Interferometric Synthetic Aperture 

Radar (InSAR) time series analysis of the 15 Envisat ASAR images consumed to capture displacement from 2003 to 2005. 

Afterward, a kriging interpolation method is implemented to generate a surface of subsidence. The Python package, "mgwr" is 

used to compile both GWR and MLR models. Several statistical diagnostics are performed to assert the GWR superiority over 

other non-geographical methods when dealing with spatial data. Finally, the GWR results show that just six factors out of 10 tend 

to be the dominant factors. 
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1. Introduction 

Land subsidence is a geo-hazard caused by the change in the effective stress among soil particles(Chen 
et al. 2019). Consolidation and compression of underlayers are the results of these changes(Hu et al. 2004). 
The movement of the surface could happen in both ways of a gentle shrinking or sudden sinking, depend 
on the soil materials in the area(Galloway and Burbey 2011). Mostly, the solution of carbonate rocks 
underground results in the sudden sinking type of subsidence(Zeitoun and Wakshal 2013). But the other 
type is often induced by the over-extraction of fluids underground (e.g., water)(Zeitoun and Wakshal 
2013). Both types are significant threats to sustainable development, and a plan needs to be devised to 
control or mitigate the process. Therefore, measuring the rate and the extent of the subsided area besides 
studying natural and human factors are critical. A tool to measure the movement is needed. Conventional 
levelling and GPS methods are not capable to cover the entire subsidence area. Hence, InSAR for its 
capability in determining displacement in millimetre-scale precision over a wide span of land is the widely 
used method in land displacement monitoring (Akbari and Motagh 2011; Castellazzi et al. 2016; 
Hoffmann et al. 2001; Motagh et al. 2007). When it comes to spatial data where the context may vary by 
location of the record, numerous researches have shown that the GWR would be a reliable method to 
consider (Blainey and Mulley 2013; Brunsdon, Fotheringham, and Charlton 1996; Brunsdon, 
Fotheringham, and Charlton 1998; Chasco, García, and Vicéns 2007; Fotheringham, Brunsdon, and 
Charlton 2003; Sultana, Pourebrahim, and Kim 2018).Besides groundwater over-extraction, studies 
partially mentioned other factors provoking land subsidence. Research by (Haghighi and Motagh 2019) 
points out that interruption in land subsidence in Tehran Plain is either caused by Pishva Fault in Varamin 
via blocking the groundwater flow or change upon alluvium thickness over the extent. Hu in (Hu et al. 
2019) found groundwater over-extraction as the leading factor of land subsidence and the geological faults 
as the controller toward its local distribution. Shemshaki in (Shemshaki, Boulourchi, and Entezam Soltani 
2006) identified the condition of bedrock, the thickness of the clay layer and, the removal of sand along 
the rivers as the main reasons to land subsidence alongside the overdraft of groundwater. 

The over-exploitation of groundwater in Beijing in response to domestic, agricultural, and industrial 
requirements in recent decades lead to 707 mm accumulated land subsidence in this area(Yu et al. 2020b); 
Based on the results of a GWR model with hydrological information (Yu et al. 2020b) Found that the 
second confined aquifer plays a vital role in land subsidence in most parts of the area. They also found that 
groundwater level change and the thickness of the compressible layer are two main factors controlling the 
time aspect of subsidence and the extent of deformation, respectively. (Haghighi and Motagh 2019)In 
long-term monitoring of Tehran plain using more than 400 interferograms and small baseline method 
found three discrete subsidence features in the west side of the region; Their results even showed that 
subsided area doesn't follow the trend of the major faults. However, the Pishva fault in Varamin controls 
the underground water flow and therefore shapes the subsidence bowl in this area. 

