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Abstract 

In recent years, various image integration techniques have been developed to improve their quality. In 

this paper, some image integration techniques such as Intensity-Hue-Saturation (HIS), Brovey 

transform, feedback, non-feedback retina model, wavelet transform, and curvelet transform are 

investigated to improve the spectral and spatial information of satellite images. Also, a new algorithm 

has been proposed to improve the image quality resulting from the combination of SAR and visible-

like images. In the proposed method, the curvelet transform is first applied to the three input levels of 

Synthetic Aperture Radar (SAR) and visible-like images, then using horizontal cells in the feedback 

retina model, spectral and spatial information below a specified and adjustable frequency is determined 

by a Gaussian low-pass filter and replaced with the curvelet coefficients of the integrated image 

approximation sub-band. Moreover, fine1 and detail1 sub-bands are selected from the visible-like 

image, and the coefficients of fine2, detail2 sub-bands are weighted and aggregated from both SAR 

and visible-like images in a specific way. Spectral and spatial quality evaluation criteria including 

Quality Index (Q_I), Measure the Quality of edges (Q^(AB/f)) Relative Dimensionless Global Error 

in System (ERGAS), Mutual Information (MI), Euclidian Distance (ED)  and Standard Deviation 

(STD)  were used to compare and analyze the results of the methods. The results of this evaluation 

indicated the remarkable performance of the proposed method in preserving the spectral and spatial 

information content of the integrated image compared to other methods. 
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1. Introduction 

The use of data integration systems has significant advantages such as increased quality, noise, and 
unreliable data reduction. Therefore, it is necessary to utilize data integration methods in management 
applications, position monitoring, and troubleshooting. In fact, because of the complexity of various 
systems, including robotic, mechanical, security, and military, there is no solution except to use the 
information of multiple sensors and integrate their data.  

In recent decades, data and image integration from multiple sensors has been the subject of great attention. 
The expansion and development of researches on image integration are largely due to recent advances in 
the optimal use of sensor technology and the enhanced image resolution capacity provided by them. Imaging 
techniques using multiple sensors have provided a new-emerging field of research on the integration of 
remote sensing and satellite imagery, security and surveillance systems, etc. Improving the performance of 
imaging systems requires increasing number of processing units and deploying high-speed DSPs that are 
very expensive. Therefore, providing appropriate algorithms for image integration at the pixel level is an 
efficient solution (Khazaei, 2015). 

Visible band sensors are capable of capturing very good images of the Earth's surface, though the 
presence of clouds or darkness interferes with their performance. On the contrary, radar systems are capable 
of capturing images every day and night, in atmosphere (Lau et al., 2000). The differences between synthetic 
aperture radar (SAR) and visible systems can be summarized as follows (Shahab pour and Yazdi, 2013). 

• SAR systems have a microwave source, while visible band sensors require sunlight or thermal 
radiation. 

• SAR waves are able to pass through the cloud and can be used during the night in different weather 
conditions. In addition, due to the frequency and polarization of the waves, they may be able to pass 
through vegetation, sand, and snow. 

• SAR radar images can be formed at different polarities and frequencies and more information could 
be collected about the target.  
These differences are very useful for examining and classifying the study areas, because complementary 

and redundant information from both image sources are integrated into one image, making it easier to 
identify details and their variations (Mitchell, 2007). Image integration is done at three different levels of 
pixel, attribute and decision making, were pixel-level models are known as image level or image integration 
methods (Sun and Deng, 2012). By integrating images in pixel-level, the amount of data that needs to be 
processed without losing useful information is effectively reduced. In general, the pixel-level integration 
process is based on multi-resolution transforms, statistical methods, color theory algorithms, or 
combinatorial techniques. In recent years, integration algorithms based on multi-resolution analysis tools 
have become increasingly important. Most multi-resolution image processing techniques are based on 
sophisticated algorithms. Applications of these image processing methods were first introduced by (Burt 
and Adelson, 1983). 

One of the most common multi-color processing methods is wavelet transform, which provides the 
background for analyzing images into a number of different frequency sub-bands. These sub-bands have 
different resolution level that can perform complete image recovery. Wavelet transform has the capacity of 
extracting information and content of images in both frequency and spatial domains, while using the multi-
resolution property of wavelet transform and controlling the number of decomposition surfaces, the quality 
of integration can be determined. Curvelet transform is also one of the most popular multi-color transforms 
proposed by (Candes et al., 1999). Curvelet transform is the optimal non-adaptive expression of edges and 
can better fit the image properties. This transform offers edge and other features along the curves much 
more efficiently than traditional transforms. Curvelet transform analyzing the curved edges is suited to 
integrate images with high accuracy to approximate and describe the scattering and direction. Discrete and 
static wavelet transforms are the best tools for image integration. Curvelet transform uses these two tools to 
integrate images (Li and Yang, 2008). In fact, curvelet transform is a new member of the multi-resolution 
transform family that has been developed over the past few years to address the weaknesses of traditional 
multi-resolution transforms such as wavelet transform. In recent years, there has been a great deal of studies 
on the integration of remote sensing images in the multi-resolution transforms as well as using other methods 
at the pixel level. It will be discussed in the following: 

(Agrawal and Karar, 2018), first applied curvelet transform to visible-like and infrared images, then 
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integrated the curvelet coefficients of the images approximation sub-band with PCA method and the 
coefficients of the detail and fine sub-band with the maximum absolute value principle. 

(Shokrallahi and Sahebi, 2017),  first applied curvelet transform to SAR and visible-like images in five 
decomposition levels, then selected and integrated the coefficients of approximation, detail1, detail2, fine1, 
and fine2 from the visible-like image and the coefficients of detail3, detail4, fine3, and fine4 from both the 
visible-like and SAR images by thresholding the convergence coefficient of curvelet coefficients. 

(Dong et al., 2015),  first transferred the multispectral image bands from the RGB to the IHS space, then, 
applying the curvelet transform in the resulting intensity component and the panchromatic image, 
considering the standard deviation, integrated the resulting curvelet coefficients increasing the accuracy of 
spatial content. 

(Pappas et al., 2013), applied curvelet transform to single-band panchromatic and SAR images and then 
integrated the resulting coefficients based on weighted average. 

(Ghasemian et al., 2011), integrated panchromatic and visible-like images based on the feedback and no-
feedback retina model. Inspired by the human retina and using two Gaussian low-pass filters with different 
frequency bands, they first extracted the low-frequency content from the visible-like image and the high-
frequency content from the panchromatic image, then integrated the resulting contents, which improved 
both the spectral and spatial information of the image. 