Initial studies focusing on the correlation between subsidence and groundwater assume a linear 
relationship between those(Yu et al. 2020a). Many reliable studies point out that there is a solid positive 
correlation between land subsidence and groundwater level(Van Ty et al. 2021; Su et al. 2021; Zhao et al. 
2021; Li et al. 2021). But as said earlier, we can consider any subject executing a change on effective 
stress among soil layer particles as a potential factor operating on land subsidence. In recent years, with 
the newly developed methods, research conducted on land subsidence and factors affecting this 
phenomenon has not been limited just to groundwater level change(Yong et al. 2013; Gong et al. 2018). 
(Chu, Ali, and Burbey 2021) propose a spatial regression model to study the nonlinear and non-stationary 
nature of land subsidence in the Choshui river alluvial fan (Taiwan) and identifies the zones where 
subsidence is inelastic/elastic based on computed coefficient. Using Artificial Neural Network (ANN) 
method with geology, slope, land use, and five other maps (Lee, Park, and Choi 2012) created a Ground 
Subsidence Susceptibility (GSS) map which accuracies were 94.84%-95.98% and found that the distance 
from the fault factor had the highest coefficient among others. In a similar study in Kerman, Iran, 
(Abdollahi et al. 2019) by employing a Supported Vector Machine (SVM) model with different kernels, 
proved that between 10 layers, the groundwater data, NDVI, and altitude had the most effect on land 
subsidence occurrence.   

Tehran is the capital of Iran and is home to a more than 15 million population('Statistical Center of Iran'  
2021). Many industrial infrastructures are located in this area which all of them are facing the threat of 
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land subsidence consequences in the following years. Many types of research are attended in Tehran 
Plain(Karimi, Motagh, and Entezam 2019; Bagheri et al. 2021; Haghighi and Motagh 2019). 
(Mahmoudpour et al. 2016) by developing a model tried to simulate the groundwater over-extraction and 
its designation in land subsidence using PMWIN; their results were calibrated by hydraulic and InSAR 
data. The model could be applied to predict land subsidence in the future. (Sharifikia 2011) by using a GIS 
tend to create the subsidence risk zonation and determine that how many Tehran residents are living in 
high-risk zones; they show that about 43 percent of the region is placed in the high-risk zone and even new 
constructions in this zone were continued without taking land subsidence risk into account. 

Based on the groundwater level monitoring data from 2003 to 2005 and nine other spatial layers in 
Tehran Plain, the GWR and MLR models were employed to analyse the spatial distribution and 
contribution degree of each variable on the subsidence in the study area. 

  

2.  Materials and Methods 

2.1 Study Area 
 

Southwestern Tehran Plain is one of 150 plains in Iran that struggles with subsidence at the rate of 25 
cm per year. Also, the subsided area expands rapidly (Motagh et al. 2007).Tehran Basin covers an area of 
2250 km2 and has a semiarid-to-arid climate by an elevation decreasing trend from about 1600 m to 900 
m in a north-south direction (Dehghani et al. 2013).Tehran Plain happens between Alborz Range to the 
north and Fashapouyeh and Arad Mountains to the south. The Plain extends from 35 49'-35 28'N and 51 
6'-51 33'E. Tehran City has experienced a population boom since 1970 (7 million in 50 years) (SCI 2016) 
and a place for industries to grow. Therefore, the water demand for different utilization increased. Ever 
since groundwater exploitation has been the main water source in Tehran (Haghighi and Motagh 2019). 
Land subsidence was first reported by the National Cartographic Center (NCC) after performing precise 
levelling measurements in 2005 (Arabi 2005). As a place where population, industries, and infrastructures 
are concentrated, land subsidence cannot be neglected in this area. The study area shown in Figure1 has 
the most movement region in the vertical direction during the years 2003 to 2005, which encompasses 
almost 60 percent of Tehran Plain, and located at 35° 30′ N to 35° 42′ N latitude and 50° 55′ E to 51° 23′ 
E longitude. The aquifer's characteristics like the thickness of alluvium and the type of materials may vary 
by location. Tehran Plain aquitards mostly include silty clay and clayey soil, which have a suitable 
tendency to subside (Mahmoudpour et al. 2016). 

 

 

Figure1. Border of the Envisat SAR image and Study Area in western side of Tehran Plain 
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2.2 InSAR data 

Haghighi in (Haghighi and Motagh 2019) analyzed the displacement time series by deploying the 

Small Baseline (SB) technique by applying 15 SAR images dataset (C-band) from the ASAR (Advanced 

Synthetic Aperture Radar) sensor onboard the European Space Agency (ESA) satellite Envisat in 

StripMap (SM) mode from July 2003 to May 2005 time interval in Descending orbit. This study used the 

spatially resampled of the cumulative subsidence achieved by Haghighi (Haghighi and Motagh 2019) in 

the 1000 m*1000 m grid. Accordingly, ASAR, an active radar on Envisat, provided information about the 

characteristics of the earth's surface (e.g., variation in surface height with sub-millimetre precision) from 

March 1st, 2002, until suddenly the satellite became unavailable in April 2012 (ESA 2002). 

Figure 2 presents a set of regular resample points of InSAR data. To generate a surface of cumulative 

subsidence, an ordinary Kriging tool was executed over data points with a spherical model setting (see 

Figure 3). As shown in Figure 3, two subsidence bowls developing in the area can be seen. The 

displacement values for randomly sampled data are standardized to speed up the computational process. 

 

Figure 2: Spatially resampled of InSAR analysis in 1000*1000m grid 

 

Figure 3. Land Subsidence pattern generated from 400 randomly distributed points 
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2.3 Ground Water Level 

This study calculated the groundwater levels concerning sea mean level (SML) from the piezometric 

wells. Iran Water Resources Management (IWRM) collects piezometric wells data since March 1984 for 

Tehran. The data that be used as an independent variable in the regression is the water level change during 

the period of July 2003 to May 2005 that was superposed with InSAR data. The amount of variations in 

groundwater levels is illustrated in Figure 4. It can be derived by Figure 4 that the west and south side of 

the study area has been experiencing more variations than the north and east side. 

 

Figure 4. The surface of Water Level Change (WLC) in Study Area during 2003-2005 period gathered by IWRM 

Other datasets 

In this study, nine layers have been used as the explanatory variables in the regression models. All 

layers must be in a proper projected coordinate system, i.e., UTM. Figure 5 depicts the scope of each layer 

in the UTM coordinate system of zone 39. All Raw data employed in this study has been provided by the 

National Geoscience Database of Iran. Primary processes such as calculating slope, aspect, TWI, and 

Euclidean distances were provided in GIS environment. 

 

(a) (b) 
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(h) 

(c) 
(d) 

(e) (f) 

(g) 
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Figure 5. Explanatory layers implemented in the regression models: Aspect (a), Distance from dams (b), DEM (c), 

Slope (d), Topographic Wetness Index (e), Geology (f), Land use(g), Distance from Faults (h), Distance from Rivers 

(i) 

 

2.4 Generating Sampled data 

After assuring that there is no significant correlation among raster data used as explanatory variables, 

360 random points were generated in the study area to take a sample of each raster at each location. The 

result is a *.dbf file, in which each column represents an independent variable sampled value. Figure 6 

shows the distribute of 360 random points which covers the study area sufficiently. As shown in Figure 5, 

the Geology layer value is same for all locations, therefore the results of intercept term would be coupled 

with results for geology term too. 

 

Figure 6. 400 random points used to take samples of dependent and independent variables 

2.5 Multiple linear regression model 

It is an extension of the ordinary least-square (OLS) model that comprises multiple explanatory 

variables. We express Multiple Linear Regression (MLR) as (Fotheringham, Brunsdon, and Charlton 

2003): 

(i) 
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(1) 

here  is the predicted value of subsidence by the model,  stands for the intercept term,  as the 

coefficient of the kth explanatory variable,  is the kth variable value at observation point , and as 

random term associated with observation . MLR assumes that there is a linear relationship between 

parameters involving in the model. This model lies in a sort of model called the global model, in which the 

model used considers all the data as a whole and tries to discover how the response variable Y and 

explanatory variables are related. 