Recent studies show curvelet transform gives a better result in image integration than multi-resolution 
and other methods. The Integration of SAR and visible-like images using curvelet transform gives better 
accuracy and higher reliability due to the characteristics of the technique, as mentioned above (Xiao et al., 
2007). The method discussed in this study is the multi-scale curvelet transform combined method and 
extraction of spectral properties of images using horizontal cells of the retina to integrate SAR and visible-
like images. 

In this paper, some image integration techniques such as IHS transform, Brovey transform, feedback 
retina model, non-feedback retina model, wavelet transform, and curvelet transform are investigated to 
improve the spectral and spatial information of satellite images. In this research, three sets of images have 
been used, including Landsat-8, Sentinel-2 images, and Sentinel-1images for the integration of SAR and 
visible-like images. Data collection, geometric and radiometric corrections, and coreference between input 
images have already been done. Also, a new algorithm has been proposed to improve the image quality 
resulting from the combination of SAR and visible-like images. In the proposed method, the curvelet 
transform is first applied to the three input levels of  SAR and visible-like images, then using horizontal 
cells in the feedback retina model, spectral and spatial information below a specified and adjustable 
frequency is determined by a Gaussian low-pass filter and replaced with the curvelet coefficients of the 
integrated image approximation sub-band. Also, fine1 and detail1 sub-bands are selected from the visible-
like image, and the coefficients of fine2, detail2 sub-bands are weighted and aggregated from both SAR and 
visible-like images in a specific way. Then, to evaluate the quality of the integrated images, two methods 
were presented: visual (human) comparison and computational comparison. Visual methods make 
comparisons based on the human visual system, so it has some problems in the evaluation process. Also, 
since people’s visual perceptions are different, the computational comparison of image quality in recent 
decades has attracted further attention. The computational method is used to evaluate the spectral and spatial 
resolution of the resulting images. 𝑄𝐼, ERGAS, 𝑄𝐴𝐵/𝑓 , MI, ED, and STD are among the different indexes 
for spectral and spatial quality evaluation of the integrated image. The present study aimed to integrate SAR 
and visible-like images of construction, vegetation, and coastal areas prepared by Sentinel 1, 2, and Landsat-
8. To achieve a good spectral and spatial quality image using image integration techniques increases the 
accuracy of studies and can play an important role in helping the researchers. On the other hand, the more 
complete the information and spatial content, the greater the ambiguity in spectral information, so the 
purpose of integration is to provide an efficient way to achieve a reasonable state between these two opposite 
contradictory situations. In this regard, various integration methods were analyzed and quantitative and 
qualitative evaluation indicators were used to evaluate the efficiency of the methods regarding the 
improvement of spectral and spatial information.  



34                                            Mina Solhi et al. / Journal of Radar and Optical Remote Sensing 4 (2019) 31-47 

2. Materials and Methods 

2.1. The Study Area  

Ahvaz is the capital city of Khuzestan province with an area of 222 km2, which is located at 48° 12′ N 
49° 12′ E longitude of Greenwich meridian, and Oslo is the capital city of Norway with an area of 454.03 
km2, which is located at 59° 54′N 10° 44′ E longitude of Greenwich meridian. In this paper, part of Ahvaz, 
including residential areas and streets, were studied as construction areas, as well as parts of the harbor 
around Oslo city as vegetation and coastal areas. 

2.2. Data  

In the present study, Landsat-8 bands2, 3, 4, and Sentinel-2 visible bands with a spatial resolution of 30m 
were used as multispectral images and for C-band integration; Sentinel-1 satellite with a spatial resolution 
of 10m was used as the SAR image. Matlab Ra14 software was also used to perform some necessary pre-
processing, implementation of various integration methods, and to analyze the results of the simulations. In 
remote sensing, prior to the integration process, application of some necessary pre-processing such as 
radiometric correction, co-referencing and histogram matching of input images are essential because of the 
dissimilar imaging conditions and the different nature of the radar and visible-like images (Wang et al., 
2016). The most important pre-processing in image integration is to ensure that the two images are co-
referent. Therefore, both images must first be co-referenced separately using appropriate control points with 
the desired accuracy (Liu et al., 2016). In the present study, data collection, geometric and radiometric 
corrections, and reference between input images have already been done, and to decrease the execution time 
of the program, images were separated and used as decreased data using a small window. 

On the other hand, one of the major problems with radar images is the presence of speckle noise. Speckle 
noise is caused by the coherent interference of reflected waves from many scatters such as earth, trees, and 
objects (Do and Vetterli, 2005). Speckle noise complicates the processing and interpretation of images, so 
it should be controlled. Applying noise removal techniques to images can fail to keep some of the 
information and reduce their resolution. Therefore, it is very important to filter out the noise to effectively 
use the images so that the information and resolution of the images are preserved. For this purpose, image 
processing techniques such as the use of a weighted median filter and histogram matching are applied to the 
input images to increase brightness and reduce artifact. 

2.2 Integration Methods 

2.2.1. Brovey Transform 

One of the most well-known pixel-level image integration algorithms is the Brovey method. According 
to this method, the visible-like image bands (multi-spectral images) are normalized and then multiplied by 
the Sentinel-1 satellite image single-band (SAR). Brovey method can be formulated by equation 1, (Choi, 
2006). In fact, the algorithm, by normalizing the visible-like image bands, matches its brightness and 
contrasts with the SAR image. 

𝑅𝑒𝑑 =
𝑅

𝑅 + 𝐺 + 𝐵
∗ 𝐼𝑆𝐴𝑅 

 

 

𝑅𝑒𝑑 =
𝐺

𝑅 + 𝐺 + 𝐵
∗ 𝐼𝑆𝐴𝑅 

 
(1) 

𝑅𝑒𝑑 =
𝐵

𝑅 + 𝐺 + 𝐵
∗ 𝐼𝑆𝐴𝑅 

 

 

In the above equations, the parameters R, G, B represent the visible-like (multi-spectral) image bands and 
the 𝐼𝑆𝐴𝑅  represents the SAR image band. 
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2.2.2. IHS Transform 

 IHS transform-based algorithms receive often great attention because of their ease of computation and 
high spatial resolution. This transform transfers the visible-like image bands from the RGB space to the 
IHS. After that, the mean and variance of the SAR image are matched with the intensity component obtained 
by applying the IHS transform to the visible-like image according to Equation 2, and then the inverse IHS 
transform is applied. The output of this process will be the same integrated image based on the IHS technique 
Brovey method can be formulated by equation 2, (Klonus and Ehlers, 2008):  

𝐼𝑆𝐴𝑅𝑎𝑑𝑗= 
𝜎𝐼

𝜎𝑆𝐴𝑅
 [(𝐼𝑆𝐴𝑅-𝜇𝑆𝐴𝑅)+𝜇𝐼]  

 

  

 

(2) 

In the above equation, 𝝁𝑺𝑨𝑹, 𝝁𝑰 and 𝝈𝑺𝑨𝑹،𝝈𝑰 are the mean of the SAR single-band image, the intensity 
component of I, and their standard deviation, respectively. Also, 𝑰𝑺𝑨𝑹𝒂𝒅𝒋  is SAR adapted (adjusted) single-
band image are used for replacement.  