2.6 Geography Weighted Regression model 

Compared to other R-based packages like spgwr and GWmodel, the mgwr is a Python-based package 

developed by Oshan (Oshan 2018), which provides both GWR and MGWR models along with more 

diagnostics for model goodness of fit for the user (Li and Fotheringham 2020). The MLR might encounter 

some issues while modelling spatial data. The spatial heterogeneity (process variation by spatial context) 

as an inherent property of spatial data causes the estimation of MLR model coefficients to be inaccurate in 

most cases. Unlike, the GWR model captures the process's spatial heterogeneity at each regression point 

by taking into account the spatial position of each coefficient. GWR model formula is as follows 

(Fotheringham, Brunsdon, and Charlton 2003): 

 

(2) 

Here,  is the fitted subsidence value by the GWR.  is the intercept term at location , 

 is the kth explanatory variable's coefficient at location ,  is the kth explanatory 

variable value at location , and  is the analogous random error term at location . For each calibration 

point , GWR borrows a set of observation points within a particularized bandwidth. Through the equation 

below, the coefficient at each location can be estimated as follows (Fotheringham, Brunsdon, and Charlton 

2003): 

 (3) 

where  is the estimated local regression coefficient,  is a matrix of explanatory variables, 

 is a diagonal weight matrix based on the distance between each observation and calibration 

point,  is a vector of subsidence value at each observation locations intended in weight matrix 

bandwidth. 

2.7 Kernel function 

As Tobler's first law of Geography notes: "Everything is related to everything else, but near things are 

more related than distant things" therefore, a suitable kernel may be the one that reflects this phrase in the 

best shape. Figure 7 shows the three most used kernel functions in GWR and their performance when 

dealing with various bandwidths. In the case of Exponential and Gaussian Kernels, the problem would be 

that regardless of how far the observation point is from the calibration point, still, it can alter the 

coefficient estimating process. For scenarios of dense and sparse observations, correspond kernel function 

types are developed, fixed, and adaptive. Both might operate fine with dense captured data, but in the case 

of sparsely distributed observation points, an adaptive kernel handles that situation better than a fixed one 
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by selecting an optimal number of nearest neighbours for each calibration. Hence, the bandwidth would 

vary from location to location. 

The bi-square kernel is immune to the mentioned obstacles. Therefore, it is the most common kernel. 

However, in this paper, a fixed Gaussian kernel is applied to data because the purpose is merely to assert 

the GWR model efficiency. 

 

Figure 7. Examples of exponential kernels (top), Guassian kernels (middle), and bi-square kernels (bottom) for 

a small, medium, and large bandwidth parameter (Oshan et al. 2019) 

2.8 Bandwidth 

It has been proved that kernel bandwidth has more influence on outcomes accuracy than kernel 

function itself. Then, more attention should be paid to the bandwidth selection criteria. Typically, the 

bandwidth selection process proceeds by searching for an optimized value generated by a specific 

formula. In our study, a corrected Akaike Information Criteria (AICc), suggested by Oshan (Oshan et al. 

2019), was used between other general model fit criteria (e.g., CV and BIC). The task of searching for the 

optimal value passes through a Golden Section procedure that regularly squeezes the range where optimal 

value happens and measures each step value to the last step till succeeding the lowest score. 

2.9 Diagnostics 

An easy way to compare two model performance would be to compare their AICc value. If the two 

model AICc value difference is less than three, the conclusion would be that the two models are the same. 

However, mapping the residual or fitted values provide the capability of interpreting the results more 

intuitively. In addition, the deployment of each local regression's local R2 is another option to measure 

model capability provided by the mgwr package. Also, statistical terms like t-value, p-value, and standard 

error (SE) would be calculated for every point. 

3.Results and Discussion 

Global model 

A surface is generated using the kriging interpolation method, based on the spatially resampled data 

from time series analysis of 15 Envisat track 149 ASAR images in 1km*1km grids (Figure 3). Ultimately, 

the sampled 400 randomly distributed points as the "y" component were contributed in the regression. 