2.2.3. Discrete Wavelet Transform (DWT) 

Wavelet transform is one of the most important image integration methods in pixel level based on the 
filtering in the frequency domain. By applying the wavelet transform to the input images, four sub-images, 
or four frequency sub-bands, are created, including Low-Low, Low-High, High-Low, and High-High. For 
the second level, the wavelet transform decomposition is performed on Low-Low. The wavelet 
decomposition can be continued until for N level of decomposition, the 3N+1 layer is obtained. The 
integration process takes place on the decomposed layers of the input images. The absolute value of wavelet 
transform coefficients provides important information on properties such as edges and lines. Therefore, 
calculating the maximum absolute value is an appropriate integration principle. In this regard, the absolute 
values of the layers are compared one by one and, if they are larger, placed in the corresponding layer of the 
final image. In this study, the integration process is performed at the second level of decomposition, because 
in most the prominent features of the image are better visualized. Therefore, the selection of the appropriate 
level of decomposition results in a better integration. 

2.2.4. Integration of Sensors’ Information Based on the Retina Model 

The human visual system is one of the most efficient systems for image analysis. Each of the different 

parts of the eye plays an important role in the visual process. In many of the advanced imaging systems 

presented so far, various aspects of the human visual system have been attempted to be modeled so that the 

designed system has a function similar to that of the human visual system. 

2.2.4.1. Integration of Sensors’ Information Based on the Non-Feedback Retina Model  

The modeling of information received by cone and horizontal cells of retina and ultimately the created 
image in the brain can be described as follows: information obtained by cone cells and the horizontal cells 
are modeled with the Gaussian low-pass filter with 𝜎𝑐 cut-off frequency and Gaussian low-pass filter with  
𝜎𝑠 cut-off  frequency, respectively. On the other hand, as cone cells are sensitive to detail, they have a higher 
spatial resolution than horizontal cells, thus their filter bandwidth is much wider than the horizontal cells 
(Veloie and Ghassemian, 2005). In this model, the low-frequency and spectral content of the horizontal cells 
and the high frequency and spatial content of the cone cells from two completely separate paths pass through 
and from the image in the brain. Based on this model, for image integration, high-frequency information 
and low spatial frequency information (spectral content) should be extracted from high spatial resolution 
SAR image (similar to a cone cell) and visible-like multispectral image (similar to a horizontal cell), 
respectively. Accordingly, the integrated image is obtained by the equations 3, (Lotfi and Ghassemian, 
2015):  

𝐹(𝑢, 𝑣) = 𝐼𝑆𝐴𝑅(𝑢, 𝑣). 𝑒
−(𝑢2+𝑣2). 2𝜋2𝜎𝑐

2
+ 𝐼𝑂𝑝𝑡𝑖𝑐(𝑢, 𝑣). 𝑒

−(𝑢2+𝑣2).2𝜋2𝜎𝑠
2
 

 

(3) 



36                                            Mina Solhi et al. / Journal of Radar and Optical Remote Sensing 4 (2019) 31-47 

In the above equation, the parameters 𝜎𝑠, 𝜎𝑐 are the width of the Gaussian centre receptive field (cone 
cells) and the Gaussian surround receptive field (horizontal cells), respectively  )𝜎𝑠 > 𝜎𝑐  (. Therefore, the 
Gaussian surround receptive field is narrower in the frequency domain. 

2.2.4.2. Integration of Sensors’ Information Based on the Feedback Retina Model  

In the no-feedback retina model, the inhibitory effect of horizontal cells on cone cells should also be 
taken into account to better and fully describe the centre-surround structure created by the contrast. The 
effect is accounted for by the feedback path from horizontal cells to cone cells. Based on this model, the 
spatial information lower than a specified frequency and the spatial information higher than this frequency 
are obtained by a Gaussian low-pass filter from the multispectral image and the Difference of Gaussian 
(DOG) from SAR image (Daneshvar and Ghassemian, 2011). In fact, the role of horizontal cells in this 
model is to extract spectral features from the multispectral image (Veloie and Ghassemian, 2005). In other 
words, the Gaussian low-pass filter well preserves the spectral and low frequency detail of the multi-spectral 
image; however their spatial detail is reduced. Adding detail extracted from SAR images by DOG will result 
in acceptable spectral and spatial quality. Considering the effect of horizontal cells on cone cells, frequency 
response of bipolar cell is obtained by equation 4, (Veloie and Ghassemian, 2005): 

 

𝐻(𝑢, 𝑣) = (𝑒−(𝑢
2+𝑣2). 2𝜋2𝜎𝑐

2
− 𝑘ℎ𝑐 . 𝑒

−(𝑢2+𝑣2). 2𝜋2𝜎𝑠
2
) + 𝑒−(𝑢

2+𝑣2).2𝜋2𝜎𝑠
2
 

 

(4) 

In the above equation, the parameters  𝜎𝑠, 𝜎𝑐 are the width of the Gaussian centre receptive field (cone 
cells) and the Gaussian surround receptive field (horizontal cells), respectively. The parameter (𝑘ℎ𝑐 =

1

∆2
)   

is also the feedback gain to apply the horizontal cells inhibitory effect on the cone cells. The parameter Δ 
indicates the ration of spatial resolution of the visible multispectral image (30 m) to the spatial resolution of 
the SAR image (10 m), equal to 3 for the images used in this study. The frequency response of the mentioned 
filters and the integrated image based on the general formula proven for the bipolar cell is obtained by the 
equations (5),( 6), (7) as fallows [23] and assuming𝜎𝑠 = ∆𝜎𝑐 = 3𝜎𝑐: 

 𝐻𝑆𝐴𝑅(𝑢, 𝑣) = 𝐻1,−1
∆2
,𝜎𝑐,3𝜎𝑐

(𝑢, 𝑣) = ( 𝑒−[(𝑢
2+𝑣2). 2𝜋2𝜎𝑐

2] +
−1

∆2
, 𝑒−[(𝑢

2+𝑣2). 2𝜋2(3𝜎𝑐)
2]) 

 

(5) 
 
 

𝐻𝑂𝑝𝑡𝑖𝑐𝑎𝑙(𝑢, 𝑣) = 𝐻0,1,𝜎𝑐,3𝜎𝑐(𝑢, 𝑣) = (𝑒
−(𝑢2+𝑣2). 2𝜋2(3𝜎𝑐)

2
) 

 

(6) 
 

𝐹(𝑢, 𝑣) = 𝐼𝑆𝐴𝑅(𝑢, 𝑣). 𝐻𝑆𝐴𝑅(𝑢, 𝑣) + 𝐼𝑂𝑝𝑡𝑖𝑐𝑎𝑙(𝑢, 𝑣). 𝐻𝑂𝑝𝑡𝑖𝑐𝑎𝑙(𝑢, 𝑣) 

 

(7) 

According to the above equations, the only adjustable parameter in this model is 𝜎𝑐  (0.02 to 0.05, 
minimum height and width of the image). In this study, 0.05 was also considered as the most appropriate 
value for 𝜎𝑐. In the final step, the new intensity image obtained by feedback retina model replacing with the 
intensity component obtained by IHS transform is transferred to the visible-like image and into the RGB 
space. 

3. Proposed Method 

Curvelet transform is one of the new emerging methods of multi-resolution analysis, which does not have 
many shortcomings of other multi-scale analysis methods. This transform is capable of directly detecting 
edges and curved shapes in images. Curvelet transform is actually a nonstandard multidimensional-multi-
scale pyramid with many geometrical orientations at each scale, so it does not have wavelet transform 
deficiencies in detecting edges, with a much robust and less sensitive structure against the noise. By applying 
the curvelet transform to an image, at the first level of decomposition, the coefficients of the approximation 
sub-band are created, with a content similar to the low-low sub-band in the wavelet transform; and after the 
second level of decomposition, three coefficients, including approximation, non-standard fine and detail 
orientation sub-bands are prepared. In this study, a new algorithm was used for integration of the curvelet 
transform coefficients based on the application of horizontal cells in the retina model which is presented in 
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Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

                                                       
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Diagram of proposed method. 

To implement the proposed method, after making the necessary pre-processing, the curvelet transforms 
to three levels of decomposition is first applied to the input images. Then, considering the use of horizontal 
cells to extract the spectral properties of images in the feedback retina model, the spectral and spatial 
information lower than the specified and adjustable frequency is found from the visible-like image by a 

𝐍𝐞𝐰 𝐀𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐢𝐨𝐧 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭𝐬 

𝐝𝐞𝐭𝐚𝐢𝐥𝟐 & 𝐟𝐢𝐧𝐞𝟐𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭𝐬 𝐨𝐟 𝐈𝐌𝐆𝐎𝐩𝐭𝐢𝐜 𝐚𝐧𝐝 𝐈𝐌𝐆𝐒𝐀𝐑𝐚𝐝𝐣𝐛𝐲 𝐓𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝𝐢𝐧𝐠 

 

 

 

𝐃𝐨𝐰𝐧 𝐬𝐚𝐦𝐩𝐥𝐞 

𝐇𝐎𝐩𝐭𝐢𝐜𝐚𝐥− 𝐅𝐞𝐞𝐝 𝐁𝐚𝐜𝐤 𝐑𝐞𝐭𝐢𝐧𝐚 𝐌𝐨𝐝𝐞𝐥(𝐮, 𝐯) 

𝐝𝐞𝐭𝐚𝐢𝐥𝟏 & 𝐟𝐢𝐧𝐞𝟏 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭𝐬 𝐨𝐟 𝐈𝐌𝐆𝐎𝐩𝐭𝐢𝐜 

 

𝐅𝐅𝐓 𝐨𝐟 𝐈𝐧𝐭𝐞𝐧𝐬𝐢𝐭𝐲 𝐜𝐨𝐦𝐩𝐨𝐧𝐞𝐧𝐭 𝐨𝐟 𝐈𝐌𝐆𝐎𝐩𝐭𝐢𝐜 

𝐃𝐅𝐮𝐬𝐞𝐝(𝐮, 𝐯, 𝐥, Ɵ) = 𝐖𝐈𝟏. 𝐃𝐈𝟏(𝐮, 𝐯, 𝐥, Ɵ)
+𝐖𝐈𝟐. 𝐃𝐈𝟐(𝐮, 𝐯, 𝐥, Ɵ) 

𝐅𝐮𝐬𝐞𝐝 𝐈𝐌𝐆 𝐖𝐢𝐭𝐡 𝐇𝐢𝐠𝐡𝐞𝐫 𝐒𝐩𝐞𝐜𝐭𝐫𝐚𝐥 𝐚𝐧𝐝 𝐒𝐩𝐚𝐭𝐢𝐚𝐥 𝐐𝐮𝐚𝐥𝐢𝐭𝐲
  

 

 

 

𝐈𝐧𝐯𝐞𝐫𝐬𝐞 𝐨𝐟 𝐂𝐮𝐫𝐯𝐞𝐥𝐞𝐭 𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦 

𝐀𝐩𝐩𝐥𝐲𝐢𝐧𝐠 𝐧𝐨𝐢𝐬𝐞 𝐫𝐞𝐦𝐨𝐯𝐚𝐥 𝐭𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬 
    𝐭𝐨 𝐒𝐀𝐑 𝐢𝐦𝐚𝐠𝐞(𝐖𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐌𝐞𝐝𝐢𝐚𝐧 𝐅𝐢𝐥𝐭𝐞𝐫)  

 

𝐀𝐩𝐩𝐥𝐲𝐢𝐧𝐠 𝐡𝐢𝐬𝐭𝐨𝐠𝐫𝐚𝐦 𝐦𝐚𝐭𝐜𝐡𝐢𝐧𝐠 𝐭𝐨 𝐭𝐡𝐞 𝐢𝐧𝐩𝐮𝐭 𝐢𝐦𝐚𝐠𝐞𝐬  
 

𝐀𝐩𝐩𝐥𝐲𝐢𝐧𝐠 𝐂𝐮𝐫𝐯𝐞𝐥𝐞𝐭 𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦 𝐭𝐨 𝐭𝐡𝐞 𝐢𝐧𝐩𝐮𝐭 𝐢𝐦𝐚𝐠𝐞𝐬  
 