Model coefficients are estimated by calibrating the MLR model, giving all layers mentioned in Figure 

5. Table 1 displays the result of a global regression. According to adjusted R2, the model explains 

approximately 39 percent of variation corresponds to the dependent variable. Table 2 shows each 

variable's estimation by the MLR and its associated statistics. If we define the effective variables as those 

whose p-values are less than 0.01, according to the MLR statistics, we can conclude that the following 

terms are not influential in the occurs of land subsidence, including Intercept, TWI, Slope, Euclidean 
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distance from the fault, and Aspect. 

Just Euclidean distance from the river and land use have a positive coefficient between remaining 

terms. That means these two terms and subsidence change in the same direction. Table 2 also shows the 

corrected AIC values for both global and local models. 

 

Table 1. The Multi Linear Regression results (statistical diagnostics) 

Residual sum of squares 245.053 

AIC 959.155 

AICc 961.835 

 0.387 

Adjusted  0.373 

 

Table 2. Explanatory variables statistics 

Variable Estimated 

Value 

Standard Error t-statistic p-value 

Intercept 0.000 0.040 0.000 1.000 

WLC -0.281 0.049 -5.774 0.000 

TWI -0.021 0.047 -0.435 0.651 

Slope 0.009 0.046 0.186 0.853 

River 0.186 0.058 3.199 0.001 

Land Use 0.144 0.043 3.380 0.001 

Distance from faults -0.148 0.060 -2.478 0.013 

DEM -0.325 0.044 -7.467 0.000 

Distance from dams -0.378 0.075 -5.058 0.000 

Aspect -0.014 0.041 -0.335 0.738 

 

Local model 

A fixed Gaussian kernel is used as the weighting function. To determine the optimal value of 

bandwidth golden section search method minimizes the model's AICc value. By comparing the AICc 

value of the two models, we can conclude the dominant superiority of the GWR model as a regressor for 

spatial data rather than usual global models such as MLR. In order to check for the goodness-of-fit, Table 

3 outlines statistical diagnostics of applied models. The deviation between the model predicted value and 

the observed value is known as model residual at each point. Figure 8 depicts the residuals associated with 

GWR and MLR. The GWR model's strength can be derived by comparing the outcomes intuitively. 

 
Table 3. The Geographically Weighted Regression results (statistical diagnostics) 

Residual sum of squares 32.019 

AIC 312.092 

AICc 369.932o 

 0.920 

Adjusted  0.896 
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Figure 8. The difference between observed values and the model predicted values for: 

(a) GWR model (b) MLR model 

The adjusted R2 value means if an alter in the independent value improves the dependent variable's 

value in the model, only in that case we can increase the R2 value. In other words, only if the new 

appended term enhances the model-fit more than the expected chance, it indicates that the variable can 

explain some of the model variations. Figure 9 maps the local R2 value of the GWR model so that we can 

comment on the model's ability to define the variation in each regression point. 

 
Figure 9. The computed surface of local  statistic 

(a) (b) 
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4.Conclusions 

 This study investigated the cumulative vertical movement of Southwestern Tehran Plain from 2003 

through 2005 to explore the significant variables causing land subsidence. We manifest two global and 

local approaches for regression and explores their performance towards the spatial data. 

To evaluate both the MLR and GWR model's fulfilment, we manage to deploy some statistical 

diagnostics by measuring the goodness-of-fit. The results introduce the GWR model as the best regressor 

while dealing with spatial data, that is because GWR takes the location of data into account and compiles 

the process with it. On the GWR model side, this study specified the maximum coefficient for each 

calibration point and have concluded that just six out of 10 variables get to be the dominant factor. We 

inferred that "Intercept" presents for 31%, "DEM" presents for 37%, "Distance from fault" presents for 

17%, "Distance from dam" presents for 9%, "Distance from River" presents for 6%, and least of all 

"Water Level Change" in 1% of all 400 points. But on the other side, the MLR model introduces 

"Distance from dam" as the dominant factor and most responsible factor for land subsidence, which in 

terms of contribution degree is ranked four by the GWR model. 

The reason for Global models (e.g., MLR) ineffectiveness in spatial data modelling is because these 

models consider spatial homogeneity while we are informed that spatial autocorrelation and spatial non-

stationary are two prominent features of the spatial data. 
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