𝐋𝐨𝐚𝐝 𝐢𝐧𝐩𝐮𝐭 𝐈𝐦𝐚𝐠𝐞𝐬 ( 𝐈𝐌𝐆𝐒𝐀𝐑 𝐚𝐧𝐝 𝐈𝐌𝐆𝐎𝐩𝐭𝐢𝐜 ) 

   𝐨𝐟 𝐔𝐫𝐛𝐚𝐧, 𝐕𝐞𝐠𝐞𝐭𝐚𝐭𝐢𝐨𝐧 𝐚𝐧𝐝 𝐂𝐨𝐚𝐬𝐭𝐚𝐥 𝐚𝐫𝐞𝐚𝐬 
 



38                                            Mina Solhi et al. / Journal of Radar and Optical Remote Sensing 4 (2019) 31-47 

Gaussian low-pass filter with 𝜎𝑠 cut-off frequency. After that, sampling is performed from the output of the 
Gaussian with a decreasing coefficient and the obtained coefficients are replaced with the coefficients of 
the integrated image approximation sub-band. The coefficients of the fine1, detail1 sub-bands are then 
selected from the visible-like image because they are smaller than the coefficients of the SAR image. Next, 
we weight the coefficients of detail 2 and fine 2 sub-band from both SAR and visible-like images according 
to the following steps: 

Calculate the information and content of the curvelet coefficients by considering their neighbourhood at 
different scales of curvelet transform and the degree of conformity of the corresponding windows of input 
images in the corresponding sub-bands. In this regard, given the values of the neighbouring coefficients, we 
consider a window of 5 * 5 to calculate the content of its curvelet coefficient of central location, and calculate 
the energy parameter 𝐸𝐼1(𝑢, 𝑣, 𝑙, Ɵ) , 𝐸𝐼2(𝑢, 𝑣, 𝑙, Ɵ)  according to equation (8) and (9). In addition, the 
conformity of corresponding windows in the corresponding sub-bands is determined according to equation 
10, (Burt and Kolczynski, 1993): 

 

𝐸𝐼1(𝑢, 𝑣, 𝑙, Ɵ) = ∑ 𝜌(𝑋)

5

𝑠,𝑡=1

|𝐷𝐼1(𝑢 + 𝑠, 𝑣 + 𝑡, 𝑙,  Ɵ)  |

2

 

 

(8) 

𝐸𝐼2(𝑢, 𝑣, 𝑙, Ɵ) = ∑ 𝜌(𝑌)

5

𝑠´,𝑡´=1

|𝐷𝐼2(𝑢 + 𝑠
´, 𝑣 + 𝑡´, 𝑙,  Ɵ)  |

2

 

 

(9) 

 𝑀𝐼1,𝐼2(𝑢, 𝑣, 𝑙, Ɵ) =
2∑ 𝜌(𝑋, 𝑌)𝐷𝐼1(𝑢 + 𝑠, 𝑣 + 𝑡, 𝑙,  Ɵ)𝐷𝐼2(𝑢 + 𝑠, 𝑣 + 𝑡, 𝑙,  Ɵ)  

5
𝑠,𝑡=1

𝐸𝐼1(𝑢, 𝑣, 𝑙, Ɵ) + 𝐸𝐼2(𝑢, 𝑣, 𝑙, Ɵ)
 

 

(10) 

 In the above equation, the parameters 𝑀𝐼1,𝐼2 ,  𝑠
´, 𝑡´ , 𝑠, 𝑡, 𝐷𝐼(𝑢, 𝑣, 𝑙,  Ɵ) , and (𝑢, 𝑣, 𝑙, Ɵ)represent the 

degree of conformity of the windows 𝛒 (X), 𝛒 (Y), their dimension, the curvelet coefficients, and their 
position in the coordinates (𝑢, 𝑣)at level l and direction Ɵ. Calculate the optimal threshold for the conformity 
of the corresponding windows to weight the central curvelet coefficients in the corresponding windows. 
Now, equations (13) and (14) are defined so that the weights 𝑊𝑚𝑖𝑛 and  𝑊𝑚𝑎𝑥  are normalized 0 to 1. Hence, 
we thus assume T = 0.5 as the appropriate threshold for this interval. The maximum and minimum weights 
are also calculated according to equations (11), (12), (13), (14) (Burt and Kolczynski, 1993): 

 

𝑊𝑚𝑖𝑛 =
1

2
−
1

2
(
1 − 𝑀𝐼1,𝐼2(𝑢, 𝑣, 𝑙, Ɵ)

1 − 𝑇 
) 

 

(11) 

𝑊𝑚𝑎𝑥 = 1 −𝑊𝑚𝑖𝑛  
 

(12) 

if the conformity of corresponding windows is higher than the threshold, then: 
 

𝑀𝐼1,𝐼2(𝑢, 𝑣, 𝑙, Ɵ) > 𝑇   →    𝐸𝐼1(𝑢, 𝑣, 𝑙, Ɵ)>   𝐸𝐼2(𝑢, 𝑣, 𝑙, Ɵ),  {
𝑊𝐼1 = 𝑊𝑚𝑎𝑥
𝑊𝐼2 = 𝑊𝑚𝑖𝑛

}, 

𝑒𝑙𝑠𝑒 𝑖𝑓    𝐸𝐼2(𝑢, 𝑣, 𝑙, Ɵ)>   𝐸𝐼1(𝑢, 𝑣, 𝑙, Ɵ),  {
𝑊𝐼2 = 𝑊𝑚𝑎𝑥
𝑊𝐼1 = 𝑊𝑚𝑖𝑛

} 

 

(13) 

and if the conformity of corresponding windows is lower than the threshold, then: 
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𝑀𝐼1,𝐼2(𝑢, 𝑣, 𝑙, Ɵ) < 𝑇   →    𝐸𝐼1(𝑢, 𝑣, 𝑙, Ɵ)>   𝐸𝐼2(𝑢, 𝑣, 𝑙, Ɵ),  {
𝑊𝐼1 = 1

𝑊𝐼2 = 0
}, 

𝑒𝑙𝑠𝑒 𝑖𝑓    𝐸𝐼2(𝑢, 𝑣, 𝑙, Ɵ)>   𝐸𝐼1(𝑢, 𝑣, 𝑙, Ɵ),  {
𝑊𝐼2 = 1

𝑊𝐼1 = 0
} 

 

(14) 

In the above equations, the parameters 𝑊𝐼1  𝑊𝐼2 , 𝐸𝐼1 ،𝐸𝐼2 , and 𝑀𝐼1,𝐼2  are the weights obtained for the 
coefficients of detail 2 and fine 2, curvelet transform coefficients energy, and the conformity of the curvelet 
coefficients content in the corresponding windows of visible-like and SAR images in the corresponding sub-
bands, respectively. Finally, we apply the inverse curvelet transform to the 𝐷𝐹𝑢𝑠𝑒𝑑(𝑢, 𝑣, 𝑙, Ɵ)  integrated 
curvelet coefficients and calculate the final integrated image according to equation 15, (Shokrallahi and 
Sahebi, 2017): 
 

𝐷𝐹𝑢𝑠𝑒𝑑(𝑢, 𝑣, 𝑙, Ɵ) = 𝑊𝐼1. 𝐷𝐼1(𝑢, 𝑣, 𝑙, Ɵ) +𝑊𝐼2. 𝐷𝐼2(𝑢, 𝑣, 𝑙, Ɵ) 
 

(15) 

 The proposed method has been performed by applying two and five levels of curvelet decomposition to 
SAR and visible-like images. All the steps were exactly same as the proposed method in three levels of 
curvelet decomposition, except that the weighting of the curvelet coefficients of visible-like and SAR 
images was performed by applying the two levels of curvelet decomposition to the coefficients of fine1, 
detail1, and five levels of curvelet decomposition to the coefficients of fine 3, detail 3, fine 4, and detail 4 
sub-bands. 

4. Results 

4.1. Implementation Evaluation results of the Algorithms according to Visual and Qualitative 
Criteria 

 By visual interpretation of the integrated images and comparing them with the input images, one can 
detect changes in color quality, sharpness of edges, lines and effects. However, this criterion alone is not 
appropriate for accurate examination and analysis of the spectral and spatial quality of the images. 

4.2. Simulation Evaluation results of Different Integration Algorithms on Construction, Urban, 
Vegetation, and Coastal Areas 

The visual results of the integrated images obtained from the implementation of Brovey and IHS 
algorithms, wavelet transform, no-feedback retina model, feedback retina model, curvelet transform are 
presented in Figures 1 to 3. We have used three sets of images,including Landsat-8, Sentinel-2 imagesand 
Sentinel-1 images for the integration of SAR and visible-like images. In this paper, part of Ahvaz, including 
residential areas and streets, were studied as construction areas, Figures (2a) to (2j), as well as parts of the 
herbor around Oslo city as vegetation Figures (3a) to (3j), and coastal areas Figures (4a) to (4j). Visual 
comparison of the results shows the high spectral quality and the sharpness of the proposed method, 
especially at the second level of decomposition compared to other methods. 

 
 
 

 
 
 
 
 
 
 
 
 



40                                            Mina Solhi et al. / Journal of Radar and Optical Remote Sensing 4 (2019) 31-47 

 
 

4.2.1. Simulation results of Different Integration Algorithms on Construction, Urban Areas 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 

 

 

 (j)  
Figure 2. Dataset (1): (a) SAR image; (b) Optic image. Fused images: (c) Brovey; (d) IHS; (e) Non-Feedback retina 

model; (f) Feedback retina model; (g) WT; (h) Curvelet; (i) Proposed method in third decomposition;  

(j) Proposed method in the second decomposition. 
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4.2.2. Simulation results of Different Integration Algorithms on Vegetation Areas 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 

 

 

 (j)  

Figure 3. Dataset (2): (a) SAR image; (b) Optic image. Fused images: (c) Brovey; (d) IHS; (e) Non-Feedback retina 

model; (f) Feedback retina model; (g) WT; (h) Curvelet; (i) Proposed method in third decomposition; (j) Proposed 

method in the second decomposition. 
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4.2.3. Simulation results of Different Integration Algorithms on Coastal Areas 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 

 

 

 (j)  

Figure 4. Dataset (3): (a) SAR image; (b) Optic image. Fused images: (c) Brovey; (d) IHS; (e) Non-Feedback retina 

model; (f) Feedback retina model; (g) WT; (h) Curvelet; (i) Proposed method in third decomposition; 

(j) Proposed method in the second decomposition. 

4.3. Evaluation results of the Implementation of the Algorithms according to Quantitative Criteria 

In this study, quality index, mutual information, relative dimensionless global error in system, integration 
information score, Euclidean distance, and standard deviation were used to evaluate the accuracy, spectral 
and spatial content of the integrated images. 

4.3.1. Integrated Information Score (Q (AB / f)) 

Q (AB / f) measure the amount of edge information transferred from the intensity component of the input 
image to the intensity component of integrated image. It is obtained according to equation 16, (Ma, and Li, 
2019): 
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𝑄𝐴𝐵/𝑓 =
∑ ∑ 𝑄𝑔

𝐴,𝑓𝑀
𝑗=1 (𝑖, 𝑗). 𝑄𝑎

𝐴,𝑓(𝑖, 𝑗) + 𝑄𝑔
𝐵,𝑓(𝑖, 𝑗). 𝑄𝑎

𝐵,𝑓𝑁
𝑖=1

∑ ∑ 𝑄𝑔
𝐴,𝑓𝑀

𝑗=1 (𝑖, 𝑗) + 𝑄𝑔
𝐵,𝑓(𝑖, 𝑗)𝑁

𝑖=1

 

 

(16) 

In the above equation, and 𝑄𝑎
𝐵,𝑓(𝑖, 𝑗) and  𝑄𝑔

𝐵,𝑓(𝑖, 𝑗) show the strength and direction of the edge at the 
position (i, j). 

4.3.2. Quality Index (QI) 

One of the global indexes of quality assessment is the criterion of structural similarity. The index is 
calculated according to the equation 17, (Mahyari, and Yazdi, 2009), the better the performance of the 
integration method. 

𝑄𝐼𝑋,𝐹 =∑
2𝜇𝑥𝜇𝑓

𝜇𝑋
2 + 𝜇𝑓

2 .
2𝜎𝑥𝜎𝑓

𝜎𝑋
2 + 𝜎𝑓

2 .
𝜎𝑥𝑓

𝜎𝑥𝜎𝑓𝑥,𝑓
 

 

(17) 

 In the above equation 𝑄𝐼𝑋,𝐹 , 𝜎𝑥, 𝜎𝑥,𝑓 ,  𝜎𝑓 ,  𝜇𝑥, and 𝜇𝑓 represent the structural similarity between the 
input and integrated images, the covariance and standard deviation of the input and integrated images, 
respectively, and the mean grey level of the input and integrated images, respectively. The total QI, between 
the input and integrated images, is obtained (Mahyari, and Yazdi, 2009), from equation 18: 

𝑄𝐼 = 𝑄𝐼𝐴,𝐹 + 𝑄𝐼𝐵,𝐹 (18) 

  

4.3.3. Mutual Information (MI) 

The MI is another indicator of quality assessment, which measures the amount of information transmitted 
from the input images to the integrated image. MI is a fundamental concept in information theory that 
measures the degree of dependence of two random variables and is defined by equation 19, (Ma and Li, 
2019): 

𝑀𝐼𝑥,𝑓 =∑ 𝜌𝑥,𝑓(𝑥, 𝑓). 𝑙𝑜𝑔.
𝜌𝑥,𝑓(𝑥, 𝑓)

𝜌𝑥(𝑥). 𝜌𝑓(𝑓)𝑥,𝑓
 

 

(19) 

In the above equation, 𝑀𝐼𝑥,𝑓 , 𝜌𝑥,𝑓(𝑥, 𝑓)،𝜌𝑓(𝑓)، and 𝜌𝑥(𝑥)  represent the amount of information 
transmitted from the input image to the integrated image, the marginal histogram probability density 
functions, and the common histogram probability density function of are the grey level of the input and 
integrated images, respectively. The total MI, between the input and integrated images, is obtained from the 
equation 20, (Sun and Deng, 2012) 

𝑀𝐼 = 𝑀𝐼𝐴,𝐹 +𝑀𝐼𝐵,𝐹 
 

(20) 

 4.3.4. Relative Dimensionless Global Error in System (ERGAS) 

It is an extended index of the RMSE criterion and shows the spectral and spatial efficiency of the 
integration algorithm. It is obtained according to the equations (21 to 23), (Nencini et al., 2007; Reinoso 
and Moncayo, 2011): 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙

{
  
 

  
 

𝐸𝑅𝐺𝐴𝑆𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 = 100
ℎ

𝑙

√
∑

(𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙(𝐵𝑎𝑛𝑑𝑖)
2

(𝑀𝑢𝑙𝑡𝑖𝑖̆ )2
𝑁𝐵𝑎𝑛𝑑𝑠
𝑖=1

𝑁𝐵𝑎𝑛𝑑𝑠

𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙(𝐵𝑎𝑛𝑑𝑖)
=

1

𝑁𝑃
√∑ (𝑀𝑢𝑙𝑡𝑖𝑖(𝑘) − 𝐹𝑈𝑆𝑖(𝑘))

2
𝑁𝑃

𝑘=1

 (21) 
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𝑆𝑝𝑎𝑡𝑖𝑎𝑙  

{
 
 
 

  
 

𝐸𝑅𝐺𝐴𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 100
ℎ

𝑙

√
∑

(𝑅𝑀𝑆𝐸𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝐵𝑎𝑛𝑑𝑖)
2

(𝑆𝐴𝑅�̆�)
2

𝑁𝐵𝑎𝑛𝑑𝑠
𝑖=1

𝑁𝐵𝑎𝑛𝑑𝑠

𝑅𝑀𝑆𝐸𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝐵𝑎𝑛𝑑𝑖)
=

1

𝑁𝑃
√∑ 𝑆𝐴𝑅(𝑘) − 𝐹𝑈𝑆𝑖(𝑘))

2
𝑁𝑃

𝑘=1

 

 

(22) 

𝐸𝑅𝐺𝐴𝑆 =
𝐸𝑅𝐺𝐴𝑆𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 + 𝐸𝑅𝐺𝐴𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙

2
 

 

(23) 

 In the above equations, the parameters l, h, NBands, NP,  𝑀𝑢𝑙𝑡𝑖𝑖̅̅ ̅̅ ̅̅ ̅̅  and 𝑆𝐴𝑅𝑖̅̅ ̅̅ ̅̅   are the spatial resolution of SAR 
image, intensity component of a visible-like image, number of bands in a visible-like image, number of 
pixels in input and integrated image, mean of SAR images, and intensity component of a visible-like image, 
respectively. 

4.3.5. Euclidean Distance (ED) 

This type of spectral distance is defined on the basis of the spectral angle. Its fundamental difference with 
the spectral angle criterion is that the ED method is affected by the difference in luminosity between the 
spectra. The smaller this criterion is, the better the spectral quality of the integrated Image. This parameter 
is obtained according to equations (24 and 25), (Bigdeli et al., 2014): 

𝑆𝐴𝑀(𝐴𝑖, 𝐹𝑖) = 𝑐𝑜𝑠
−1(

∑ 𝐴𝑖 .
𝑁
𝑖=1 𝐹𝑖

∑ 𝐴𝑖
2𝑁

𝑖=1 . ∑ 𝐹𝑖
2𝑁

𝑖=1

) 

 

(24) 

𝐸𝐷(𝐴𝑖 , 𝐹𝑖) = 2.√1 −
∑ 𝐴𝑖 .
𝑁
𝑖=1 𝐹𝑖

∑ 𝐴𝑖
2𝑁

𝑖=1 . ∑ 𝐹𝑖
2𝑁

𝑖=1

= 2. 𝑠𝑖𝑛(
𝑆𝐴𝑀(𝐴𝑖 , 𝐹𝑖)

2
) 

 

(25) 

In the above equation, N, A = (A1, A2, ..., AN), F = (F1, F2, ..., FN), and SAM are the number of bands, 
the spectral vectors of the visible-like and integrated images, and the angle of deviation in a pixel of the 
image. The closer the ED is to zero, the higher the spectral information is. 

4.3.6 Standard Deviation (STD) 

 This parameter indicates the contrast of the image and shows the distribution of grey level of the image 
relative to the mean. The larger standard deviation indicates more information. The standard deviation is 
obtained according to equation 26, (Li et al., 2008): 

𝑆𝑇𝐷 =
1

𝑀𝑁
√∑∑|𝑔𝑖,𝑗 − �̅�|

2
𝑀

𝑗=1

𝑁

𝑖=1

   

 

(26) 

In the above equation, g i, j and g̅  the grey level of a pixel and the mean of grey level, respectively. 

4.3.7 Numerical results of Quantitative Parameters Derived from Algorithm Implementation 

Numerical values of spectral and spatial parameters to investigate and interpret the results are presented 
in Table 1. 
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Table 1. Calculated Numerical Values of Spectral and Spatial Parameters. 

Construction and Urban Areas Q (AB / f) QI MI ERGAS ED STD 

Brovey 0.5792 0.3906 2.0925 0.0561 1.6735 37.4920 

IHS 0.5068 0.4236 1.9027 0.0583 1.8972 36.1287 

DWT 0.3927 0.2637 1.7063 0.0488 1.1219 38.4731 

Non-Feedback Retina Model 0.2904 0.3162 1.8649 0.0674 1.2157 35.2719 

Feedback Retina Model 0.6143 0.5473 3.2160 0.0427 1.0584 40.4880 

Curvelet 0.7559 0.6058 3.8723 0.0418 0.5308 46.1358 

Proposed method method in 2th decomposition 0.7105 0.8619 4.3429 0.0346 0.3461 57.3765 

Proposed method method in 3th decomposition 0.6742 0.8365 4.2087 0.0392 0.3958 53.1402 

Vegetation Areas Q (AB / f) QI MI ERGAS ED STD 

Brovey 0.5042 0.6582 2.7509 0.0642 1.4760 40.0952 

IHS 0.4871 0.6127 2.0943 0.0591 1.6824 39.5603 

DWT 0.4619 0.6289 2.9365 0.0583 1.0147 41.8194 

Non-Feedback Retina Model 0.3804 0.5061 1.7210 0.0627 1.1949 37.8925 

Feedback Retina Model 0.6741 0.7639 3.0623 0.0589 0.9531 43.8327 

Curvelet 0.7563 0.7640 3.9751 0.0523 0.4779 48.3091 

Proposed method method in 2th decomposition 0.8139 0.9146 4.1217 0.0507 0.2903 54.7245 

Proposed method method in 3th decomposition 0.7951 0.8975 3.2937 0.0539 0.3421 52.3360 

Coastal Areas Q (AB / f) QI MI ERGAS ED STD 

Brovey 0.5936 0.6901 2.8150 0.0614 1.5304 37.1296 

IHS 0.5231 0.5726 2.1704 0.0637 1.7285 36.9905 

DWT 0.4819 0.6210 2.9863 0.0596 1.1920 38.7852 

Non-Feedback Retina Model 0.4486 0.5014 1.9427 0.0651 1.4290 35.6125 

Feedback Retina Model 0.6907 0.6295 3.5168 0.0574 1.1701 41.9810 

Curvelet 0.8671 0.6781 4.1804 0.0436 0.5037 45.7854 

Proposed method method in 2th decomposition 0.8397 0.8604 4.3172 0.0513 0.3617 49.0371 

Proposed method method in 3th decomposition 0.8152 0.8523 3.8249 0.0527 0.3916 47.6027 

As is evident, the proposed method has a significant advantage over other methods due to its quantitative 
value of spectral and spatial parameters. 

5. Discussion and Conclusion 

By intuitive examination of the integrated images, it is found that all the implemented algorithms except 
the Brovey and IHS have relatively better spectral properties and content compared to the visible-like image. 
In fact, the most important drawback in IHS is the degradation of spectral and color content. Also in the 
Brovey method, due to the modulation of the spatial information of the SAR image on the content of each 
band of the visible-like image, there is a significant spectral and color distortion in the integrated images, 
especially for the construction areas. In contrast, the proposed method, the curvelet transform, and feedback 
retina models have the best performance in preserving and transferring the properties and spectral contents, 
respectively. In the proposed method, in the feedback retina model, horizontal cells were used to extract the 
spectral features of the visible-like image. On the other hand, due to the adjustability of the parameter 𝜎𝑐 
and the width of the Gaussian low-pass filter receptive field, a better approximation sub-band was replaced 
with the curvelet coefficients of the integrated image approximation sub-band, so the spectral properties of 
the integrated image vividly improved compared to other methods. 

The ED parameter values (0.0364, 0.2903, 0.3617), in Table 1, which is a quantitative criterion for 
comparing the spectral difference between the integrated image and the input image, confirm the high 
performance of the proposed integration methods in preserving spectral properties and content. The color 
change is observed in all integration algorithms and is unavoidable, but a careful comparison of the results 
can show that the integration of SAR and visible-like images based on Brovey and IHS transform has a 
significant color distortion. While the color distortion created in other methods is relatively acceptable. 

Considering the Q (AB / f) parameter values (0.7559, 0.8139, 0.8671), in Table 1, which is a quantitative 
criterion for comparing the power of algorithms in detecting edges of the image, it is found that the curvelet 
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method and the proposed method have the highest performance at the second level of decomposition, and 
the Brovey transform, IHS transform and the feedback retina model have relatively acceptable performance 
in preserving and detecting edges. The superiority of the proposed method and crawl transform is due to the 
nature of crawl transform in the direct detection of a variety of edges and image details. In contrast, the 
wavelet transform method and no-feedback retina model have the weakest performance in preserving and 
detecting edges. In the wavelet transform method, with increasing levels of decomposition, more spatial 
information and content is transferred to the output, but the spectral content is degraded. The wavelet 
transforms at the second level of decomposition has an acceptable performance in preserving the spectral 
properties, though ineffective in detecting edges. 

Considering the ERGAS parameter values (0.3461, 0.0507, 0.0436), in Table 1, it is found that the 
curvelet method and the proposed method have the minimum spectral and spatial error, which show that the 
proposed algorithm is accurate and reliable.  

According to the values of QI, MI, STD parameter, in Table 1, it is suggested that the proposed method 
has the ability to maximize information from the incoming images to the integrated image.  The reality of 
all studies in the field of image integration is that the claim of absolute separation of spatial and spectral 
properties is impossible. In other words, increasing spatial accuracy will degrade spectral information, and 
as the spatial information and content become more complete, the ambiguity in spectral information 
increases (Veloie and Ghassemian, 2005). The aim of integration is therefore to provide an efficient way to 
arrive at a reasonable amount between these two contradictory situations. Based on the visual interpretation 
of the integrated images and the results of Table 1, the proposed method in the second level of decomposition 
after the curvelet transform has the best spatial resolution in the construction and coastal areas. However, 
considering the quality index, mutual information, relative dimensionless global error in the system, and 
standard deviation, the method has the highest spectral and spatial quality, significantly enhancing the 
spectral properties and providing high spatial resolution. 
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